Package 'plyinteractions'

Title: Extending tidy verbs to genomic interactions
Description: Operate on `GInteractions` objects as tabular data using `dplyr`-like verbs. The functions and methods in `plyinteractions` provide a grammatical approach to manipulate `GInteractions`, to facilitate their integration in genomic analysis workflows.
Authors: Jacques Serizay [aut, cre]
Maintainer: Jacques Serizay <[email protected]>
License: Artistic-2.0
Version: 1.5.0
Built: 2024-11-18 04:20:22 UTC
Source: https://github.com/bioc/plyinteractions

Help Index


plyinteractions: a grammar of data manipulation for genomic interactions

Description

plyinteractions is a dplyr-like API to the GInteractions infrastructure in Bioconductor.

Details

plyinteractions provides a consistent interface for importing and wrangling genomic interactions from a variety of sources. The package defines a grammar of genomic interactions manipulation through a set of verbs. These verbs can be used to construct human-readable analysis pipelines based on GInteractions.

  • Group genomic interactions with group_by;

  • Summarize grouped genomic interactions with summarize;

  • Tally/count grouped genomic interactions with tally and count;

  • Modify genomic interactions with mutate;

  • Subset genomic interactions with filter using ⁠<data-masking>⁠ and logical expressions;

  • Pick out any columns from the associated metadata with select using ⁠<tidy-select>⁠ arguments;

  • Subset using indices with slice;

  • Order genomic interactions with arrange using categorical/numerical variables.

    For more details on the features of plyinteractions, read the vignette: browseVignettes(package = "plyinteractions")

Author(s)

Maintainer: Jacques Serizay [email protected]

See Also

Useful links:


Appends distance between interaction anchors

Description

Appends distance between interaction anchors, using InteractionSet::pairdist

Usage

add_pairdist(x, type = "mid", colname = "pairdist")

Arguments

x

The query GInteractions

type

A character string specifying the type of distance to compute. Can take values of "mid", "gap", "span", "diag" or "intra".

colname

name of column to hold pair distance values

Value

The GInteractions with an additional column containing the distance between each pair of anchors.

Examples

gi <- read.table(text = "
chr1 100 200 chr1 5000 5100 bedpe_example1 30 + -
chr1 1000 5000 chr2 3000 3800 bedpe_example2 100 + -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "name", "score", "strand1", "strand2")
) |> as_ginteractions()

add_pairdist(gi)

Enhanced GInteractions getters

Description

Enhanced GInteractions getters

Usage

anchors1(x)

anchors2(x)

seqnames1(x)

seqnames2(x)

start1(x)

start2(x)

end1(x)

end2(x)

width1(x)

width2(x)

strand1(x)

strand2(x)

ranges1(x)

ranges2(x)

## S4 method for signature 'GInteractions'
x$name

## S4 method for signature 'GInteractions'
anchors1(x)

## S4 method for signature 'GInteractions'
anchors2(x)

## S4 method for signature 'GInteractions'
seqnames1(x)

## S4 method for signature 'GInteractions'
seqnames2(x)

## S4 method for signature 'GInteractions'
start1(x)

## S4 method for signature 'GInteractions'
start2(x)

## S4 method for signature 'GInteractions'
end1(x)

## S4 method for signature 'GInteractions'
end2(x)

## S4 method for signature 'GInteractions'
width1(x)

## S4 method for signature 'GInteractions'
width2(x)

## S4 method for signature 'GInteractions'
strand1(x)

## S4 method for signature 'GInteractions'
strand2(x)

## S4 method for signature 'GInteractions'
ranges1(x)

## S4 method for signature 'GInteractions'
ranges2(x)

Arguments

x

a GInteractions object

name

The pattern or name of a column stored in the GInteractions metadata (mcols).

Value

One of the core GInteractions fields (e.g. seqnames1, start1, ...) or one of the metadata columns when using $. Note that auto-completion works with $.

Examples

gi <- data.frame(
  seqnames1 = 'chr1', start1 = 1, end1 = 10, 
  seqnames2 = 'chr1', start2 = 2, end2 = 20
) |> as_ginteractions() |> mutate(type = 'cis')
anchors1(gi)
anchors2(gi)
seqnames1(gi)
seqnames2(gi)
start1(gi)
start2(gi)
end1(gi)
end2(gi)
width1(gi)
width2(gi)
ranges1(gi)
ranges2(gi)
strand1(gi)
strand2(gi)
gi$type

Annotate both anchors of a GInteractions

Description

For each interaction in a GInteractions object, annotate returns the pairs of annotations from the GRanges object it overlaps with.

Usage

annotate(x, y, by)

annotate_directed(x, y, by)

## S4 method for signature 'GInteractions,GRanges,character'
annotate(x, y, by)

## S4 method for signature 'GInteractions,GRanges,character'
annotate_directed(x, y, by)

Arguments

x

a GInteractions object

y

a GRanges object to extract annotations from

by

Column name from y to use to extract annotations

Value

a GInteractions object with two extra metadata columns named by.1 and by.2.

