Package 'pickgene'

Title: Adaptive Gene Picking for Microarray Expression Data Analysis
Description: Functions to Analyze Microarray (Gene Expression) Data.
Authors: Brian S. Yandell <[email protected]>
Maintainer: Brian S. Yandell <[email protected]>
License: GPL (>= 2)
Version: 1.79.0
Built: 2025-01-16 05:38:47 UTC
Source: https://github.com/bioc/pickgene

Help Index


EM calculation for Gamma-Gamma-Bernoulli Model

Description

The function plots contours for the odds that points on microarray show differential expression between two conditions (e.g. Cy3 and Cy5 dye channels on the same microarray).

Usage

em.ggb(x, y, theta, start = c(2,1.2,2.7), pprior = 2,
  printit = FALSE, tol = 1e-9, offset = 0 )

Arguments

x

first condition expression levels

y

second condition expression levels

theta

four parameters a,a0,nu,p

start

starting estimates for theta

pprior

Beta hyperparameter for prob p of differential expression

printit

print iterations if TRUE

tol

parameter tolerance for convergence

offset

offset added to xx and yy before taking log (can help with negative adjusted values)

Details

Fit Gamma/Gamma/Bernoulli model (equal marginal distributions) The model has spot intensities x ~ Gamma(a,b); y ~ Gamma(a,c). The shape parameters b and c are ~ Gamma(a0,nu). With probability p, b = c; otherwise b != c. All spots are assumed to be independent.

Value

Four parameter vector theta after convergence.

Author(s)

Michael Newton

References

MA Newton, CM Kendziorski, CS Richmond, FR Blattner and KW Tsui (2000) “On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data,” J Computational Biology 00: 000-000.

See Also

oddsplot

Examples

## Not run: 
em.ggb( x, y )

## End(Not run)

Create Model Matrix for Orthogonal Contrasts

Description

The function created a model matrix of orthogonal contrasts to be used by pickgene.

Usage

model.pickgene(faclevel, facnames = letters[seq(length(faclevel))],
               contrasts.fac = "contr.poly", collapse = "+", show =
               NULL, renorm = 1, modelexpr = formula(paste("~",
               paste(facnames, collapse = collapse))),
               contrasts.list = contr.list)

Arguments

faclevel

vector with number of levels for each factor

facnames

vector of factor names (default = "a", "b", ...)

contrasts.fac

vector of contrast types

collapse

"+" for additive model, "*" for full model with interactions

show

vector of contrast numbers to show (default is all)

renorm

vector to renormalize contrasts (e.g., use sqrt(2) to turn two-condition contrast into fold change)

modelexpr

model formula

contrasts.list

list of contrasts indexed by facnames

Details

Creates a model matrix data frame with first column having all 1's and other columns having contrasts.

Value

Result of call to model.matrix

Author(s)

Brian Yandell

See Also

model.matrix

Examples

model.pickgene(c(2,3), c("sex","genotype"))

Odds Plot for Differential Microarray Expression

Description

The function plots contours for the odds that points on microarray show differential expression between two conditions (e.g. Cy3 and Cy5 dye channels on the same microarray).

Usage

oddsplot(x, y, theta, by.level = 10, rotate = FALSE, offset =
         0, main = "", xlab = xlabs, ylab = ylabs, col = NULL,
         cex = c(0.25, 0.75), shrink = FALSE, lims =
         range(c(x, y)))

Arguments

x

first condition expression levels

y

second condition expression levels

theta

four parameters from em.ggb

by.level

odds plot contours increase by this level

rotate

rotate to average versus ratio if TRUE, otherwise plot conditions against each other

offset

offset for log transform

main

main title for plot

xlab

horizontal axis label (default if Cy3 if rotate is FALSE, Average Intensity otherwise

ylab

vertical axis label (default if Cy5 if rotate is FALSE, Cy3 / Cy5 otherwise

col

color of points (if NULL, use black for non-changing points, blue for changing points)

cex

character expansion (use rep(.25,2) to have all points the same size)

shrink

use shrinkage on expression levels if TRUE (default is FALSE)

lims

limits for plot area

Details

Fit Gamma/Gamma/Bernoulli model (equal marginal distributions) The model has spot intensities x ~ Gamma(a,b); y ~ Gamma(a,c). The shape parameters b and c are ~ Gamma(a0,nu). With probability p, b = c; otherwise b != c. All spots are assumed to be independent.

