Title: | Exposome and omic data associatin and integration analysis |
---|---|
Description: | omicRexposome systematizes the association evaluation between exposures and omic data, taking advantage of MultiDataSet for coordinated data management, rexposome for exposome data definition and limma for association testing. Also to perform data integration mixing exposome and omic data using multi co-inherent analysis (omicade4) and multi-canonical correlation analysis (PMA). |
Authors: | Carles Hernandez-Ferrer [aut, cre], Juan R. González [aut] |
Maintainer: | Xavier Escribà Montagut <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.29.0 |
Built: | 2024-10-30 09:14:41 UTC |
Source: | https://github.com/bioc/omicRexposome |
This method allows to insert an object of class ExposomeClust as an independent dataset into an object of class MultiDataSet.
add_cls(object, clsSet, ...) ## S4 method for signature 'MultiDataSet,ExposomeClust' add_cls(object, clsSet, ...)
add_cls(object, clsSet, ...) ## S4 method for signature 'MultiDataSet,ExposomeClust' add_cls(object, clsSet, ...)
object |
An object of class MultiDataSet. |
clsSet |
An object of class ExposomeClust. |
... |
Arguments given to add_eset from MultiDataSet. |
A MultiDataSet with the ExpressionSet added as an independent dataset.
data("eclust", package = "rexposome") library(MultiDataSet) md <- new("MultiDataSet") names(md) md <- add_cls(md, expo_c) names(md)
data("eclust", package = "rexposome") library(MultiDataSet) md <- new("MultiDataSet") names(md) md <- add_cls(md, expo_c) names(md)
This method allows to insert an object of class ExposomeSet as an independent dataset into an object of class MultiDataSet.
add_exp(object, expoSet, warnings = TRUE, ...) ## S4 method for signature 'MultiDataSet,ExposomeSet' add_exp(object, expoSet, warnings = TRUE, ...)
add_exp(object, expoSet, warnings = TRUE, ...) ## S4 method for signature 'MultiDataSet,ExposomeSet' add_exp(object, expoSet, warnings = TRUE, ...)
object |
An object of class MultiDataSet. |
expoSet |
An object of class ExposomeSet. |
warnings |
(default |
... |
Arguments given to add_eset from MultiDataSet. |
A MultiDataSet with the ExpressionSet added as an independent dataset.
data("exposome", package = "rexposome") library(MultiDataSet) md <- new("MultiDataSet") names(md) md <- add_exp(md, expo) names(md)
data("exposome", package = "rexposome") library(MultiDataSet) md <- new("MultiDataSet") names(md) md <- add_exp(md, expo) names(md)
ResultSet
for testing and illustration purpousesResultSet
created using association
method, testing
proteome association to exposome ("mds"
), adjusted by sex and age.
data("asr")
data("asr")
An object of class ResultSet
of length 15.
A ResultSet
object.
data("asr", package = "omicRexposome") asr
data("asr", package = "omicRexposome") asr
This function allows to perform an association study between gene
expression from microarray and the exposome. An ExpresionSet
is
the object storing the gene expresion and an ExposomeSet
the one
storing the exposome. Both of them needs to be encapsulated in a
MultiDataSet
. The association study is perform through standard
limma
pipeline. The function allows to perform multiple tests using
the argument exposures
.
association(object, formula, expset, omicset, set = "exposures", method = "ls", ..., baselevels, sva = "none", vfilter = NULL, verbose = FALSE, warnings = TRUE) ## S4 method for signature 'MultiDataSet' association(object, formula, expset, omicset, set = "exposures", method = "ls", ..., baselevels, sva = "none", vfilter = NULL, verbose = FALSE, warnings = TRUE)
association(object, formula, expset, omicset, set = "exposures", method = "ls", ..., baselevels, sva = "none", vfilter = NULL, verbose = FALSE, warnings = TRUE) ## S4 method for signature 'MultiDataSet' association(object, formula, expset, omicset, set = "exposures", method = "ls", ..., baselevels, sva = "none", vfilter = NULL, verbose = FALSE, warnings = TRUE)
object |
A |
formula |
formula to be evaluated by each exposure (or phenotype, see
|
expset |
Name of the |
omicset |
Name of the omic data-set in |
set |
(default |
method |
(default |
... |
Arguments passed to |
baselevels |
(optional) If set, must be a labeled vector with the default base level for categorical exposures. |
sva |
(default |
vfilter |
(default |
verbose |
(default |
warnings |
(default |
An object of class ResultSet
.
library(MultiDataSet) data(brge_prot, package = "brgedata") data(brge_expo, package = "brgedata") mds <- createMultiDataSet() mds <- add_eset(mds, brge_prot, dataset.type = "proteines") mds <- add_eset(mds, brge_expo, dataset.type = "exposures", GRanges = NA) asr <- association(mds, formula = Asthma ~ Sex + Age, expset = "exposures", omicset = "proteines") asr
library(MultiDataSet) data(brge_prot, package = "brgedata") data(brge_expo, package = "brgedata") mds <- createMultiDataSet() mds <- add_eset(mds, brge_prot, dataset.type = "proteines") mds <- add_eset(mds, brge_expo, dataset.type = "exposures", GRanges = NA) asr <- association(mds, formula = Asthma ~ Sex + Age, expset = "exposures", omicset = "proteines") asr
This function allows to perform a Transcriptome-Wide Association Study
by using an ExposmeSet
and an ExpressionSet
. It
allows to perform an adjustment using Surrogate Variable Analysis (from
R package sva
).