Examples

####################################################################
# 1. Basic example
####################################################################

gi <- read.table(text = "  
    chr1 11 20 - chr1 21 30 + 
    chr1 21 30 + chr2 51 60 +",  
    col.names = c(
        "seqnames1", "start1", "end1", "strand1", 
        "seqnames2", "start2", "end2", "strand2"
    )
) |> as_ginteractions() 

gr <- GenomicRanges::GRanges(c("chr1:20-30:+", "chr2:55-65:+")) |>
    plyranges::mutate(id = 1:2)

annotate(gi, gr, by = 'id')

annotate_directed(gi, gr, by = 'id')

####################################################################
# 2. Match loops with tiled genomic bins
####################################################################

data(GM12878_HiCCUPS)
loops <- GM12878_HiCCUPS |> 
    pin_by('first') |> 
    anchor_center() |> 
    mutate(width1 = 500) |> 
    pin_by('second') |> 
    anchor_center() |> 
    mutate(width2 = 500)

genomic_bins <- GenomeInfoDb::getChromInfoFromUCSC(
    'hg19', assembled.molecules.only = TRUE, as.Seqinfo = TRUE
) |> 
    GenomicRanges::tileGenome(tilewidth = 10000) |> 
    unlist() |> 
    plyranges::mutate(binID = seq_len(plyranges::n()))

annotate(loops, genomic_bins, by = 'binID') |> 
    select(starts_with('binID'))

####################################################################
# 3. Annotate interactions by a set of regulatory elements
####################################################################

data(ce10_ARCC)
data(ce10_REs)
annotate(ce10_ARCC, ce10_REs, by = 'annot') |> 
   count(annot.1, annot.2) |> 
   as.data.frame() |> 
   dplyr::arrange(desc(n))

Construct a GInteractions object from a tibble, DataFrame or data.frame

Description

The as_ginteractions function looks for column names in .data called seqnames{1,2}, start{1,2}, end{1,2}, and strand{1,2} in order to construct a GInteractions object. By default other columns in .data are placed into the mcols (metadata columns) slot of the returned object.

Usage

as_ginteractions(
  .data,
  ...,
  keep.extra.columns = TRUE,
  starts.in.df.are.0based = FALSE
)

Arguments

.data

A data.frame(), DataFrame() or tibble() to construct a GInteractions object from.

...

Optional named arguments specifying which the columns in .data containin the core components a GInteractions object.

keep.extra.columns

TRUE or FALSE (the default). If TRUE, the columns in df that are not used to form the genomic ranges of the returned GRanges object are then returned as metadata columns on the object. Otherwise, they are ignored.

starts.in.df.are.0based

TRUE or FALSE (the default). If TRUE, then the start positions of the genomic ranges in df are considered to be 0-based and are converted to 1-based in the returned GRanges object.

Value

a GInteractions object.

See Also

InteractionSet::GInteractions()

Examples

####################################################################
# 1. GInteractions from bedpe files imported into a data.frame
####################################################################

bedpe <- read.table(text = "
chr1 100 200 chr1 5000 5100 bedpe_example1 30 + -
chr1 1000 5000 chr1 3000 3800 bedpe_example2 100 + -",
col.names = c(
  "chrom1", "start1", "end1", 
  "chrom2", "start2", "end2", "name", "score", "strand1", "strand2"))
bedpe |> 
  as_ginteractions(seqnames1 = chrom1, seqnames2 = chrom2)

####################################################################
# 2. GInteractions from standard pairs files imported into a data.frame
####################################################################

# Note how the pairs are 0-based and no "end" field is provided 
# (the standard pairs file format does not have "end" fields)
# We can provide width1 and width2 to fix this problem. 

pairs <- read.table(text = "
pair1 chr1 10000 chr1 20000 + +
pair2 chr1 50000 chr1 70000 + +
pair3 chr1 60000 chr2 10000 + +
pair4 chr1 30000 chr3 40000 + -", 
col.names = c(
  "pairID", "chr1", "pos1", "chr2", "pos2", "strand1", "strand2")
)
pairs |> 
  as_ginteractions(
    seqnames1 = chr1, start1 = pos1, width1 = 1000, 
    seqnames2 = chr2, start2 = pos2, width2 = 1000, 
    starts.in.df.are.0based = TRUE
  )

####################################################################
# 3. GInteractions from data.frame with extra fields
####################################################################

df <- read.table(text = "
chr1 100 200 chr1 5000 5100
chr1 1000 5000 chr1 3000 3800",
col.names = c("chr1", "start1", "end1", "chr2", "start2", "end2"))
df |> 
  as_ginteractions(seqnames1 = chr1, seqnames2 = chr2)

df <- read.table(text = "
chr1 100 200 chr1 5000 5100
chr1 1000 5000 chr1 3000 3800",
col.names = c("chr1", "start1", "end1", "chr2", "start2", "end2"))
df |> 
  as_ginteractions(
    seqnames1 = chr1, seqnames2 = chr2, strand1 = '+', strand2 = '-'
  )

data.frame(type = "cis", count = 3) |> 
  as_ginteractions(
    seqnames1 = 'chr1', start1 = 1, end1 = 10,
    seqnames2 = 'chr1', start2 = 40, end2 = 50
  )

####################################################################
# 4. GInteractions from a real like pairs files
####################################################################

pairsf <- system.file('extdata', 'pairs.gz', package = 'plyinteractions')
pairs <- read.table(pairsf, comment.char = '#', header = FALSE)
head(pairs)
pairs |> 
  as_ginteractions(
    seqnames1 = V2, start1 = V3, width1 = 1, strand1 = V6, 
    seqnames2 = V4, start2 = V5, width2 = 1, strand2 = V7,
    starts.in.df.are.0based = TRUE
  )

Arrange a GInteractions by a column

Description

Arrange a GInteractions by a column

Usage

## S3 method for class 'GInteractions'
arrange(.data, ...)

Arguments

.data

a GInteractions object

...

