Title: | A bioconductor package for high-dimensional exploration of biological network heterogeneity |
---|---|
Description: | Package nethet is an implementation of statistical solid methodology enabling the analysis of network heterogeneity from high-dimensional data. It combines several implementations of recent statistical innovations useful for estimation and comparison of networks in a heterogeneous, high-dimensional setting. In particular, we provide code for formal two-sample testing in Gaussian graphical models (differential network and GGM-GSA; Stadler and Mukherjee, 2013, 2014) and make a novel network-based clustering algorithm available (mixed graphical lasso, Stadler and Mukherjee, 2013). |
Authors: | Nicolas Staedler, Frank Dondelinger |
Maintainer: | Nicolas Staedler <[email protected]>, Frank Dondelinger <[email protected]> |
License: | GPL-2 |
Version: | 1.39.0 |
Built: | 2024-12-29 06:10:15 UTC |
Source: | https://github.com/bioc/nethet |
A bioconductor package for high-dimensional exploration of biological network heterogeneity
Includes: *Network-based clustering (MixGLasso) *Differential network (DiffNet) *Differential regression (DiffRegr) *Gene-set analysis based on graphical models (GGMGSA) *Plotting functions for exploring network heterogeneity
St\"adler, N. and Mukherjee, S. (2013). Two-Sample Testing in High-Dimensional Models. Preprint http://arxiv.org/abs/1210.4584.
Meinshausen p-value aggregation.
aggpval(pval, gamma.min = 0.05)
aggpval(pval, gamma.min = 0.05)
pval |
Vector of p-values. |
gamma.min |
See inf-quantile formula of Meinshausen et al 2009 (default=0.05). |
Inf-quantile formula for p-value aggregation presented in Meinshausen et al 2009.
Aggregated p-value.
n.stadler
pval=runif(50) aggpval(pval)
pval=runif(50) aggpval(pval)
Mixglasso with backward pruning
bwprun_mixglasso(x, n.comp.min = 1, n.comp.max, lambda = sqrt(2 * nrow(x) * log(ncol(x)))/2, pen = "glasso.parcor", selection.crit = "mmdl", term = 10^{ -3 }, min.compsize = 5, init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, reinit.out = FALSE, reinit.in = FALSE, mer = TRUE, del = TRUE, ...)
bwprun_mixglasso(x, n.comp.min = 1, n.comp.max, lambda = sqrt(2 * nrow(x) * log(ncol(x)))/2, pen = "glasso.parcor", selection.crit = "mmdl", term = 10^{ -3 }, min.compsize = 5, init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, reinit.out = FALSE, reinit.in = FALSE, mer = TRUE, del = TRUE, ...)
x |
Input data matrix |
n.comp.min |
Minimum number of components. Take n.comp.min=1 ! |
n.comp.max |
Maximum number of components |
lambda |
Regularization parameter. Default=sqrt(2*n*log(p))/2 |
pen |
Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor |
selection.crit |
Selection criterion. Default='mmdl' |
term |
Termination criterion of EM algorithm. Default=10^-3 |
min.compsize |
Stop EM if any(compsize)<min.compsize; Default=5 |
init |
Initialization. Method used for initialization init='cl.init','r.means','random','kmeans','kmeans.hc','hc'. Default='kmeans.hc' |
my.cl |
Initial cluster assignments; need to be provided if init='cl.init' (otherwise this param is ignored). Default=NULL |
modelname.hc |
Model class used in hc. Default="VVV" |
nstart.kmeans |
Number of random starts in kmeans; default=1 |
iter.max.kmeans |
Maximal number of iteration in kmeans; default=10 |
reinit.out |
Re-initialization if compsize<min.compsize (at the start of algorithm) ? |
reinit.in |
Re-initialization if compsize<min.compsize (at the bwprun-loop level of algorithm) ? |
mer |
Merge closest comps for initialization |
del |
Delete smallest comp for initialization |
... |
Other arguments. See mixglasso_init |
This function runs mixglasso with various number of mixture components: It starts with a too large number of components and iterates towards solutions with smaller number of components by initializing using previous solutions.
list consisting of
selcrit |
Selcrit for all models with number of components between n.comp.min and n.comp.max |
res.init |
Initialization for all components |
comp.name |
List of names of components. Indicates which states where merged/deleted during backward pruning |
re.init.in |
Logical vector indicating whether re-initialization was performed or not |
fit.mixgl.selcrit |
Results for model with optimal number of components. List see mixglasso_init |
n.stadler
##generate data set.seed(1) n <- 1000 n.comp <- 3 p <- 10 # Create different mean vectors Mu <- matrix(0,p,n.comp) nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p)) for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp)) } sim <- sim_mix_networks(n, p, n.comp, Mu=Mu) ##run mixglasso fit <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic') plot(fit$selcrit,ylab='bic',xlab='Num.Comps',type='b')
##generate data set.seed(1) n <- 1000 n.comp <- 3 p <- 10 # Create different mean vectors Mu <- matrix(0,p,n.comp) nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p)) for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp)) } sim <- sim_mix_networks(n, p, n.comp, Mu=Mu) ##run mixglasso fit <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic') plot(fit$selcrit,ylab='bic',xlab='Num.Comps',type='b')
Differential Network
diffnet_multisplit(x1, x2, b.splits = 50, frac.split = 1/2, screen.meth = "screen_bic.glasso", include.mean = FALSE, gamma.min = 0.05, compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, verbose = TRUE, mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)
diffnet_multisplit(x1, x2, b.splits = 50, frac.split = 1/2, screen.meth = "screen_bic.glasso", include.mean = FALSE, gamma.min = 0.05, compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, verbose = TRUE, mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)
x1 |
Data-matrix sample 1. You might need to center and scale your data-matrix. |
x2 |
Data-matrix sample 1. You might need to center and scale your data-matrix. |
b.splits |
Number of splits (default=50). |
frac.split |
Fraction train-data (screening) / test-data (cleaning) (default=0.5). |
screen.meth |
Screening procedure. Options: 'screen_bic.glasso' (default), 'screen_cv.glasso', 'screen_shrink' (not recommended). |
include.mean |
Should sample specific means be included in hypothesis? Use include.mean=FALSE (default and recommended) which assumes mu1=mu2=0 and tests the hypothesis H0: Omega_1=Omega_2. |
gamma.min |
Tuning parameter in p-value aggregation of Meinshausen et al (2009). (Default=0.05). |
compute.evals |
Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3'. |
algorithm.mleggm |
Algorithm to compute MLE of GGM. The algorithm 'glasso_rho' is the default and (currently) the only available option. |
method.compquadform |
Method to compute distribution function of weighted-sum-of-chi2s (default='imhof'). |
acc |
See ?davies (default 1e-04). |
epsabs |
See ?imhof (default 1e-10). |
epsrel |
See ?imhof (default 1e-10). |
show.warn |
Should warnings be showed (default=FALSE)? |
save.mle |
If TRUE, MLEs (inverse covariance matrices for samples 1 and 2) are saved for all b.splits. The median aggregated inverse covariance matrix is provided in the output as 'medwi'. The default is save.mle=FALSE. |
verbose |
If TRUE, show output progress. |
mc.flag |
If |
mc.set.seed |
See mclapply. Default=TRUE |
mc.preschedule |
See mclapply. Default=TRUE |
mc.cores |
Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise. |
... |
Additional arguments for screen.meth. |
Remark:
* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0: Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set include.mean=FALSE and to test equality of the means separately. * You might also want to scale x1 and x2, if you are only interested in differences due to (partial) correlations.