crossomics(object, method = "mcca", ncomponents = 2, ..., na.rm = FALSE, permute = c(100, 3), verbose = FALSE, warnings = TRUE) ## S4 method for signature 'MultiDataSet' crossomics(object, method = "mcca", ncomponents = 2, ..., na.rm = FALSE, permute = c(100, 3), verbose = FALSE, warnings = TRUE)
crossomics(object, method = "mcca", ncomponents = 2, ..., na.rm = FALSE, permute = c(100, 3), verbose = FALSE, warnings = TRUE) ## S4 method for signature 'MultiDataSet' crossomics(object, method = "mcca", ncomponents = 2, ..., na.rm = FALSE, permute = c(100, 3), verbose = FALSE, warnings = TRUE)
object |
A |
method |
(default |
ncomponents |
(default |
... |
Other arguments given to |
na.rm |
(default |
permute |
(default |
verbose |
(default |
warnings |
(default |
An object of class ResultSet
.
library(MultiDataSet) library(rexposome) data(brge_prot, package = "brgedata") data(brge_expo, package = "brgedata") mds <- createMultiDataSet() mds <- add_eset(mds, brge_prot, dataset.type = "proteines") mds <- add_eset(mds, imputation(brge_expo), dataset.type = "exposures", GRanges = NA) crs <- crossomics(mds, method = "mcia") crs
library(MultiDataSet) library(rexposome) data(brge_prot, package = "brgedata") data(brge_expo, package = "brgedata") mds <- createMultiDataSet() mds <- add_eset(mds, brge_prot, dataset.type = "proteines") mds <- add_eset(mds, imputation(brge_expo), dataset.type = "exposures", GRanges = NA) crs <- crossomics(mds, method = "mcia") crs
ResultSet
for testing and illustration purpousesResultSet
created using crossomics
method, selecting
"mcia"
method. Result from the integration of proteome and
exposome data ("mds"
).
data("crs")
data("crs")
An object of class ResultSet
of length 1.
A ResultSet
object.
data("crs", package = "omicRexposome") crs
data("crs", package = "omicRexposome") crs
Homologous methods from MultiDataSet
(getAssociation
) but
for ResultsSet
created by crossomics
. It Resturns a
data.frame
with the result from mcia
(omicade4
) or
from MultiCCA
(PMA
).
getIntegration(object, ...) ## S4 method for signature 'ResultSet' getIntegration(object, ...)
getIntegration(object, ...) ## S4 method for signature 'ResultSet' getIntegration(object, ...)
object |
An object of class ResultSet obtained from |
... |
NOT USED |
A data.frame
data("crs", package = "omicRexposome") class(getIntegration(crs))
data("crs", package = "omicRexposome") class(getIntegration(crs))
MultiDataSet
for testing and illustration purpousesMultiDataSet
containing both proteome data-set and exposome
data-set.
data("mds")
data("mds")
An object of class MultiDataSet
of length 2.
A MultiDataSet
object.
data("mds", package = "omicRexposome") mds
data("mds", package = "omicRexposome") mds
omicRexposome: Package for exposome and omic data associatin and integration
The packages offers the function association
that allows to
perform an association study using transcriptome, methylome, etc. as
dependent variable and exposome data as independent variable. The function relies on
limma
pipeline and generates an object of class ResultSet
,
that can be ploted using plotAssociation
.
The packages offers the function crossomics
that allows to perform
two types of integration study: Multi Canonical Correlation Analysis and
Multi Co-Inertia Analysis. The function allos to use any type and number of
datasets (aka. exposome transcriptome, methylome, etc.). The function generates an
object of class ResultSet
, that can be ploted using
plotIntegration
.
This function draws two type of plots for the ResultSet from association functions
plotAssociation(object, rid = 1, coef = 2, contrast = 1, type = c("manhattan", "qq", "volcano"), tPV = NULL, tFC = NULL, show.effect = FALSE) ## S4 method for signature 'ResultSet' plotAssociation(object, rid = 1, coef = 2, contrast = NULL, type = c("manhattan", "qq", "volcano"), tPV = NULL, tFC = NULL, show.effect = FALSE)
plotAssociation(object, rid = 1, coef = 2, contrast = 1, type = c("manhattan", "qq", "volcano"), tPV = NULL, tFC = NULL, show.effect = FALSE) ## S4 method for signature 'ResultSet' plotAssociation(object, rid = 1, coef = 2, contrast = NULL, type = c("manhattan", "qq", "volcano"), tPV = NULL, tFC = NULL, show.effect = FALSE)
object |
An object of class ResultSet obtained from assoc_* functions. |
rid |
(default |
coef |
(default |
contrast |
(default |
type |
Can take |
tPV |
(optional) Threshold for P.Value when |
tFC |
(optional) Threshold for Fold Change or Effect when
|
show.effect |
(default |
A ggplot2 object
plotIntegration
for plotting integration results.