Variables, or functions of variables. Use dplyr::desc() to sort a variable in descending order.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 1 10 chr1 1 10
chr1 2 10 chr2 1 10
chr3 3 10 chr3 1 10
chr4 4 10 chr4 1 10
chr5 5 10 chr5 1 10",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(cis = seqnames1 == seqnames2, score = runif(5)*100, gc = runif(5))
gi

####################################################################
# 1. Arrange GInteractions by a numerical column
####################################################################

gi |> arrange(gc)

####################################################################
# 2. Arrange GInteractions by a logical column
####################################################################

gi |> arrange(cis)

####################################################################
# 3. Arrange GInteractions by a factor
####################################################################

gi |> 
  mutate(rep = factor(c("rep1", "rep2", "rep1", "rep2", "rep1"))) |> 
  arrange(rep)

####################################################################
# 4. Combine sorting variables
####################################################################

gi |> 
  mutate(rep = factor(c("rep1", "rep2", "rep1", "rep2", "rep1"))) |> 
  arrange(dplyr::desc(rep), score)

Count or tally GInteractions per group

Description

Count or tally GInteractions per group

Usage

## S3 method for class 'GroupedGInteractions'
tally(x, wt = NULL, sort = FALSE, name = NULL)

## S3 method for class 'GroupedGInteractions'
count(x, ..., wt = NULL, sort = FALSE, name = NULL)

## S3 method for class 'GInteractions'
count(x, ..., wt = NULL, sort = FALSE, name = NULL)

Arguments

x

A grouped GInteractions object

wt

<data-masking> Frequency weights. Can be NULL or a variable:

  • If NULL (the default), counts the number of rows in each group.

  • If a variable, computes sum(wt) for each group.

sort

If TRUE, will show the largest groups at the top.

name

The name of the new column in the output.

...

<data-masking> Variables to group by.

Value

a S4Vectors::DataFrame() object, with an added column with the count/tablly per group.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Tally groups
####################################################################

gi 

gi |> group_by(strand1) |> tally()

gi |> group_by(type) |> tally()

gi |> group_by(type) |> tally(wt = score)

####################################################################
# 2. Count per groups
####################################################################

gi |> count(type)

gi |> group_by(type) |> count(strand1)

gi |> group_by(type, strand1) |> count(wt = score)

Subset a GInteractions with tidyverse-like filter

Description

Subset a GInteractions with tidyverse-like filter

Usage

## S3 method for class 'GInteractions'
filter(.data, ...)

Arguments

.data

a GInteractions object

...

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 1 10 chr1 1 10
chr1 2 10 chr2 1 10
chr3 3 10 chr3 1 10
chr4 4 10 chr4 1 10
chr5 5 10 chr5 1 10",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(cis = seqnames1 == seqnames2, score = runif(5)*100, gc = runif(5))
gi

####################################################################
# 1. Filter metadata columns from GInteractions by condition
####################################################################

gi |> filter(gc > 0.1)
gi |> filter(gc > 0.1, score > 50)
gi |> filter(cis)

####################################################################
# 2. On-the-fly calculations
####################################################################

gi
gi |> filter(start1 >= start2 + 3)
gi |> filter(score * gc > score * 0.5)

Group GInteractions by columns

Description

Group GInteractions by columns

Usage

## S3 method for class 'GInteractions'
group_by(.data, ..., .add = FALSE)

## S3 method for class 'DelegatingGInteractions'
group_by(.data, ..., .add = FALSE)

## S3 method for class 'GroupedGInteractions'
ungroup(x, ...)

Arguments

.data, x

a (Grouped)GInteractions object

...

Column(s) to group by.

.add

When FALSE, the default, group_by() will override existing groups. To add to the existing groups, use .add = TRUE.

Value

a GroupedGInteractions object. When a ⁠(Anchored)PinnedGInteractions⁠ object is grouped, both anchoring and pinning are dropped.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1 11 30 chr2 51 60",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

####################################################################
# 1. Group by core column
####################################################################

gi |> group_by(end1)

gi |> group_by(end1, end2) |> group_data()

####################################################################
# 2. Group by metadata column
####################################################################

gi |> group_by(type) |> group_data()

####################################################################
# 3. Combine core and metadata column grouping
####################################################################

gi |> group_by(end1, type)
gi |> group_by(end1, type) |> group_data()

####################################################################
# 4. Create a new column and group by this new variable
####################################################################

gi |> group_by(class = c(1, 2, 1, 2))

####################################################################
# 5. Replace or add groups to a GroupedGInteractions
####################################################################

ggi <- gi |> group_by(class = c(1, 2, 1, 2))
ggi |> group_data()
ggi |> group_by(type) |> group_data()
ggi |> group_by(type, .add = TRUE) |> group_data()

####################################################################
# 6. Ungroup GInteractions
####################################################################

ggi <- gi |> group_by(type, class = c(1, 2, 1, 2))
ggi
ungroup(ggi, type)
ungroup(ggi, class)

Mutate columns from a GInteractions object

Description

Mutate columns from a GInteractions object

Usage

## S3 method for class 'GInteractions'
mutate(.data, ...)

Arguments

.data

a GInteractions object

...