list consisting of
ms.pval |
p-values for all b.splits |
ss.pval |
single-split p-value |
medagg.pval |
median aggregated p-value |
meinshagg.pval |
meinshausen aggregated p-value (meinshausen et al 2009) |
teststat |
test statistics for b.splits |
weights.nulldistr |
estimated weights |
active.last |
active-sets obtained in last screening-step |
medwi |
median of inverse covariance matrices over b.splits |
sig.last |
constrained mle (covariance matrix) obtained in last cleaning-step |
wi.last |
constrained mle (inverse covariance matrix) obtained in last cleaning-step |
n.stadler
############################################################ ##This example illustrates the use of Differential Network## ############################################################ ##set seed set.seed(1) ##sample size and number of nodes n <- 40 p <- 10 ##specifiy sparse inverse covariance matrices gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ##get corresponding correlation matrices cor1 <- cov2cor(solve(invcov1)) cor2 <- cov2cor(solve(invcov2)) ##generate data under null hypothesis (both datasets have the same underlying ## network) library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) ##run diffnet (under null hypothesis) dn.null <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE) dn.null$ss.pval#single-split p-value ##generate data under alternative hypothesis (datasets have different networks) x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2) ##run diffnet (under alternative hypothesis) dn.altn <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE) dn.altn$ss.pval#single-split p-value dn.altn$medagg.pval#median aggregated p-value ##typically we would choose a larger number of splits # dn.altn <- diffnet_multisplit(x1,x2,b.splits=10,verbose=FALSE) # dn.altn$ms.pval#multi-split p-values # dn.altn$medagg.pval#median aggregated p-value # plot(dn.altn)#histogram of single-split p-values
############################################################ ##This example illustrates the use of Differential Network## ############################################################ ##set seed set.seed(1) ##sample size and number of nodes n <- 40 p <- 10 ##specifiy sparse inverse covariance matrices gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ##get corresponding correlation matrices cor1 <- cov2cor(solve(invcov1)) cor2 <- cov2cor(solve(invcov2)) ##generate data under null hypothesis (both datasets have the same underlying ## network) library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) ##run diffnet (under null hypothesis) dn.null <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE) dn.null$ss.pval#single-split p-value ##generate data under alternative hypothesis (datasets have different networks) x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2) ##run diffnet (under alternative hypothesis) dn.altn <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE) dn.altn$ss.pval#single-split p-value dn.altn$medagg.pval#median aggregated p-value ##typically we would choose a larger number of splits # dn.altn <- diffnet_multisplit(x1,x2,b.splits=10,verbose=FALSE) # dn.altn$ms.pval#multi-split p-values # dn.altn$medagg.pval#median aggregated p-value # plot(dn.altn)#histogram of single-split p-values
Differential Network for user specified data splits
diffnet_singlesplit(x1, x2, split1, split2, screen.meth = "screen_bic.glasso", compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0", include.mean = FALSE, method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, ...)
diffnet_singlesplit(x1, x2, split1, split2, screen.meth = "screen_bic.glasso", compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0", include.mean = FALSE, method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, ...)
x1 |
Data-matrix sample 1. You might need to center and scale your data-matrix. |
x2 |
Data-matrix sample 2. You might need to center and scale your data-matrix. |
split1 |
Samples (condition 1) used in screening step. |
split2 |
Samples (condition 2) used in screening step. |
screen.meth |
Screening procedure. Options: 'screen_bic.glasso' (default), 'screen_cv.glasso', 'screen_shrink' (not recommended). |
compute.evals |
Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3'. |
algorithm.mleggm |
Algorithm to compute MLE of GGM. The algorithm 'glasso_rho' is the default and (currently) the only available option. |
include.mean |
Should sample specific means be included in hypothesis? Use include.mean=FALSE (default and recommended) which assumes mu1=mu2=0 and tests the hypothesis H0: Omega_1=Omega_2. |
method.compquadform |
Method to compute distribution function of weighted-sum-of-chi2s (default='imhof'). |
acc |
See ?davies (default 1e-04). |
epsabs |
See ?imhof (default 1e-10). |
epsrel |
See ?imhof (default 1e-10). |
show.warn |
Should warnings be showed (default=FALSE)? |
save.mle |
Should MLEs be in the output list (default=FALSE)? |
... |
Additional arguments for screen.meth. |
Remark:
* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0: Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set include.mean=FALSE and to test equality of the means separately. * You might also want to scale x1 and x2, if you are only interested in differences due to (partial) correlations.
list consisting of
pval.onesided |
p-value |
pval.twosided |
ignore this output |
teststat |
log-likelihood-ratio test statistic |
weights.nulldistr |
estimated weights |
active |
active-sets obtained in screening-step |
sig |
constrained mle (covariance) obtained in cleaning-step |
wi |
constrained mle (inverse covariance) obtained in cleaning-step |
mu |
mle (mean) obtained in cleaning-step |
n.stadler
##set seed set.seed(1) ##sample size and number of nodes n <- 40 p <- 10 ##specifiy sparse inverse covariance matrices gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ##get corresponding correlation matrices cor1 <- cov2cor(solve(invcov1)) cor2 <- cov2cor(solve(invcov2)) ##generate data under alternative hypothesis library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2) ##run diffnet split1 <- sample(1:n,20)#samples for screening (condition 1) split2 <- sample(1:n,20)#samples for screening (condition 2) dn <- diffnet_singlesplit(x1,x2,split1,split2) dn$pval.onesided#p-value
##set seed set.seed(1) ##sample size and number of nodes n <- 40 p <- 10 ##specifiy sparse inverse covariance matrices gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ##get corresponding correlation matrices cor1 <- cov2cor(solve(invcov1)) cor2 <- cov2cor(solve(invcov2)) ##generate data under alternative hypothesis library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2) ##run diffnet split1 <- sample(1:n,20)#samples for screening (condition 1) split2 <- sample(1:n,20)#samples for screening (condition 2) dn <- diffnet_singlesplit(x1,x2,split1,split2) dn$pval.onesided#p-value
Differential Regression (multi-split version).
diffregr_multisplit(y1, y2, x1, x2, b.splits = 50, frac.split = 1/2, screen.meth = "screen_cvtrunc.lasso", gamma.min = 0.05, compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, n.perm = NULL, mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)
diffregr_multisplit(y1, y2, x1, x2, b.splits = 50, frac.split = 1/2, screen.meth = "screen_cvtrunc.lasso", gamma.min = 0.05, compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, n.perm = NULL, mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)
y1 |
Response vector condition 1. |
y2 |
Response vector condition 2. |
x1 |
Predictor matrix condition 1. |
x2 |
Predictor matrix condition 2. |
b.splits |
Number of splits (default=50). |
frac.split |
Fraction train-data (screening) / test-data (cleaning) (default=0.5). |
screen.meth |
Screening method (default='screen_cvtrunc.lasso'). |
gamma.min |
Tuning parameter in p-value aggregation of Meinshausen et al (2009) (default=0.05). |
compute.evals |
Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3.diffregr'. |
method.compquadform |
Algorithm for computing distribution function of weighted-sum-of-chi2 (default='imhof'). |
acc |
See ?davies (default=1e-4). |
epsabs |
See ?imhof (default=1e-10). |
epsrel |
See ?imhof (default=1e-10). |
show.warn |
Show warnings (default=FALSE)? |
n.perm |
Number of permutation for "split-perm" p-value. Default=NULL, which means that the asymptotic approximation is used. |
mc.flag |
If |
mc.set.seed |
See mclapply. Default=TRUE |
mc.preschedule |
See mclapply. Default=TRUE |
mc.cores |
Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise. |
... |
Other arguments specific to screen.meth. |
Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center the input data prior to running Differential Regression.