Value

Log odds for all points in original order.

Author(s)

Michael Newton

References

MA Newton, CM Kendziorski, CS Richmond, FR Blattner and KW Tsui (2000) “On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data,” J Computational Biology 00: 000-000.

See Also

em.ggb

Examples

## Not run: 
oddsplot( x, y )

## End(Not run)

Plot and Pick Genes based on Differential Expression

Description

The function picks plots the average intensity versus linear contrasts (currently linear, quadratic up to cubic) across experimental conditions. Critical line is determine according to Bonferroni-like multiple comparisons, allowing SD to vary with intensity.

Usage

pickgene(data, geneID = 1:nrow(data), overalllevel = 0.05,
         npickgene = -1, marginal = FALSE, rankbased = TRUE,
         allrank = FALSE, meanrank = FALSE, offset = 0,
         modelmatrix = model.pickgene(faclevel, facnames,
         contrasts.fac, collapse, show, renorm), faclevel =
         ncol(data), facnames =
         letters[seq(length(faclevel))], contrasts.fac =
         "contr.poly", show = NULL, main = "", renorm = 1,
         drop.negative = FALSE, plotit = npickgene < 1, mfrow
         = c(nr, nc), mfcol = NULL, ylab = paste(shownames,
         "Trend"), ...)

Arguments

data

data matrix

geneID

gene identifier (default 1:nrow(x))

overalllevel

overall significance level (default 0.05)

npickgene

number of genes to pick (default -1 allows automatic selection)

marginal

additive model if TRUE, include interactions if FALSE

rankbased

use ranks if TRUE, log tranform if FALSE

allrank

rank all chips together if true, otherwise rank separately

meanrank

show mean abundance as rank if TRUE

offset

offset for log transform

modelmatrix

model matrix with first row all 1's and other rows corresponding to design contrasts; automatically created by call to model.pickgene if omitted

faclevel

number of factor levels for each factor

facnames

factor names

contrasts.fac

type of contrasts

show

vector of contrast numbers to show (default is all)

main

vector of main titles for plots (default is none)

renorm

vector to renormalize contrasts (e.g. use sqrt(2) to turn two-condition contrast into fold change)

drop.negative

drop negative values in log transform

plotit

plot if TRUE

mfrow

par() plot arrangement by rows (default up to 6 per page; set to NULL to not change)

mfcol

par() plot arrangement by columns (default is NULL)

ylab

vertical axis labels

...

parameters for robustscale

Details

Infer genes that differentially express across conditions using a robust data-driven method. Adjusted gene expression levels A are replaced by qnorm(rank(A)), followed by robustscale estimation of center and spread. Then Bonferroni-style gene by gene tests are performed and displayed graphically.

Value

Data frame containing significant genes with the following information:

pick

data frame with picked genes

score

data frame with center and spread for plotting

Each of these is a list with elements for each contrast. The pick data frame elements have the following information:

probe

gene identifier

average

average gene intensity

fold1

positive fold change

fold2

negative fold change

pvalue

Bonferroni-corrected p-value

The score data frame elements have the following:

x

mean expression level (antilog scale)

y

contrast (antilog scale)

center

center for contrast

scale

scale (spread) for contrast

lower

lower test limit

upper

upper test limit

Author(s)

Yi Lin and Brian Yandell

References

Y Lin, BS Yandell and ST Nadler (2000) “Robust Data-Driven Inference for Gene Expression Microarray Experiments,” Technical Report, Department of Statistics, UW-Madison.