Optional named arguments specifying which the columns in .data to create/modify.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 10 20 chr1 50 51
chr1 10 50 chr2 30 40",
col.names = c("chr1", "start1", "end1", "chr2", "start2", "end2")) |> 
  as_ginteractions(seqnames1 = chr1, seqnames2 = chr2)
  
####################################################################
# 1. Add metadata columns to a GInteractions object
####################################################################

gi |> 
  mutate(type = c('cis', 'trans'), score = runif(2)) |> 
  mutate(type2 = type)

####################################################################
# 2. More complex, nested or inplace changes
####################################################################

gi |> 
  mutate(type = c('cis', 'trans'), score = runif(2)) |> 
  mutate(type2 = type) |> 
  mutate(count = c(1, 2), score = count * 2, new_col = paste0(type2, score))

####################################################################
# 3. Core GInteractions columns can also be modified
####################################################################

gi |> 
  mutate(start1 = 1, end1 = 10, width2 = 30, strand2 = c('-', '+'))

# Note how the core columns are modified sequentially 

gi |> 
  mutate(start1 = 1, end1 = 10)

gi |> 
  mutate(start1 = 1, end1 = 10, width1 = 50)

####################################################################
# 4. Evaluating core GInteractions columns
####################################################################

gi |> 
  mutate(
    score = runif(2), 
    cis = seqnames1 == seqnames2, 
    distance = ifelse(cis, start2 - end1, NA)
  )

Rename columns from a GInteractions with tidyverse-like rename

Description

Rename columns from a GInteractions with tidyverse-like rename

Usage

## S3 method for class 'GInteractions'
rename(.data, ...)

Arguments

.data

a GInteractions object

...

Use new_name = old_name to rename selected variables.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 10 20 chr1 50 51
chr1 10 50 chr2 30 40",
col.names = c("chr1", "start1", "end1", "chr2", "start2", "end2")) |> 
  as_ginteractions(seqnames1 = chr1, seqnames2 = chr2) |> 
  mutate(type = c('cis', 'trans'), score = runif(2))
  
####################################################################
# 1. Rename metadata columns to a GInteractions object
####################################################################

gi |> rename(interaction_type = type, GC = score)

Select columns within GInteractions metadata columns

Description

Select columns within GInteractions metadata columns

Usage

## S3 method for class 'GInteractions'
select(.data, ..., .drop_ranges = FALSE)

Arguments

.data

a GInteractions object

...

Integer indicating rows to keep.

.drop_ranges

if TRUE, returns a DataFrame object. In this case, it enables selection of any column including core GInteractions columns.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 1 10 chr1 1 10
chr2 1 10 chr2 1 10
chr3 1 10 chr3 1 10
chr4 1 10 chr4 1 10
chr5 1 10 chr5 1 10",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(5)*100, cis = TRUE, gc = runif(5))
  
####################################################################
# 1. Select metadata columns from GInteractions by index
####################################################################

gi |> select(2, 1)
gi |> select(-3)

####################################################################
# 2. Select metadata columns from GInteractions by name
####################################################################

gi |> select(gc, score)

####################################################################
# 3. Select metadata columns from GInteractions with <tidy-select>
####################################################################

gi |> select(contains('s'))
gi |> select(matches('^s'))

####################################################################
# 4. Select core and metadata columns with .drop_ranges = TRUE
####################################################################

gi |> select(matches('^s'), .drop_ranges = TRUE)

Slice a GInteractions rows by their index

Description

Slice a GInteractions rows by their index

Usage

## S3 method for class 'GInteractions'
slice(.data, ...)

Arguments

.data

a GInteractions object

...

Integer indicating rows to keep.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 1 10 chr1 1 10
chr2 1 10 chr2 1 10
chr3 1 10 chr3 1 10
chr4 1 10 chr4 1 10
chr5 1 10 chr5 1 10",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions()
  
####################################################################
# 1. Slice a GInteractions
####################################################################

gi |> slice(1, 2, 3)
gi |> slice(-3)
gi |> slice(1:2, 5:4)

Summarize GInteractions per group

Description

Summarize GInteractions per group

Usage

## S3 method for class 'GroupedGInteractions'
summarise(.data, ...)

## S3 method for class 'GroupedGInteractions'
summarize(.data, ...)

Arguments

.data

a (grouped) GInteractions object

...

Name-value pairs of summary functions. The name will be the name of the variable in the result.

Value

a S4Vectors::DataFrame() object:

  • The rows come from the underlying group_keys().

  • The columns are a combination of the grouping keys and the summary expressions that you provide.