association
to create a ResultSet
to be passed to
this function.
data("asr", package = "omicRexposome") plotAssociation(asr, type = "qq") plotAssociation(asr, type = "volcano")
data("asr", package = "omicRexposome") plotAssociation(asr, type = "qq") plotAssociation(asr, type = "volcano")
This method draws a barplot with the number of hits in each result stored in the given ResultSet.
plotHits(object, th = 0.05, width = 0.75) ## S4 method for signature 'ResultSet' plotHits(object, th = 0.05, width = 0.75)
plotHits(object, th = 0.05, width = 0.75) ## S4 method for signature 'ResultSet' plotHits(object, th = 0.05, width = 0.75)
object |
An object of class ResultSet |
th |
(default |
width |
(default |
A ggplot2 object
plotLambda
for a graphical representation of
the lambda score per analysys, tableLambda
for the lambda
score per analysys, tableHits
for the hists per analysys
data(asr, package = "omicRexposome") plotHits(asr)
data(asr, package = "omicRexposome") plotHits(asr)
This function draws a plots for the ResultSet from integration function
plotIntegration(object, cmpX = 1, cmpY = 2, lb.th = 0.2, legend.show = TRUE, colors, ...) ## S4 method for signature 'ResultSet' plotIntegration(object, cmpX = 1, cmpY = 2, lb.th = 0.2, legend.show = TRUE, colors, ...)
plotIntegration(object, cmpX = 1, cmpY = 2, lb.th = 0.2, legend.show = TRUE, colors, ...) ## S4 method for signature 'ResultSet' plotIntegration(object, cmpX = 1, cmpY = 2, lb.th = 0.2, legend.show = TRUE, colors, ...)
object |
An object of class ResultSet obtained from crossomics. |
cmpX |
(default |
cmpY |
(default |
lb.th |
(default |
legend.show |
(default |
colors |
(optional) Names vector with the colors sued to draw each dataset. Used when ploting results from MultiCCA. If missing, random colores are chosen. |
... |
Optional arguments are given to |
A ggplot2 object
plotAssociation
for plotting association results.
crossomics
to create a ResultSet
to be passed to
this function.
data("crs", package = "omicRexposome") plotIntegration(crs)
data("crs", package = "omicRexposome") plotIntegration(crs)
This method draws a baplor with the lambda score of each result in the given ResultSet.
plotLambda(object, width = 0.75) ## S4 method for signature 'ResultSet' plotLambda(object, width = 0.75)
plotLambda(object, width = 0.75) ## S4 method for signature 'ResultSet' plotLambda(object, width = 0.75)
object |
An object of class ResultSet |
width |
(default |
A ggplot2 object
plotHits
for a graphical representation of
the hits per analysys, tableLambda
for the lambda
score per analysys, tableHits
for the hists per analysys
data("asr", package = "omicRexposome") plotLambda(asr)
data("asr", package = "omicRexposome") plotLambda(asr)
snpSet
to a matrix
of
a continuous variable.The function converts the categorical variable of SNPs to a continuous variable by normalizing each SNP as described in Abraham G. and Inouye M. 2014 (DOI: 10.1371/journal.pone.0093766).
snpToContinuous(snpSet, verbose = FALSE)
snpToContinuous(snpSet, verbose = FALSE)
snpSet |
An object of class |
verbose |
If set to |
An matrix
of the calls of the SNPs converted to a continuous
variable.
crossomics use this function
Given a threshold it counts the number of hits in each result in the given ResultSet.
tableHits(object, th = 0.05) ## S4 method for signature 'ResultSet' tableHits(object, th = 0.05)
tableHits(object, th = 0.05) ## S4 method for signature 'ResultSet' tableHits(object, th = 0.05)
object |
An object of class ResultSet |
th |
(default |
A labeled numeric vector with the exposures and the number of hits.
tableLambda
for the lambda score per analysys,
plotLambda
for a graphical representation of
the lambda score per analysys, plotHits
for a graphical
representation of the hists per analysys
data("asr", package = "omicRexposome") tableHits(asr)
data("asr", package = "omicRexposome") tableHits(asr)
Compute lambda score on each result in the given ResultSet by using
lambdaClayton
.
tableLambda(object, trim = 0.5) ## S4 method for signature 'ResultSet' tableLambda(object, trim = 0.5)
tableLambda(object, trim = 0.5) ## S4 method for signature 'ResultSet' tableLambda(object, trim = 0.5)
object |
An object of class ResultSet |
trim |
(default |
Returns a data.frame
having the exposures and the computed
lambda score.
A labeled numeric vector with the lambda score for each exposure.
tableHits
for the number of hits per analysys,
plotHits
for a graphical representation of the hists
per analysys, plotLambda
for a graphical representation of
the lambda score per analysys
data("asr", package = "omicRexposome") tableLambda(asr)
data("asr", package = "omicRexposome") tableLambda(asr)