List consisting of
ms.pval |
p-values for all b.splits |
ss.pval |
single-split p-value |
medagg.pval |
median aggregated p-value |
meinshagg.pval |
meinshausen aggregated p-value (meinshausen et al 2009) |
teststat |
test statistics for b.splits |
weights.nulldistr |
estimated weights |
active.last |
active-sets obtained in last screening-step |
beta.last |
constrained mle (regression coefficients) obtained in last cleaning-step |
n.stadler
############################################################### ##This example illustrates the use of Differential Regression## ############################################################### ##set seed set.seed(1) ## Number of predictors and sample size p <- 100 n <- 80 ## Predictor matrices x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) ## Active-sets and regression coefficients act1 <- sample(1:p,5) act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2)) beta1 <- beta2 <- rep(0,p) beta1[act1] <- 0.5 beta2[act2] <- 0.5 ## Response vectors under null-hypothesis y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta1)+rnorm(n,sd=1) ## Diffregr (asymptotic p-values) fit.null <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5) fit.null$ms.pval#multi-split p-values fit.null$medagg.pval#median aggregated p-values ## Response vectors under alternative-hypothesis y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1) ## Diffregr (asymptotic p-values) fit.alt <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5) fit.alt$ms.pval fit.alt$medagg.pval ## Diffregr (permutation-based p-values; 100 permutations) fit.alt.perm <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5,n.perm=100) fit.alt.perm$ms.pval fit.alt.perm$medagg.pval
############################################################### ##This example illustrates the use of Differential Regression## ############################################################### ##set seed set.seed(1) ## Number of predictors and sample size p <- 100 n <- 80 ## Predictor matrices x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) ## Active-sets and regression coefficients act1 <- sample(1:p,5) act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2)) beta1 <- beta2 <- rep(0,p) beta1[act1] <- 0.5 beta2[act2] <- 0.5 ## Response vectors under null-hypothesis y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta1)+rnorm(n,sd=1) ## Diffregr (asymptotic p-values) fit.null <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5) fit.null$ms.pval#multi-split p-values fit.null$medagg.pval#median aggregated p-values ## Response vectors under alternative-hypothesis y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1) ## Diffregr (asymptotic p-values) fit.alt <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5) fit.alt$ms.pval fit.alt$medagg.pval ## Diffregr (permutation-based p-values; 100 permutations) fit.alt.perm <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5,n.perm=100) fit.alt.perm$ms.pval fit.alt.perm$medagg.pval
Computation "split-asym"/"split-perm" p-values.
diffregr_pval(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act, compute.evals, method.compquadform, acc, epsabs, epsrel, show.warn, n.perm)
diffregr_pval(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act, compute.evals, method.compquadform, acc, epsabs, epsrel, show.warn, n.perm)
y1 |
Response vector condition 1. |
y2 |
Response vector condition 2. |
x1 |
Predictor matrix condition 1. |
x2 |
Predictor matrix condition 2. |
beta1 |
Regression coefficients condition 1. |
beta2 |
Regression coefficients condition 2. |
beta |
Pooled regression coefficients. |
act1 |
Active-set condition 1. |
act2 |
Active-set condition 2. |
act |
Pooled active-set. |
compute.evals |
Method for computation of weights. |
method.compquadform |
Method to compute distribution function of w-sum-of-chi2. |
acc |
See ?davies. |
epsabs |
See ?imhof. |
epsrel |
See ?imhof. |
show.warn |
Show warnings? |
n.perm |
Number of permutations. |
P-value, test statistic, estimated weights.
n.stadler
Differential Regression (single-split version).
diffregr_singlesplit(y1, y2, x1, x2, split1, split2, screen.meth = "screen_cvtrunc.lasso", compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, n.perm = NULL, ...)
diffregr_singlesplit(y1, y2, x1, x2, split1, split2, screen.meth = "screen_cvtrunc.lasso", compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, n.perm = NULL, ...)
y1 |
Response vector condition 1. |
y2 |
Response vector condition 2. |
x1 |
Predictor matrix condition 1. |
x2 |
Predictor matrix condition 2. |
split1 |
Samples condition 1 used in screening-step. |
split2 |
Samples condition 2 used in screening-step. |
screen.meth |
Screening method (default='screen_cvtrunc.lasso'). |
compute.evals |
Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3.diffregr'. |
method.compquadform |
Algorithm for computing distribution function of weighted-sum-of-chi2 (default='imhof'). |
acc |
See ?davies (default=1e-4). |
epsabs |
See ?imhof (default=1e-10). |
epsrel |
See ?imhof (default=1e-10). |
show.warn |
Show warnings (default=FALSE)? |
n.perm |
Number of permutation for "split-perm" p-value (default=NULL). |
... |
Other arguments specific to screen.meth. |
Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center the input data prior to running Differential Regression.
List consisting of
pval.onesided |
"One-sided" p-value. |
pval.twosided |
"Two-sided" p-value. Ignore all "*.twosided results. |
teststat |
2 times Log-likelihood-ratio statistics |
weights.nulldistr |
Estimated weights of weighted-sum-of-chi2s. |
active |
List of active-sets obtained in screening step. |
beta |
Regression coefficients (MLE) obtaind in cleaning-step. |
n.stadler
##set seed set.seed(1) ##number of predictors / sample size p <- 100 n <- 80 ##predictor matrices x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) ##active-sets and regression coefficients act1 <- sample(1:p,5) act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2)) beta1 <- beta2 <- rep(0,p) beta1[act1] <- 0.5 beta2[act2] <- 0.5 ##response vectors y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1) ##run diffregr split1 <- sample(1:n,50)#samples for screening (condition 1) split2 <- sample(1:n,50)#samples for screening (condition 2) fit <- diffregr_singlesplit(y1,y2,x1,x2,split1,split2) fit$pval.onesided#p-value
##set seed set.seed(1) ##number of predictors / sample size p <- 100 n <- 80 ##predictor matrices x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) ##active-sets and regression coefficients act1 <- sample(1:p,5) act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2)) beta1 <- beta2 <- rep(0,p) beta1[act1] <- 0.5 beta2[act2] <- 0.5 ##response vectors y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1) y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1) ##run diffregr split1 <- sample(1:n,50)#samples for screening (condition 1) split2 <- sample(1:n,50)#samples for screening (condition 2) fit <- diffregr_singlesplit(y1,y2,x1,x2,split1,split2) fit$pval.onesided#p-value
This function takes the output of het_cv_glasso
or
mixglasso
and creates a plot of the highest scoring edges along the
y axis, where, the edge in each cluster is represented by a circle whose area
is proportional to the smallest mean of the two nodes that make up the edge,
and the position along the y axis shows the partial correlation of the edge.
dot_plot(net.clustering, p.corrs.thresh = 0.25, hard.limit = 50, display = TRUE, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), dot.size.range = c(3, 12))
dot_plot(net.clustering, p.corrs.thresh = 0.25, hard.limit = 50, display = TRUE, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), dot.size.range = c(3, 12))
net.clustering |
A network clustering object as returned by
|
p.corrs.thresh |
Cutoff for the partial correlations; only edges with absolute partial correlation > p.corrs.thresh (in any cluster) will be displayed. |
hard.limit |
Additional hard limit on the number of edges to display. If p.corrs.thresh results in more edges than hard.limit, only hard.limit edges with the highest partial correlation are returned. |
display |
If TRUE, print the plot to the current output device. |
node.names |
Names for the nodes in the network. |
group.names |
Names for the clusters or groups. |
dot.size.range |
Graphical parameter for scaling the size of the circles (dots) representing an edge in each cluster. |
Returns a ggplot2 object. If display=TRUE, additionally displays the plot.