  • GInteractions class is not preserved, as a call to summarize fundamentally creates a new data frame

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Summarize a single column
####################################################################

gi

gi |> group_by(type) |> summarize(m = mean(score))

gi |> group_by(strand1) |> summarize(m = mean(score))

df <- gi |> 
  group_by(strand1) |> 
  summarize(m = mean(score), n = table(seqnames2))
df

df$n

####################################################################
# 2. Summarize by multiple columns
####################################################################

gi |> 
  group_by(strand1, seqnames2) |> 
  summarise(m = mean(score), n = table(type))

Manage GInteractions anchors with plyranges

Description

Manage GInteractions anchors with plyranges

Usage

## S3 method for class 'AnchoredPinnedGInteractions'
anchor(x)

## S3 method for class 'AnchoredPinnedGInteractions'
unanchor(x)

## S3 method for class 'PinnedGInteractions'
anchor_start(x)

## S3 method for class 'PinnedGInteractions'
anchor_end(x)

## S3 method for class 'PinnedGInteractions'
anchor_center(x)

## S3 method for class 'PinnedGInteractions'
anchor_3p(x)

## S3 method for class 'PinnedGInteractions'
anchor_5p(x)

## S3 method for class 'AnchoredPinnedGInteractions'
anchor_start(x)

## S3 method for class 'AnchoredPinnedGInteractions'
anchor_end(x)

## S3 method for class 'AnchoredPinnedGInteractions'
anchor_center(x)

## S3 method for class 'AnchoredPinnedGInteractions'
anchor_3p(x)

## S3 method for class 'AnchoredPinnedGInteractions'
anchor_5p(x)

Arguments

x

A PinnedGInteractions object

Value

  • ⁠anchor_*⁠ functions return an AnchoredPinnedGInteractions object.

  • anchor returns a character string indicating where the pinned anchors are anchored at.

  • unanchor removes the anchoring for a AnchoredPinnedGInteractions object.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Anchoring pinned genomic interactions with plyranges
####################################################################

gi |> pin_by("second") |> anchor_end()

Count overlaps between a query GInteractions and a GRanges

Description

Count overlaps between a query GInteractions and a GRanges

Usage

## S3 method for class 'PinnedGInteractions'
count_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'GInteractions'
count_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'PinnedGInteractions'
count_overlaps_directed(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'GInteractions'
count_overlaps_directed(x, y, maxgap = -1L, minoverlap = 0L)

Arguments

x

A (Pinned)GInteractions object

y

A GRanges object

maxgap, minoverlap

See ?countOverlaps in the GenomicRanges package for a description of these arguments

Value

An integer vector of same length as x.

Pinned GInteractions

When using count_overlaps() with a PinnedGInteractions object, only the pinned anchors are used to check for overlap with y. This is equivalent to specifying use.region="both" in InteractionSet::findOverlaps().

Examples

gi <- read.table(text = "  
    chr1 11 20 - chr1 21 30 + 
    chr1 11 20 - chr1 51 55 + 
    chr1 21 30 - chr1 51 55 + 
    chr1 21 30 - chr2 51 60 +",  
    col.names = c(
        "seqnames1", "start1", "end1", "strand1", 
        "seqnames2", "start2", "end2", "strand2"
    )
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges::GRanges(
    c("chr1:20-30:+", "chr2:55-65:-")
) |> plyranges::mutate(id = 1:2, type = 'gr')

gi

gr

####################################################################
# 1. Count overlaps between GInteractions and a subject GRanges
####################################################################

count_overlaps(gi, gr)

count_overlaps_directed(gi, gr)

####################################################################
# 2. Count overlaps between PinnedGInteractions and a subject GRanges
####################################################################

gi |> pin_by("first") |> count_overlaps(gr)

gi |> pin_by("second") |> count_overlaps(gr)

gi |> pin_by("first") |> count_overlaps_directed(gr)

gi |> pin_by("second") |> count_overlaps_directed(gr)

Export GInteractions as bedpe or pairs files

Description

⁠write_*⁠ functions are provided to export a GInteractions object into these two file formats. See 4DN documentation (https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md) and UCSC documentation (https://bedtools.readthedocs.io/en/latest/content/general-usage.html#bedpe-format) for more details.

Usage

write_bedpe(x, file, scores = NULL)

write_pairs(x, file, seqlengths = GenomeInfoDb::seqlengths(x))

Arguments

x

a GInteractions object.

file

path to a .bedpe or .pairs file to save the genomic interactions.

scores

Name of column to extract scores from.

seqlengths

Named vector indicating the chromosome sizes.

Value

TRUE

Examples

gi <- read.table(text = "
chr1 100 200 chr1 5000 5100 bedpe_example1 30 + -
chr1 1000 5000 chr1 3000 3800 bedpe_example2 100 + -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "name", "score", "strand1", "strand2")
) |> as_ginteractions()

write_bedpe(gi, 'gi.bedpe')
write_pairs(gi, 'gi.pairs')

Filter GInteractions overlapping with a GRanges

Description

Filter GInteractions overlapping with a GRanges

Usage

## S3 method for class 'PinnedGInteractions'
filter_by_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'GInteractions'
filter_by_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'PinnedGInteractions'
filter_by_non_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

## S3 method for class 'GInteractions'
filter_by_non_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

Arguments

x

A (Pinned)GInteractions object

y

A GRanges object

maxgap, minoverlap

See ?countOverlaps in the GenomicRanges package for a description of these arguments

Value

An integer vector of same length as x.

Pinned GInteractions

When using filter_by_overlaps() with a PinnedGInteractions object, only the pinned anchors are used to check for overlap with y. This is equivalent to specifying use.region="both" in InteractionSet::findOverlaps().

