Package 'plotGrouper'

Title: Shiny app GUI wrapper for ggplot with built-in statistical analysis
Description: A shiny app-based GUI wrapper for ggplot with built-in statistical analysis. Import data from file and use dropdown menus and checkboxes to specify the plotting variables, graph type, and look of your plots. Once created, plots can be saved independently or stored in a report that can be saved as a pdf. If new data are added to the file, the report can be refreshed to include new data. Statistical tests can be selected and added to the graphs. Analysis of flow cytometry data is especially integrated with plotGrouper. Count data can be transformed to return the absolute number of cells in a sample (this feature requires inclusion of the number of beads per sample and information about any dilution performed).
Authors: John D. Gagnon [aut, cre]
Maintainer: John D. Gagnon <[email protected]>
License: GPL-3
Version: 1.25.0
Built: 2024-10-31 03:32:16 UTC
Source: https://github.com/bioc/plotGrouper

Help Index


Pipe graphics

Description

Like dplyr, ggvis also uses the pipe function, %>% to turn function composition into a series of imperative statements.

Arguments

lhs, rhs

A visualisation and a function to apply to it

Examples

# Instead of
dplyr::mutate(dplyr::filter(iris, Species == "versicolor"),
"Sample" = paste0(Species, dplyr::row_number()))
# You can write
dplyr::filter(iris, Species == "versicolor") %>%
dplyr::mutate("Sample" = paste0(Species, "_", dplyr::row_number()))

A function to create a grouped plot and return a table grob.

Description

This function allows you to create a grouped plot and return a table grob. It takes a tidy dataset containing sample replicate values for at least one variable, a column organizing each replicate into the proper comparison group, and a column that groups the variables to be plotted. Additional arguments allow for the re-ordering of the variables and the comparisons being ploted, selection of the type of graph to display (e.g., bar graph, boxplot, violin plot, points, statistical summary, etc...), as well as other aesthetics of the plot.

Usage

gplot(dataset = NULL, comparison = NULL, group.by = NULL,
  levs = TRUE, val = "value", geom = c("bar", "errorbar", "point",
  "stat", "seg"), p = "p.signif", ref.group = NULL,
  p.adjust.method = "holm", comparisons = NULL, method = "t.test",
  paired = FALSE, errortype = "mean_sdl", y.lim = NULL,
  y.lab = NULL, trans.y = "identity", x.lim = c(NA, NA),
  expand.y = c(0, 0), x.lab = NULL, trans.x = "identity",
  sci = FALSE, angle.x = FALSE, levs.comps = TRUE,
  group.labs = NULL, stats = FALSE, split = TRUE, split_str = NULL,
  trim = "none", leg.pos = "top", stroke = 0.25, font_size = 9,
  size = 1, width = 0.8, dodge = 0.8, plotWidth = 30,
  plotHeight = 40, shape.groups = c(19, 21),
  color.groups = c("black", "black"), fill.groups = c("#444444", NA,
  "#A33838"))

Arguments

dataset

Define your data set which should be a gathered tibble

comparison

Specify the comparison you would like to make (e.g., Genotype)

group.by

Specify the variable to group by (e.g., Tissue).

levs

Specify the order of the grouping variables

val

Specify column name that contains values (optional)

geom

Define the list of geoms you want to plot

p

Specify representation of pvalue (p.signif = astrisk representation of the raw p value; p.format = 'p = 0.05'; p.adj = adjusted p-value; p.adj.signif = astrisk representation of the adjusted p value)

ref.group

Specify a reference group to compare all other comparisons to

p.adjust.method

Method used for adjusting the pvalue

comparisons

Specify which of the available comparisons within your data you would like to plot

method

Specify the statistical test to be used

paired

Specify whether or not the statistical comparisons should be paired

errortype

Specify the method of statistical error to plot

y.lim

Specify the min and max values to be used for the y-axis

y.lab

Specify a custom y-axis label to use

trans.y

Specify the transformation to perform on the dependent variable

x.lim

Specify the min and max values to be used for the x-axis

expand.y

Specify values to expand the y-axis

x.lab

Specify a custom x-axis label to use

trans.x

Specify the transformation to perform on the independent variable

sci

Specify whether or not to display the dependent variable using scientific notation