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] dot_plot(mixglasso.clustering, p.corrs.thresh=0.5)
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] dot_plot(mixglasso.clustering, p.corrs.thresh=0.5)
This function takes the output of het_cv_glasso
or
mixglasso
and exports it as a text table in CSV format, where each
entry in the table records an edge in one group and its partial correlation.
export_network(net.clustering, file = "network_table.csv", node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2, ...)
export_network(net.clustering, file = "network_table.csv", node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2, ...)
net.clustering |
A network clustering object as returned by
|
file |
Filename to save the network table under. |
node.names |
Names for the nodes in the network. If NULL, names from net.clustering will be used. |
group.names |
Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integets 1:numClusters). |
p.corrs.thresh |
Threshold applied to the absolute partial correlations. Edges that are below the threshold in all of the groups are not exported. Using a negative value will export all possible edges (including those with zero partial correlation). |
... |
Further parameters passed to write.csv. |
Function does not return anything.
Frank Dondelinger
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] ## Not run: # Save network in CSV format suitable for Cytoscape import export_network(mixglasso.clustering, file='nethet_network.csv', p.corrs.thresh=0.25, quote=FALSE) ## End(Not run)
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] ## Not run: # Save network in CSV format suitable for Cytoscape import export_network(mixglasso.clustering, file='nethet_network.csv', p.corrs.thresh=0.25, quote=FALSE) ## End(Not run)
Generate two sparse inverse covariance matrices with overlap
generate_2networks(p, graph = "random", n.nz = rep(p, 2), n.nz.common = p, n.hub = 2, n.hub.diff = 1, magn.nz.diff = 0.8, magn.nz.common = 0.9, magn.diag = 0, emin = 0.1, verbose = FALSE)
generate_2networks(p, graph = "random", n.nz = rep(p, 2), n.nz.common = p, n.hub = 2, n.hub.diff = 1, magn.nz.diff = 0.8, magn.nz.common = 0.9, magn.diag = 0, emin = 0.1, verbose = FALSE)
p |
number of nodes |
graph |
'random' or 'hub' |
n.nz |
number of edges per graph (only for graph='random') |
n.nz.common |
number of edges incommon between graphs (only for graph='random') |
n.hub |
number of hubs (only for graph='hub') |
n.hub.diff |
number of different hubs |
magn.nz.diff |
default=0.9 |
magn.nz.common |
default=0.9 |
magn.diag |
default=0 |
emin |
default=0.1 (see ?huge.generator) |
verbose |
If verbose=FALSE then tracing output is disabled. |
Two sparse inverse covariance matrices with overlap
n <- 70 p <- 30 ## Specifiy sparse inverse covariance matrices, ## with number of edges in common equal to ~ 0.8*p gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)
n <- 70 p <- 30 ## Specifiy sparse inverse covariance matrices, ## with number of edges in common equal to ~ 0.8*p gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)
Generate an inverse covariance matrix with a given sparsity and dimensionality
generate_inv_cov(p = 162, sparsity = 0.7)
generate_inv_cov(p = 162, sparsity = 0.7)
p |
Dimensionality of the matrix. |
sparsity |
Determined the proportion of non-zero off-diagonal entries. |
This function generates an inverse covariance matrix, with at most (1-sparsity)*p(p-1) non-zero off-diagonal entries, where the non-zero entries are sampled from a beta distribution.
A p by p positive definite inverse covariance matrix.
generate_inv_cov(p=162)
generate_inv_cov(p=162)
Multi-split GGMGSA (parallelized computation)
ggmgsa_multisplit(x1, x2, b.splits = 50, gene.sets, gene.names, gs.names = NULL, method.p.adjust = "fdr", order.adj.agg = "agg-adj", mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), verbose = TRUE, ...)
ggmgsa_multisplit(x1, x2, b.splits = 50, gene.sets, gene.names, gs.names = NULL, method.p.adjust = "fdr", order.adj.agg = "agg-adj", mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), verbose = TRUE, ...)
x1 |
Expression matrix for condition 1 (mean zero is required). |
x2 |
Expression matrix for condition 2 (mean zero is required). |
b.splits |
Number of random data splits (default=50). |
gene.sets |
List of gene-sets. |
gene.names |
Gene names. Each column in x1 (and x2) corresponds to a gene. |
gs.names |
Gene-set names (default=NULL). |
method.p.adjust |
Method for p-value adjustment (default='fdr'). |
order.adj.agg |
Order of aggregation and adjustment of p-values. Options: 'agg-adj' (default), 'adj-agg'. |
mc.flag |
If |
mc.set.seed |
See mclapply. Default=TRUE |
mc.preschedule |
See mclapply. Default=TRUE |
mc.cores |
Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise. |
verbose |
If TRUE, show output progess. |
... |
Other arguments (see diffnet_singlesplit). |
Computation can be parallelized over many data splits.
List consisting of
medagg.pval |
Median aggregated p-values |
meinshagg.pval |
Meinshausen aggregated p-values |
pval |
matrix of p-values before correction and adjustement, dim(pval)=(number of gene-sets)x(number of splits) |
teststatmed |
median aggregated test-statistic |
teststatmed.bic |
median aggregated bic-corrected test-statistic |
teststatmed.aic |
median aggregated aic-corrected test-statistic |
teststat |
matrix of test-statistics, dim(teststat)=(number of gene-sets)x(number of splits) |
rel.edgeinter |
normalized intersection of edges in condition 1 and 2 |
df1 |
degrees of freedom of GGM obtained from condition 1 |
df2 |
degrees of freedom of GGM obtained from condition 2 |
df12 |
degrees of freedom of GGM obtained from pooled data (condition 1 and 2) |
n.stadler
####################################################### ##This example illustrates the use of GGMGSA ## ####################################################### ## Generate networks set.seed(1) p <- 9#network with p nodes n <- 40 hub.net <- generate_2networks(p,graph='hub',n.hub=3,n.hub.diff=1)#generate hub networks invcov1 <- hub.net[[1]] invcov2 <- hub.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ## Generate data library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov1))) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov2))) ## Run DiffNet # fit.dn <- diffnet_multisplit(x1,x2,b.splits=2,verbose=FALSE) # fit.dn$medagg.pval ## Identify hubs with 'gene-sets' gene.names <- paste('G',1:p,sep='') gsets <- split(gene.names,rep(1:3,each=3)) ## Run GGM-GSA fit.ggmgsa <- ggmgsa_multisplit(x1,x2,b.splits=2,gsets,gene.names,verbose=FALSE) summary(fit.ggmgsa) fit.ggmgsa$medagg.pval#median aggregated p-values p.adjust(apply(fit.ggmgsa$pval,1,median),method='fdr')#or: first median aggregation, #second fdr-correction
####################################################### ##This example illustrates the use of GGMGSA ## ####################################################### ## Generate networks set.seed(1) p <- 9#network with p nodes n <- 40 hub.net <- generate_2networks(p,graph='hub',n.hub=3,n.hub.diff=1)#generate hub networks invcov1 <- hub.net[[1]] invcov2 <- hub.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7) ## Generate data library('mvtnorm') x1 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov1))) x2 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcov2))) ## Run DiffNet # fit.dn <- diffnet_multisplit(x1,x2,b.splits=2,verbose=FALSE) # fit.dn$medagg.pval ## Identify hubs with 'gene-sets' gene.names <- paste('G',1:p,sep='') gsets <- split(gene.names,rep(1:3,each=3)) ## Run GGM-GSA fit.ggmgsa <- ggmgsa_multisplit(x1,x2,b.splits=2,gsets,gene.names,verbose=FALSE) summary(fit.ggmgsa) fit.ggmgsa$medagg.pval#median aggregated p-values p.adjust(apply(fit.ggmgsa$pval,1,median),method='fdr')#or: first median aggregation, #second fdr-correction
Single-split GGMGSA
ggmgsa_singlesplit(x1, x2, gene.sets, gene.names, method.p.adjust = "fdr", verbose = TRUE, ...)