Examples

gi <- read.table(text = "  
    chr1 11 20 - chr1 21 30 + 
    chr1 11 20 - chr1 51 55 + 
    chr1 21 30 - chr1 51 55 + 
    chr1 21 30 - chr2 51 60 +",  
    col.names = c(
        "seqnames1", "start1", "end1", "strand1", 
        "seqnames2", "start2", "end2", "strand2")
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges::GRanges(
    c("chr1:20-30:+", "chr2:55-65:-")
) |> plyranges::mutate(id = 1:2, type = 'gr')

gi

gr

####################################################################
# 1. Filter GInteractions overlapping with a subject GRanges
####################################################################

filter_by_overlaps(gi, gr)

filter_by_non_overlaps(gi, gr)

####################################################################
# 2. Filter PinnedGInteractions overlapping with a subject GRanges
####################################################################

gi |> pin_by("first") |> filter_by_overlaps(gr)

gi |> pin_by("first") |> filter_by_non_overlaps(gr)

gi |> pin_by("second") |> filter_by_overlaps(gr)

gi |> pin_by("second") |> filter_by_non_overlaps(gr)

Find overlaps between a query GInteractions and a GRanges

Description

Find overlaps between a query GInteractions and a GRanges

Usage

## S3 method for class 'PinnedGInteractions'
find_overlaps(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

## S3 method for class 'GInteractions'
find_overlaps(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

## S3 method for class 'PinnedGInteractions'
find_overlaps_directed(
  x,
  y,
  maxgap = -1L,
  minoverlap = 0L,
  suffix = c(".x", ".y")
)

## S3 method for class 'GInteractions'
find_overlaps_directed(
  x,
  y,
  maxgap = -1L,
  minoverlap = 0L,
  suffix = c(".x", ".y")
)

Arguments

x

A (Pinned)GInteractions object

y

A GRanges object

maxgap, minoverlap

See ?findOverlaps in the GenomicRanges package for a description of these arguments

suffix

Suffix to add to metadata columns (character vector of length 2, default to c(".x", ".y")).

Value

a GInteractions object with rows corresponding to the GInteractions in x that overlap y.

Rationale

find_overlaps() will search for any overlap between GInteractions in x and GRanges in y. It will return a GInteractions object of length equal to the number of times x overlaps y. This GInteractions will have additional metadata columns corresponding to the metadata from y. find_overlaps_directed() takes the strandness of each object into account.

Pinned GInteractions

When using find_overlaps() with a PinnedGInteractions object, only the pinned anchors are used to check for overlap with y. This is equivalent to specifying use.region="both" in InteractionSet::findOverlaps().

Examples

gi <- read.table(text = "  
    chr1 11 20 - chr1 21 30 + 
    chr1 11 20 - chr1 51 55 + 
    chr1 21 30 - chr1 51 55 + 
    chr1 21 30 - chr2 51 60 +",  
    col.names = c(
        "seqnames1", "start1", "end1", "strand1", 
        "seqnames2", "start2", "end2", "strand2"
    )
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges::GRanges(
    c("chr1:20-30:+", "chr2:55-65:-")
) |> plyranges::mutate(id = 1:2, type = 'gr')

gi

gr

####################################################################
# 1. Find overlaps between GInteractions and a subject GRanges
####################################################################

find_overlaps(gi, gr)

find_overlaps_directed(gi, gr)

####################################################################
# 2. Find overlaps between PinnedGInteractions and a subject GRanges
####################################################################

gi |> pin_by("first") |> find_overlaps(gr)

gi |> pin_by("second") |> find_overlaps(gr)

gi |> pin_by("first") |> find_overlaps_directed(gr)

gi |> pin_by("second") |> find_overlaps_directed(gr)

Join overlaps between a query GInteractions and a GRanges

Description

Join overlaps between a query GInteractions and a GRanges

Usage

## S3 method for class 'PinnedGInteractions'
join_overlap_left(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

## S3 method for class 'GInteractions'
join_overlap_left(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

## S3 method for class 'PinnedGInteractions'
join_overlap_left_directed(
  x,
  y,
  maxgap = -1L,
  minoverlap = 0L,
  suffix = c(".x", ".y")
)

## S3 method for class 'GInteractions'
join_overlap_left_directed(
  x,
  y,
  maxgap = -1L,
  minoverlap = 0L,
  suffix = c(".x", ".y")
)

Arguments

x

A (Pinned)GInteractions object

y

A GRanges object

maxgap, minoverlap

See ?countOverlaps in the GenomicRanges package for a description of these arguments

suffix

Suffix to add to metadata columns (character vector of length 2, default to c(".x", ".y")).

Value

An integer vector of same length as x.