angle.x

Specify whether or not to angle the x-axis text 45deg

levs.comps

Specify the order in which to plot the comparisons

group.labs

Specify custom labels for the independent variables

stats

Specify whether or not to output the statistics table

split

Specify whether or not to split the x-axis label text

split_str

Specify the string to split the x-axis label text by; uses regex

trim

Specify the string to trim text from the right side of the x-axis label text; uses regex

leg.pos

Specify where to place the legend

stroke

Specify the line thickness to use

font_size

Specify the font size to use

size

Specify the size of the points to use

width

Specify the width of groups to be plotted

dodge

Specify the width to dodge the comparisons by

plotWidth

Specify the length of the x-axis in mm

plotHeight

Specify the length of the y-axis in mm

shape.groups

Specify the default shapes to use for the comparisons

color.groups

Specify the default colors to use for the comparisons

fill.groups

Specify the default fills to use for the comparisons

Value

Table grob of the plot

Examples

iris %>% dplyr::mutate(Species = as.character(Species)) %>%
dplyr::group_by(Species) %>%
dplyr::mutate(Sample = paste0(Species, "_", dplyr::row_number()),
Sheet = "iris") %>%
dplyr::select(Sample, Sheet, Species, dplyr::everything()) %>%
tidyr::gather(variable, value, -c(Sample, Sheet, Species)) %>%
dplyr::filter(variable == "Sepal.Length") %>%
plotGrouper::gplot(
comparison = "Species",
group.by = "variable",
shape.groups = c(19,21,17),
color.groups = c(rep("black",3)),
fill.groups = c("black","#E016BE", "#1243C9")) %>%
gridExtra::grid.arrange()

A function to organize a tibble into tidy format and perform count transformations

Description

This function will organize a tibble into tidy format and perform count transformations if appropriate columns are specified.

Usage

organizeData(data = NULL, exclude = NULL, comp = NULL,
  comps = NULL, variables = NULL, id = NULL, beadColumn = NULL,
  dilutionColumn = NULL)

Arguments

data

A tibble

exclude

A list of columns to exclude from gather

comp

the name of comparison column

comps

A vector of names of the comparisons

variables

A vector of the variables to be plotted

id

The name of unique identifier column

beadColumn

The column name that has total number of beads/sample

dilutionColumn

The column name that has dilution factor for each sample 1/x

Value

Tibble in tidy format based on columns chosen to be excluded. Count data will be transformed if appropriate columns are present.

Examples

iris %>% dplyr::mutate(Species = as.character(Species)) %>%
dplyr::group_by(Species) %>%
dplyr::mutate(Sample = paste0(Species, "_", dplyr::row_number()),
Sheet = "iris") %>%
dplyr::select(Sample, Sheet, Species, dplyr::everything()) %>%
plotGrouper::organizeData(data = .,
exclude = c("Sample", "Sheet", "Species"),
comp = "Species",
comps = c("setosa", "versicolor", "virginica"),
variables = "Sepal.Length",
id = "Sample",
beadColumn = "none",
dilutionColumn = "none")

A function to run the plotGrouper shiny app

Description

This function runs the plotGrouper app

Usage

plotGrouper(...)

Arguments

...

Any argument that you can pass to shiny::runApp

Value

Runs the plotGrouper shiny app.

Examples

# plotGrouper()

A function to read an excel file and combine its sheets into a single dataframe.

Description

This function will read an excel file and combine its sheets into a single dataframe.

Usage

readData(file = NULL, sheet = NULL)

Arguments

file

Takes an excel file to be read from

sheet

Takes a vector of sheets to be read

Value

Tibble assembled from the sheets selected from the file

Examples

datasets <- readData_example("iris.xlsx")
readData(datasets, "iris")

Get path to readData example

Description

readData comes bundled with a example files in its 'inst/applications/www' directory. This function makes them easy to access.

Usage

readData_example(path = NULL)

Arguments

path

Name of file. If 'NULL', the example files will be listed.

Value

Located example excel file in package

Examples

readData_example(path = "iris.xlsx")