ggmgsa_singlesplit(x1, x2, gene.sets, gene.names, method.p.adjust = "fdr", verbose = TRUE, ...)
x1 |
centered (scaled) data for condition 1 |
x2 |
centered (scaled) data for condition 2 |
gene.sets |
List of gene-sets. |
gene.names |
Gene names. Each column in x1 (and x2) corresponds to a gene. |
method.p.adjust |
Method for p-value adjustment (default='fdr'). |
verbose |
If TRUE, show output progess. |
... |
Other arguments (see diffnet_singlesplit). |
List of results.
n.stadler
Irizarry approach for gene-set testing
gsea.iriz(x1, x2, gene.sets, gene.names, gs.names = NULL, method.p.adjust = "fdr", alternative = "two-sided")
gsea.iriz(x1, x2, gene.sets, gene.names, gs.names = NULL, method.p.adjust = "fdr", alternative = "two-sided")
x1 |
Expression matrix (condition 1) |
x2 |
Expression matrix (condition 2) |
gene.sets |
List of gene-sets |
gene.names |
Gene names |
gs.names |
Gene-set names |
method.p.adjust |
Method for p-value adjustment (default='fdr') |
alternative |
Default='two-sided' (uses two-sided p-values). |
Implements the approach described in "Gene set enrichment analysis made simple" by Irizarry et al (2011). It tests for shift and/or change in scale of the distribution.
List consisting of
pval.shift |
p-values measuring shift |
pval.scale |
p-values measuring scale |
pval.combined |
combined p-values (minimum of pval.shift and pval.scale) |
n.stadler
n <- 100 p <- 20 x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) gene.names <- paste('G',1:p,sep='') gsets <- split(gene.names,rep(1:4,each=5)) fit <- gsea.iriz(x1,x2,gsets,gene.names) fit$pvals.combined x2[,1:3] <- x2[,1:3]+0.5#variables 1-3 of first gene-set are upregulated fit <- gsea.iriz(x1,x2,gsets,gene.names) fit$pvals.combined
n <- 100 p <- 20 x1 <- matrix(rnorm(n*p),n,p) x2 <- matrix(rnorm(n*p),n,p) gene.names <- paste('G',1:p,sep='') gsets <- split(gene.names,rep(1:4,each=5)) fit <- gsea.iriz(x1,x2,gsets,gene.names) fit$pvals.combined x2[,1:3] <- x2[,1:3]+0.5#variables 1-3 of first gene-set are upregulated fit <- gsea.iriz(x1,x2,gsets,gene.names) fit$pvals.combined
Run glasso on a heterogeneous dataset to obtain networks (inverse covariance matrices) of the variables in the dataset for each pre-specified group of samples.
het_cv_glasso(data, grouping = rep(1, dim(data)[1]), mc.flag = FALSE, use.package = "huge", normalise = FALSE, verbose = FALSE, ...)
het_cv_glasso(data, grouping = rep(1, dim(data)[1]), mc.flag = FALSE, use.package = "huge", normalise = FALSE, verbose = FALSE, ...)
data |
The heterogenous network data. Needs to be a num.samples by dim.samples matrix or dataframe. |
grouping |
The grouping of samples; a vector of length num.samples, with num.groups unique elements. |
mc.flag |
Whether to use parallel processing via package mclapply to distribute the glasso estimation over different groups. |
use.package |
'glasso' for glasso package, or 'huge' for huge package (default) |
normalise |
If TRUE, normalise the columns of the data matrix before running glasso. |
verbose |
If TRUE, output progress. |
... |
Further parameters to be passed to |
This function runs the graphical lasso with cross-validation to determine the best parameter lambda for each group of samples. Note that this function defaults to using package huge (rather than package glasso) unless otherwise specified, as it tends to be more numerically stable.
Returns a list with named elements 'Sig', 'SigInv', 'Mu', 'Sigma.diag', 'group.names' and 'var.names. The variables Sig and SigInv are arrays of size dim.samples by dim.samples by num.groups, where the first two dimensions contain the (inverse) covariance matrix for the network obtained by running glasso on group k. Variables Mu and Sigma.diag contain the mean and variance of the input data, and group.names and var.names contains the names for the groups and variables in the data (if specified as colnames of the input data matrix).
n = 100 p = 25 # Generate networks with random means and covariances. sim.result = sim_mix_networks(n, p, n.comp=3) test.data = sim.result$data test.labels = sim.result$comp # Reconstruct networks for each component networks = het_cv_glasso(data=test.data, grouping=test.labels)
n = 100 p = 25 # Generate networks with random means and covariances. sim.result = sim_mix_networks(n, p, n.comp=3) test.data = sim.result$data test.labels = sim.result$comp # Reconstruct networks for each component networks = het_cv_glasso(data=test.data, grouping=test.labels)
Convert inverse covariance to partial correlation
invcov2parcor(invcov)
invcov2parcor(invcov)
invcov |
Inverse covariance matrix |
The partial correlation matrix.
inv.cov = generate_inv_cov(p=25) p.corr = invcov2parcor(inv.cov)
inv.cov = generate_inv_cov(p=25) p.corr = invcov2parcor(inv.cov)
Convert inverse covariance to partial correlation for several inverse covariance matrices collected in an array.
invcov2parcor_array(invcov.array)
invcov2parcor_array(invcov.array)
invcov.array |
Array of inverse covariance matrices, of dimension numNodes by numNodes by numComps. |
Array of partial correlation matrices of dimension numNodes by numNodes by numComps
invcov.array = sapply(1:5, function(x) generate_inv_cov(p=25), simplify='array') p.corr = invcov2parcor_array(invcov.array)
invcov.array = sapply(1:5, function(x) generate_inv_cov(p=25), simplify='array') p.corr = invcov2parcor_array(invcov.array)
Log-likelihood-ratio statistics used in Differential Network
logratio(x1, x2, x, sig1, sig2, sig, mu1, mu2, mu)
logratio(x1, x2, x, sig1, sig2, sig, mu1, mu2, mu)
x1 |
data-matrix sample 1 |
x2 |
data-matrix sample 2 |
x |
pooled data-matrix |
sig1 |
covariance sample 1 |
sig2 |
covariance sample 2 |
sig |
pooled covariance |
mu1 |
mean sample 1 |
mu2 |
mean sample 2 |
mu |
pooled mean |
Returns a list with named elements 'twiceLR', 'sig1', 'sig2', 'sig'. 'twiceLR' is twice the log-likelihood-ratio statistic.
n.stadler
x1=matrix(rnorm(100),50,2) x2=matrix(rnorm(100),50,2) logratio(x1,x2,rbind(x1,x2),diag(1,2),diag(1,2),diag(1,2),c(0,0),c(0,0),c(0,0))$twiceLR
x1=matrix(rnorm(100),50,2) x2=matrix(rnorm(100),50,2) logratio(x1,x2,rbind(x1,x2),diag(1,2),diag(1,2),diag(1,2),c(0,0),c(0,0),c(0,0))$twiceLR
mixglasso
mixglasso(x, n.comp, lambda = sqrt(2 * nrow(x) * log(ncol(x)))/2, pen = "glasso.parcor", init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, term = 10^{ -3 }, min.compsize = 5, save.allfits = FALSE, filename = "mixglasso_fit.rda", mc.flag = FALSE, mc.set.seed = FALSE, mc.preschedule = FALSE, mc.cores = getOption("mc.cores", 2L), ...)