Examples

gi <- read.table(text = "  
    chr1 11 20 - chr1 21 30 + 
    chr1 11 20 - chr1 51 55 + 
    chr1 21 30 - chr1 51 55 + 
    chr1 21 30 - chr2 51 60 +",  
col.names = c(
    "seqnames1", "start1", "end1", "strand1", 
    "seqnames2", "start2", "end2", "strand2")
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges::GRanges(
    c("chr1:20-30:+", "chr2:55-65:-")
) |> plyranges::mutate(id = 1:2, type = 'gr')

gi

gr

####################################################################
# 1. Join overlaps between GInteractions and a subject GRanges
####################################################################

join_overlap_left(gi, gr)

join_overlap_left_directed(gi, gr)

####################################################################
# 2. Join overlaps between PinnedGInteractions and a subject GRanges
####################################################################

gi |> pin_by("first") |> join_overlap_left(gr)

gi |> pin_by("first") |> join_overlap_left_directed(gr)

gi |> pin_by("second") |> join_overlap_left(gr)

gi |> pin_by("second") |> join_overlap_left_directed(gr)

GInteractions grouping metadata

Description

GInteractions grouping metadata

Usage

## S3 method for class 'GroupedGInteractions'
group_data(.data)

## S3 method for class 'GroupedGInteractions'
group_keys(.tbl, ...)

## S3 method for class 'GroupedGInteractions'
group_indices(.data, ...)

## S3 method for class 'GInteractions'
group_vars(x)

## S3 method for class 'GroupedGInteractions'
group_vars(x)

## S3 method for class 'GroupedGInteractions'
groups(x)

## S3 method for class 'GroupedGInteractions'
group_size(x)

## S3 method for class 'GroupedGInteractions'
n_groups(x)

Arguments

.data, .tbl, x

a GInteractions object

...

Ignored.

Value

a GInteractions object.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1 11 30 chr2 51 60",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

ggi <- gi |> group_by(end1)
ggi
group_data(ggi)
group_keys(ggi)
group_rows(ggi)
group_indices(ggi)
group_vars(ggi)
groups(ggi)
group_size(ggi)
n_groups(ggi)

Pairwise combination of a GRanges object

Description

Create a GInteractions object from a GRanges object, containing all possible entry pairs

Usage

pair_granges(x)

Arguments

x

A GRanges object

Value

A GInteractions object

Examples

gr <- read.table(text = "
chr1 100 200
chr1 5000 5100
chr1 1000 5000
chr2 3000 3800",
col.names = c(
  "seqnames", "start", "end" 
)) |> plyranges::as_granges()

pair_granges(gr)

Pin GInteractions by anchors set (anchors1 or anchors2).

Description

Pin GInteractions by anchors set (anchors1 or anchors2).

Usage

pin(x, anchors)

pin_by(x, anchors)

pinned_anchors(x)

unpin(x)

## S4 method for signature 'GroupedGInteractions,character'
pin(x, anchors)

## S4 method for signature 'GroupedGInteractions,numeric'
pin(x, anchors)

## S4 method for signature 'GInteractions,character'
pin(x, anchors)

## S4 method for signature 'GInteractions,numeric'
pin(x, anchors)

## S4 method for signature 'PinnedGInteractions,missing'
pin(x, anchors)

## S4 method for signature 'PinnedGInteractions,character'
pin(x, anchors)

## S4 method for signature 'PinnedGInteractions,numeric'
pin(x, anchors)

## S4 method for signature 'AnchoredPinnedGInteractions,character'
pin(x, anchors)

## S4 method for signature 'AnchoredPinnedGInteractions,numeric'
pin(x, anchors)

pin_first(x)

pin_second(x)

pin_anchors1(x)

pin_anchors2(x)

## S4 method for signature 'AnchoredPinnedGInteractions'
unpin(x)

## S4 method for signature 'PinnedGInteractions'
unpin(x)

## S4 method for signature 'GInteractions'
unpin(x)

## S4 method for signature 'PinnedGInteractions'
pinned_anchors(x)

## S4 method for signature 'AnchoredPinnedGInteractions'
pinned_anchors(x)

Arguments

x

a GInteractions object

anchors

Anchors to pin on ("first" or "second")

Value

  • ⁠pin_*⁠ functions return a PinnedGInteractions object.

  • pin returns a numerical value indicating which set of anchors is pinned.

  • unpin removes the pinning of a PinnedGInteractions object.

  • pinned_anchors returns an (Anchored)GenomicRanges object corresponding to the pinned anchors of a PinnedGInteractions object.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1 11 30 chr2 51 60",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

####################################################################
# 1. Pin by first anchors
####################################################################

gi |> pin_by("first")

gi |> pin_first()

gi |> pin_anchors1()

####################################################################
# 2. Pin by second anchors
####################################################################

gi |> pin_by("second")

gi |> pin_second()

gi |> pin_anchors2()

####################################################################
# 3. Unpin
####################################################################

gi |> pin("second") |> unpin()

Generate flanking regions from pinned anchors of a GInteractions object with plyranges

Description

Generate flanking regions from pinned anchors of a GInteractions object with plyranges

Usage

flank_downstream(x, width)

## S3 method for class 'Ranges'
flank_downstream(x, width)

## S3 method for class 'PinnedGInteractions'
flank_downstream(x, width)

flank_upstream(x, width)

## S3 method for class 'Ranges'
flank_upstream(x, width)

## S3 method for class 'PinnedGInteractions'
flank_upstream(x, width)

flank_right(x, width)

## S3 method for class 'Ranges'
flank_right(x, width)

## S3 method for class 'PinnedGInteractions'
flank_right(x, width)

flank_left(x, width)

## S3 method for class 'Ranges'
flank_left(x, width)

## S3 method for class 'PinnedGInteractions'
flank_left(x, width)

Arguments

x

a PinnedGInteractions object

width

The width of the flanking region relative to the ranges in x. Either an integer vector of length 1 or an integer vector the same length as x. The width can be negative in which case the flanking region is reversed.