See Also

pickgene

Examples

## Not run: 
pickgene( data )

## End(Not run)

Robust Estimation of Median (center) and MAD (scale)

Description

Smoothing spline estimate of median and mean absolute deviation (MAD).

Usage

robustscale(y, x, nslice=400, corcenter=TRUE, decrease=TRUE)

Arguments

y

response

x

predictor

nslice

number of slices (should be "large")

corcenter

correct for center

decrease

force MAD to decrease with x

Details

This divides data into roughly many nslice slices and computes median and mean absolute deviation (mad) for each slice. These are then smoothed using smooth.spline.

Value

Data frame containing significant genes with the following information:

center

estimate of center median

scale

MAD estimate of scale

x

ordered x values for plotting

y

y sorted by x

Author(s)

Yi Lin

See Also

mad, smooth.spline

Examples

## Not run: 
robustscale(y,x)

## End(Not run)

Yi Lin's simulations for microarray analysis

Description

Example simulations

See Also

multipickgene

Examples

### Note: This uses old pickgene
#detail of the model (7-8). (first run does not include meas error \eta_i)
#par(mfrow=c(3,3))
t<-rnorm(10000,4,2)
changes1<-rep(0,10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0,10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000,0,0.1)
cx<-3
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
x<-cx*exp(t1)
y<-cy*exp(t2)
#x<-cx*exp(t1)+rnorm(10000,0,50)
#y<-cy*exp(t2)+rnorm(10000,0,40)
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
#hist(x,breaks=100)
#hist(y,breaks=100)
#plot(x,y)
#hist(y[x<=0],breaks=20)
#hist(x[y<=0],breaks=20)
#plot(xx,yy)
topgenepick<-multipickgene( cbind(xx,yy),condi=0:1,geneID=1:10000, d=1,
                           npickgene=500)$pick[[1]]$probe
abchangesrank<-rank((-1)*abs(t1-t2))
count <- rep(NA,500)
for( i in 1:500 ) {
topipick <- topgenepick[1:i]
count[i] <- sum( abchangesrank[topipick] <= i ) 
}

## Figure 2
plot( 1:500, 1:500, type="n",
     xlab="Rank of 500 most changed genes by our procedure",
     ylab="Number similarly ranked by the 'optimal' procedure",
     xaxs="i", yaxs="i" )
lines( 1:500, count, type="s", lty=1, lwd=2 )
abline(0,1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="rank1.ps" )

#again, but with the additive noise. (includes \eta_i)
par(mfrow=c(2,2))
t<-rnorm(10000,4,2)
changes1<-rep(0,10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0,10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000,0,0.1)
cx<-3
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
### note that noise is very large here (50,40)
x<-cx*exp(t1)+rnorm(10000,0,50)
y<-cy*exp(t2)+rnorm(10000,0,40)
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
hist(x,breaks=100)
hist(y,breaks=100)
plot(x,y,cex=0.4)
#hist(y[x<=0],breaks=20)
#hist(x[y<=0],breaks=20)
plot(xx,yy,cex=0.4)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="simudata.ps" )

topgenepick<-multipickgene(cbind(xx,yy),condi=0:1,geneID=1:10000, d=1,
                           npickgene=500)$pick[[1]]$probe
abchangesrank<-rank((-1)*abs(t1-t2))
count <- rep(NA,500)
for( i in 1:500 ) {
topipick <- topgenepick[1:i]
count[i] <- sum( abchangesrank[topipick] <= i ) 
}
par(mfrow=c(1,1)) # figure 4
plot( 1:500, 1:500, type="n",
     xlab="Rank of 500 most changed genes by our procedure",
     ylab="Number similarly ranked by the 'optimal' procedure",
     xaxs="i", yaxs="i" )
lines( 1:500, count, type="s", lty=1, lwd=2 )
abline(0,1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="rank2.ps" )

### Figure 5
genepick <- multipickgene( cbind(xx,yy), condi=0:1, geneID=1:10000, d=1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="simutest.ps" )$pick[[1]]$probe
npick<-length(genepick$pickedgene)
genepick$pickedgene
npick
count[npick]