mixglasso(x, n.comp, lambda = sqrt(2 * nrow(x) * log(ncol(x)))/2, pen = "glasso.parcor", init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, term = 10^{ -3 }, min.compsize = 5, save.allfits = FALSE, filename = "mixglasso_fit.rda", mc.flag = FALSE, mc.set.seed = FALSE, mc.preschedule = FALSE, mc.cores = getOption("mc.cores", 2L), ...)
x |
Input data matrix |
n.comp |
Number of mixture components. If n.comp is a vector,
|
lambda |
Regularization parameter. Default=sqrt(2*n*log(p))/2 |
pen |
Determines form of penalty: glasso.parcor (default) to penalise the partial correlation matrix, glasso.invcov to penalise the inverse covariance matrix (this corresponds to classical graphical lasso), glasso.invcor to penalise the inverse correlation matrix. |
init |
Initialization. Method used for initialization init='cl.init','r.means','random','kmeans','kmeans.hc','hc'. Default='kmeans' |
my.cl |
Initial cluster assignments; need to be provided if init='cl.init' (otherwise this param is ignored). Default=NULL |
modelname.hc |
Model class used in hc. Default="VVV" |
nstart.kmeans |
Number of random starts in kmeans; default=1 |
iter.max.kmeans |
Maximal number of iteration in kmeans; default=10 |
term |
Termination criterion of EM algorithm. Default=10^-3 |
min.compsize |
Stop EM if any(compsize)<min.compsize; Default=5 |
save.allfits |
If TRUE, save output of mixglasso for all k's. |
filename |
If |
mc.flag |
If |
mc.set.seed |
See mclapply. Default=FALSE |
mc.preschedule |
See mclapply. Default=FALSE |
mc.cores |
Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise. |
... |
Other arguments. See mixglasso_init |
Runs mixture of graphical lasso network clustering with one or several numbers of mixture components.
A list with elements:
models |
List with each element i containing an S3 object of class 'nethetclustering' that contains the result of fitting the mixture graphical lasso model with n.comps[i] components. See the documentation of mixglasso_ncomp_fixed for the description of this object. |
bic |
BIC for all fits. |
mmdl |
Minimum description length score for all fits. |
comp |
Component assignments for all fits. |
bix.opt |
Index of model with optimal BIC score. |
mmdl.opt |
Index of model with optimal MMDL score. |
n.stadler
########################################### ##This an example of how to use MixGLasso## ########################################### ##generate data set.seed(1) n <- 1000 n.comp <- 3 p <- 10 # Create different mean vectors Mu <- matrix(0,p,n.comp) nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p)) for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp)) } sim <- sim_mix_networks(n, p, n.comp, Mu=Mu) ##run mixglasso set.seed(1) fit1 <- mixglasso(sim$data,n.comp=1:6) fit1$bic set.seed(1) fit2 <- mixglasso(sim$data,n.comp=6) fit2$bic set.seed(1) fit3 <- mixglasso(sim$data,n.comp=1:6,lambda=0) set.seed(1) fit4 <- mixglasso(sim$data,n.comp=1:6,lambda=Inf) #set.seed(1) #fit5 <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic') #plot(fit5$selcrit,ylab='bic',xlab='Num.Comps',type='b') ##compare bic library('ggplot2') plotting.frame <- data.frame(BIC= c(fit1$bic, fit3$bic, fit4$bic), Num.Comps=rep(1:6, 3), Lambda=rep(c('Default', 'Lambda = 0', 'Lambda = Inf'), each=6)) p <- ggplot(plotting.frame) + geom_line(aes(x=Num.Comps, y=BIC, colour=Lambda)) print(p)
########################################### ##This an example of how to use MixGLasso## ########################################### ##generate data set.seed(1) n <- 1000 n.comp <- 3 p <- 10 # Create different mean vectors Mu <- matrix(0,p,n.comp) nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p)) for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp)) } sim <- sim_mix_networks(n, p, n.comp, Mu=Mu) ##run mixglasso set.seed(1) fit1 <- mixglasso(sim$data,n.comp=1:6) fit1$bic set.seed(1) fit2 <- mixglasso(sim$data,n.comp=6) fit2$bic set.seed(1) fit3 <- mixglasso(sim$data,n.comp=1:6,lambda=0) set.seed(1) fit4 <- mixglasso(sim$data,n.comp=1:6,lambda=Inf) #set.seed(1) #fit5 <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic') #plot(fit5$selcrit,ylab='bic',xlab='Num.Comps',type='b') ##compare bic library('ggplot2') plotting.frame <- data.frame(BIC= c(fit1$bic, fit3$bic, fit4$bic), Num.Comps=rep(1:6, 3), Lambda=rep(c('Default', 'Lambda = 0', 'Lambda = Inf'), each=6)) p <- ggplot(plotting.frame) + geom_line(aes(x=Num.Comps, y=BIC, colour=Lambda)) print(p)
mixglasso_init (initialization and lambda set by user)
mixglasso_init(x, n.comp, lambda, u.init, mix.prob.init, gamma = 0.5, pen = "glasso.parcor", penalize.diagonal = FALSE, term = 10^{ -3 }, miniter = 5, maxiter = 1000, min.compsize = 5, show.trace = FALSE)
mixglasso_init(x, n.comp, lambda, u.init, mix.prob.init, gamma = 0.5, pen = "glasso.parcor", penalize.diagonal = FALSE, term = 10^{ -3 }, miniter = 5, maxiter = 1000, min.compsize = 5, show.trace = FALSE)
x |
Input data matrix |
n.comp |
Number of mixture components |
lambda |
Regularization parameter |
u.init |
Initial responsibilities |
mix.prob.init |
Initial component probablities |
gamma |
Determines form of penalty |
pen |
Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor |
penalize.diagonal |
Should the diagonal of the inverse covariance matrix be penalized ? Default=FALSE (recommended) |
term |
Termination criterion of EM algorithm. Default=10^-3 |
miniter |
Minimal number of EM iteration before 'stop EM if any(compsize)<min.compsize' applies. Default=5 |
maxiter |
Maximal number of EM iteration. Default=1000 |
min.compsize |
Stop EM if any(compsize)<min.compsize; Default=5 |
show.trace |
Should information during execution be printed ? Default=FALSE |
This function runs mixglasso; requires initialization (u.init,mix.prob.init)
list consisting of
mix.prob |
Component probabilities |
Mu |
Component specific mean vectors |
Sig |
Component specific covariance matrices |
SigInv |
Component specific inverse covariance matrices |
iter |
Number of EM iterations |
loglik |
Log-likelihood |
bic |
-loglik+log(n)*DF/2 |
mmdl |
-loglik+penmmdl/2 |
u |
Component responsibilities |
comp |
Component assignments |
compsize |
Size of components |
pi.comps |
Component probabilities |
warn |
Warnings during EM algorithm |
n.stadler
Plot two networks (GGMs)
plot_2networks(invcov1, invcov2, node.label = paste("X", 1:nrow(invcov1), sep = ""), main = c("", ""), ...)
plot_2networks(invcov1, invcov2, node.label = paste("X", 1:nrow(invcov1), sep = ""), main = c("", ""), ...)
invcov1 |
Inverse covariance matrix of GGM1. |
invcov2 |
Inverse covariance matrix of GGM2. |
node.label |
Names of nodes. |
main |
Vector (two elements) with network names. |
... |
Other arguments (see plot.network). |
Figure with two panels (for each network).
nicolas
n <- 70 p <- 30 ## Specifiy sparse inverse covariance matrices, ## with number of edges in common equal to ~ 0.8*p gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)
n <- 70 p <- 30 ## Specifiy sparse inverse covariance matrices, ## with number of edges in common equal to ~ 0.8*p gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2), n.nz.common=ceiling(p*0.8)) invcov1 <- gen.net[[1]] invcov2 <- gen.net[[2]] plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)
Plotting function for object of class 'diffnet'
## S3 method for class 'diffnet' plot(x, ...)
## S3 method for class 'diffnet' plot(x, ...)
x |
object of class 'diffnet' |
... |
Further arguments. |
Histogram over multi-split p-values.
nicolas
Plotting function for object of class 'diffregr'
## S3 method for class 'diffregr' plot(x, ...)
## S3 method for class 'diffregr' plot(x, ...)
x |
object of class 'diffregr' |
... |
Further arguments. |
Histogram over multi-split p-values.
nicolas
Plotting function for object of class 'ggmgsa'
## S3 method for class 'ggmgsa' plot(x, ...)
## S3 method for class 'ggmgsa' plot(x, ...)
x |
object of class 'ggmgsa' |
... |
Further arguments. |
Boxplot of single-split p-values.
nicolas
This function takes the output of screen_cv.glasso
or
mixglasso
and creates a network plot using the network library.