Value

A PinnedGInteractions object

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Simple flanking
####################################################################

gi 

gi |> pin_by("first") |> flank_left(-2) 

gi |> pin_by("second") |> flank_upstream(4)

####################################################################
# 2. Chained flanking of each set of anchors
####################################################################

gi |> 
  pin_by("first") |> flank_left(2) |> 
  pin_by("second") |> flank_right(2)

Shift pinned anchors of a GInteractions object with plyranges

Description

Shift pinned anchors of a GInteractions object with plyranges

Usage

shift_downstream(x, shift)

## S3 method for class 'Ranges'
shift_downstream(x, shift)

## S3 method for class 'PinnedGInteractions'
shift_downstream(x, shift)

shift_upstream(x, shift)

## S3 method for class 'Ranges'
shift_upstream(x, shift)

## S3 method for class 'PinnedGInteractions'
shift_upstream(x, shift)

shift_right(x, shift)

## S3 method for class 'Ranges'
shift_right(x, shift)

## S3 method for class 'PinnedGInteractions'
shift_right(x, shift)

shift_left(x, shift)

## S3 method for class 'Ranges'
shift_left(x, shift)

## S3 method for class 'PinnedGInteractions'
shift_left(x, shift)

Arguments

x

a PinnedGInteractions object

shift

The amount to move the genomic interval in the Ranges object by. Either a non-negative integer vector of length 1 or an integer vector the same length as x.

Value

A PinnedGInteractions object

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Simple shifting
####################################################################

gi 

gi |> pin_by("first") |> shift_left(15)

gi |> pin_by("second") |> shift_downstream(10)

####################################################################
# 2. Chained shifting of each set of anchors
####################################################################

gi |> 
  pin_by("first") |> shift_downstream(20) |> 
  pin_by("second") |> shift_upstream(20)

Stretch pinned anchors of a GInteractions object with plyranges

Description

Stretch pinned anchors of a GInteractions object with plyranges

Usage

## S3 method for class 'AnchoredPinnedGInteractions'
stretch(x, extend)

## S3 method for class 'PinnedGInteractions'
stretch(x, extend)

Arguments

x

a PinnedGInteractions object

extend

The amount to alter the width of a Ranges object by. Either an integer vector of length 1 or an integer vector the same length as x.

Value

A PinnedGInteractions object

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30 + +
chr1 11 20 chr1 51 55 + +
chr1 11 30 chr1 51 55 - -
chr1 11 30 chr2 51 60 - -",
col.names = c(
  "seqnames1", "start1", "end1", 
  "seqnames2", "start2", "end2", "strand1", "strand2")
) |> 
  as_ginteractions() |> 
  mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

####################################################################
# 1. Simple stretching
####################################################################

gi 

gi |> pin_by("first") |> anchor_start() |> stretch(15)

gi |> pin_by("second") |> anchor_center() |> stretch(10)

gi |> pin_by("second") |> anchor_3p() |> stretch(20)

####################################################################
# 2. Chained stretching of each set of anchors
####################################################################

gi |> 
  pin_by("first") |> anchor_start() |> stretch(20) |> 
  pin_by("second") |> stretch(20)

Replace anchors of a GInteractions

Description

Replace anchors of a GInteractions

Usage

replace_anchors(x, id, value)

## S4 method for signature 'GInteractions,character,GenomicRanges'
replace_anchors(x, id, value)

## S4 method for signature 'GInteractions,numeric,GenomicRanges'
replace_anchors(x, id, value)

## S4 method for signature 'PinnedGInteractions,missing,GenomicRanges'
replace_anchors(x, id, value)

## S4 method for signature 'AnchoredPinnedGInteractions,missing,GRanges'
replace_anchors(x, id, value)

## S4 method for signature 'AnchoredPinnedGInteractions,numeric,GRanges'
replace_anchors(x, id, value)

Arguments

x

a (Pinned)GInteractions object

id

Which anchors to replace ("first" or "second"). Ignored if the GInteractions is already pinned to a specific set of anchors.

value

A GRanges object vector the same length as x.

Value

a (Pinned)GInteractions object.

Examples

gi <- read.table(text = "
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1 11 30 chr2 51 60",
col.names = c(
    "seqnames1", "start1", "end1", 
    "seqnames2", "start2", "end2")
) |> 
  as_ginteractions() |> 
  mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

####################################################################
# 1. Replace anchors of a GInteractions object
####################################################################

gi |> replace_anchors(2, value = anchors1(gi))

gi |> replace_anchors(1, value = anchors2(gi))

gi |> replace_anchors(1, value = GenomicRanges::GRanges(c(
  "chr1:1-2", "chr1:2-3", "chr1:3-4", "chr1:4-5"
)))

####################################################################
# 2. Replace anchors of a pinned GInteractions object
####################################################################

gi |> pin_by(1) |> replace_anchors(value = anchors1(gi))

gi |> replace_anchors(1, value = anchors2(gi))

gi |> 
  pin_by(1) |> 
  replace_anchors(value = GenomicRanges::GRanges(c(
    "chr1:1-2", "chr1:2-3", "chr1:3-4", "chr1:4-5"
  ))) |> 
  pin_by(2) |> 
  replace_anchors(value = GenomicRanges::GRanges(c(
    "chr2:1-2", "chr2:2-3", "chr2:3-4", "chr2:4-5"
  )))