## S3 method for class 'nethetclustering' plot(x, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2, print.pdf = FALSE, pdf.filename = "networks", ...)
## S3 method for class 'nethetclustering' plot(x, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2, print.pdf = FALSE, pdf.filename = "networks", ...)
x |
A network clustering object as returned by
|
node.names |
Names for the nodes in the network. If NULL, names from net.clustering will be used. |
group.names |
Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integets 1:numClusters). |
p.corrs.thresh |
Threshold applied to the absolute partial correlations. Edges that are below the threshold in all of the groups are not displayed. |
print.pdf |
If TRUE, save the output as a PDF file. |
pdf.filename |
If |
... |
Further arguments |
Returns NULL and prints out the networks (or saves them to pdf if
print.pdf
is TRUE. The networks are displayed as a series of nComps+1
plots, where in the first plot edge widths are shown according to
the maximum partial correlation of the edge over all groups. The following plots
show the edges for each group. Positive partial correlation edges are shown in
black, negative ones in blue. If an edge is below the threshold on the absolute
partial correlation, it is displayed in gray or light blue respectively.
Print function for object of class 'nethetsummary'
## S3 method for class 'nethetsummary' print(x, ...)
## S3 method for class 'nethetsummary' print(x, ...)
x |
object of class 'nethetsummary' |
... |
Other arguments |
Function does not return anything.
frankd
This function takes the output of het_cv_glasso
or
mixglasso
and creates a plot showing the correlation between specified
node pairs in the network for all groups. The subplots for each node pair are
arranged in a numPairs by numGroups grid. Partial correlations associated
with each node pair are also displayed.
scatter_plot(net.clustering, data, node.pairs, display = TRUE, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), cex = 1)
scatter_plot(net.clustering, data, node.pairs, display = TRUE, node.names = rownames(net.clustering$Mu), group.names = sort(unique(net.clustering$comp)), cex = 1)
net.clustering |
A network clustering object as returned by
|
data |
Observed data for the nodes, a numObs by numNodes matrix. Note that nodes need to be in the same ordering as in node.names. |
node.pairs |
A matrix of size numPairs by 2, where each row contains a pair of nodes to display. If node.names is specified, names in node.pairs must correspond to elements of node.names. |
display |
If TRUE, print the plot to the current output device. |
node.names |
Names for the nodes in the network. If NULL, names from net.clustering will be used. |
group.names |
Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integets 1:numClusters). |
cex |
Scale factor for text and symbols in plot. |
Returns a ggplot2 object. If display=TRUE, additionally displays the plot.
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] # Specify edges node.pairs = rbind(c(1,3), c(6,9),c(7,8)) # Create scatter plots of specified edges scatter_plot(mixglasso.clustering, data=sim.result$data, node.pairs=node.pairs)
n = 500 p = 10 s = 0.9 n.comp = 3 # Create different mean vectors Mu = matrix(0,p,n.comp) # Define non-zero means in each group (non-overlapping) nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p)) # Set non-zero means to fixed value for(k in 1:n.comp){ Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp)) } # Generate data sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu) mixglasso.result = mixglasso(sim.result$data, n.comp=3) mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]] # Specify edges node.pairs = rbind(c(1,3), c(6,9),c(7,8)) # Create scatter plots of specified edges scatter_plot(mixglasso.clustering, data=sim.result$data, node.pairs=node.pairs)
AIC-tuned glasso with additional thresholding
screen_aic.glasso(x, include.mean = TRUE, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, plot.it = FALSE, trunc.method = "linear.growth", trunc.k = 5, use.package = "huge", verbose = FALSE)
screen_aic.glasso(x, include.mean = TRUE, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, plot.it = FALSE, trunc.method = "linear.growth", trunc.k = 5, use.package = "huge", verbose = FALSE)
x |
The input data. Needs to be a num.samples by dim.samples matrix. |
include.mean |
Include mean in likelihood. TRUE / FALSE (default). |
length.lambda |
Length of lambda path to consider (default=20). |
lambdamin.ratio |
Ratio lambda.min/lambda.max. |
penalize.diagonal |
If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE) |
plot.it |
TRUE / FALSE (default) |
trunc.method |
None / linear.growth (default) / sqrt.growth |
trunc.k |
truncation constant, number of samples per predictor (default=5) |
use.package |
'glasso' or 'huge' (default). |
verbose |
If TRUE, output la.min, la.max and la.opt (default=FALSE). |
Returns a list with named elements 'rho.opt', 'wi', 'wi.orig'. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.
n.stadler
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_aic.glasso(x,length.lambda=5)$wi
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_aic.glasso(x,length.lambda=5)$wi
BIC-tuned glasso with additional thresholding
screen_bic.glasso(x, include.mean = TRUE, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, plot.it = FALSE, trunc.method = "linear.growth", trunc.k = 5, use.package = "huge", verbose = FALSE)
screen_bic.glasso(x, include.mean = TRUE, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, plot.it = FALSE, trunc.method = "linear.growth", trunc.k = 5, use.package = "huge", verbose = FALSE)
x |
The input data. Needs to be a num.samples by dim.samples matrix. |
include.mean |
Include mean in likelihood. TRUE / FALSE (default). |
length.lambda |
Length of lambda path to consider (default=20). |
lambdamin.ratio |
Ratio lambda.min/lambda.max. |
penalize.diagonal |
If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE) |
plot.it |
TRUE / FALSE (default) |
trunc.method |
None / linear.growth (default) / sqrt.growth |
trunc.k |
truncation constant, number of samples per predictor (default=5) |
use.package |
'glasso' or 'huge' (default). |
verbose |
If TRUE, output la.min, la.max and la.opt (default=FALSE). |
Returns a list with named elements 'rho.opt', 'wi', 'wi.orig', Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.
n.stadler
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_bic.glasso(x,length.lambda=5)$wi
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_bic.glasso(x,length.lambda=5)$wi
Cross-validated glasso with additional thresholding
screen_cv.glasso(x, include.mean = FALSE, folds = min(10, dim(x)[1]), length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, trunc.method = "linear.growth", trunc.k = 5, plot.it = FALSE, se = FALSE, use.package = "huge", verbose = FALSE)
screen_cv.glasso(x, include.mean = FALSE, folds = min(10, dim(x)[1]), length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, trunc.method = "linear.growth", trunc.k = 5, plot.it = FALSE, se = FALSE, use.package = "huge", verbose = FALSE)
x |
The input data. Needs to be a num.samples by dim.samples matrix. |
include.mean |
Include mean in likelihood. TRUE / FALSE (default). |
folds |
Number of folds in the cross-validation (default=10). |
length.lambda |
Length of lambda path to consider (default=20). |
lambdamin.ratio |
Ratio lambda.min/lambda.max. |
penalize.diagonal |
If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE) |
trunc.method |
None / linear.growth (default) / sqrt.growth |
trunc.k |
truncation constant, number of samples per predictor (default=5) |
plot.it |
TRUE / FALSE (default) |
se |
default=FALSE. |
use.package |
'glasso' or 'huge' (default). |
verbose |
If TRUE, output la.min, la.max and la.opt (default=FALSE). |
Run glasso on a single dataset, using cross-validation to estimate the penalty parameter lambda. Performs additional thresholding (optionally).
Returns a list with named elements 'rho.opt', 'w', 'wi', 'wi.orig', 'mu'. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). Variable w is the estimated covariance matrix. The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix. Variable mu is the mean of the input data.
n.stadler
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_cv.glasso(x,folds=2)$wi
n=50 p=5 x=matrix(rnorm(n*p),n,p) wihat=screen_cv.glasso(x,folds=2)$wi
Cross-validated Lasso screening (lambda.1se-rule)
screen_cv1se.lasso(x, y)
screen_cv1se.lasso(x, y)
x |
Predictor matrix |
y |
Response vector |
Active-set
n.stadler
screen_cv1se.lasso(matrix(rnorm(5000),50,100),rnorm(50))
screen_cv1se.lasso(matrix(rnorm(5000),50,100),rnorm(50))
Cross-validated Lasso screening and upper bound on number of predictors
screen_cvfix.lasso(x, y, no.predictors = 10)
screen_cvfix.lasso(x, y, no.predictors = 10)
x |
Predictor matrix. |
y |
Response vector. |
no.predictors |
Upper bound on number of active predictors, |
Computes Lasso coefficients (cross-validation optimal lambda). Truncates smalles coefficients to zero such that there are no more than no.predictors non-zero coefficients
Active-set.
n.stadler
screen_cvfix.lasso(matrix(rnorm(5000),50,100),rnorm(50))
screen_cvfix.lasso(matrix(rnorm(5000),50,100),rnorm(50))
Cross-validated Lasso screening (lambda.min-rule)
screen_cvmin.lasso(x, y)
screen_cvmin.lasso(x, y)
x |
Predictor matrix |
y |
Response vector |
Active-set
n.stadler
screen_cvmin.lasso(matrix(rnorm(5000),50,100),rnorm(50))
screen_cvmin.lasso(matrix(rnorm(5000),50,100),rnorm(50))
Cross-validated Lasso screening and sqrt-truncation.
screen_cvsqrt.lasso(x, y)
screen_cvsqrt.lasso(x, y)
x |
Predictor matrix. |
y |
Response vector. |
Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to zero, such that there are no more than sqrt(n) non-zero coefficients.
Active-set.
n.stadler
screen_cvsqrt.lasso(matrix(rnorm(5000),50,100),rnorm(50))
screen_cvsqrt.lasso(matrix(rnorm(5000),50,100),rnorm(50))
Cross-validated Lasso screening and additional truncation.
screen_cvtrunc.lasso(x, y, k.trunc = 5)
screen_cvtrunc.lasso(x, y, k.trunc = 5)
x |
Predictor matrix. |
y |
Response vector. |
k.trunc |
Truncation constant="number of samples per predictor" (default=5). |
Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to zero, such that there are no more than n/k.trunc non-zero coefficients.
Active-set.
n.stadler
screen_cvtrunc.lasso(matrix(rnorm(5000),50,100),rnorm(50))
screen_cvtrunc.lasso(matrix(rnorm(5000),50,100),rnorm(50))
Simulate from mixture model with multi-variate Gaussian or t-distributed components.
sim_mix(n, n.comp, mix.prob, Mu, Sig, dist = "norm", df = 2)
sim_mix(n, n.comp, mix.prob, Mu, Sig, dist = "norm", df = 2)
n |
sample size |
n.comp |
number of mixture components ("comps") |
mix.prob |
mixing probablities (need to sum to 1) |
Mu |
matrix of component-specific mean vectors |
Sig |
array of component-specific covariance matrices |
dist |
'norm' for Gaussian components, 't' for t-distributed components |
df |
degrees of freedom of the t-distribution (not used for Gaussian distribution), default=2 |
a list consisting of:
S |
component assignments |
X |
observed data matrix |
n.stadler
n.comp = 4 p = 5 # dimensionality Mu = matrix(rep(0, p), p, n.comp) Sigma = array(diag(p), c(p, p, n.comp)) mix.prob = rep(0.25, n.comp) sim_mix(100, n.comp, mix.prob, Mu, Sigma)
n.comp = 4 p = 5 # dimensionality Mu = matrix(rep(0, p), p, n.comp) Sigma = array(diag(p), c(p, p, n.comp)) mix.prob = rep(0.25, n.comp) sim_mix(100, n.comp, mix.prob, Mu, Sigma)
Generate inverse covariances, means, mixing probabilities, and simulate data from resulting mixture model.
sim_mix_networks(n, p, n.comp, sparsity = 0.7, mix.prob = rep(1/n.comp, n.comp), Mu = NULL, Sig = NULL, ...)
sim_mix_networks(n, p, n.comp, sparsity = 0.7, mix.prob = rep(1/n.comp, n.comp), Mu = NULL, Sig = NULL, ...)
n |
Number of data points to simulate. |
p |
Dimensionality of the data. |
n.comp |
Number of components of the mixture model. |
sparsity |
Determines the proportion of non-zero off-diagonal entries. |
mix.prob |
Mixture probabilities for the components; defaults to uniform distribution. |
Mu |
Means for the mixture components, a p by n.comp matrix. If NULL, sampled from a standard Gaussian. |
Sig |
Covariances for the mixture components, a p by p by n.comp
array. If NULL,
generated using |
... |
Further arguments passed to |
This function generates n.comp mean vectors from a standard Gaussian and
n.comp covariance matrices, with at most (1-sparsity)*p(p-1)/2
non-zero off-diagonal entries, where the non-zero entries are sampled from a
beta distribution. Then it uses sim_mix
to simulate from a
mixture model with these means and covariance matrices.
Means Mu and covariance matrices Sig can also be supplied by the user.
A list with components:
Mu
Means of the mixture components.
Sig
Covariances of the mixture components.
data
Simulated data, a n by p matrix.
S
Component assignments, a vector of length n.
# Generate dataset with 100 samples of dimensionality 30, and 4 components test.data = sim_mix_networks(n=100, p=30, n.comp=4)
# Generate dataset with 100 samples of dimensionality 30, and 4 components test.data = sim_mix_networks(n=100, p=30, n.comp=4)
Summary function for object of class 'diffnet'
## S3 method for class 'diffnet' summary(object, ...)
## S3 method for class 'diffnet' summary(object, ...)
object |
object of class 'diffnet' |
... |
Other arguments. |
aggregated p-values
nicolas
Summary function for object of class 'diffregr'
## S3 method for class 'diffregr' summary(object, ...)
## S3 method for class 'diffregr' summary(object, ...)
object |
object of class 'diffregr |
... |
Other arguments |
aggregated p-values
nicolas
Summary function for object of class 'ggmgsa'
## S3 method for class 'ggmgsa' summary(object, ...)
## S3 method for class 'ggmgsa' summary(object, ...)
object |
object of class 'ggmgsa' |
... |
Other arguments |
aggregated p-values
nicolas
Summary function for object of class 'nethetclustering'
## S3 method for class 'nethetclustering' summary(object, ...)
## S3 method for class 'nethetclustering' summary(object, ...)
object |
object of class 'nethetclustering' |
... |
Other arguments |
Network statistics (a 'nethetsummary' object)
frankd