Package 'multicrispr'

Title: Multi-locus multi-purpose Crispr/Cas design
Description: This package is for designing Crispr/Cas9 and Prime Editing experiments. It contains functions to (1) define and transform genomic targets, (2) find spacers (4) count offtarget (mis)matches, and (5) compute Doench2016/2014 targeting efficiency. Care has been taken for multicrispr to scale well towards large target sets, enabling the design of large Crispr/Cas9 libraries.
Authors: Aditya Bhagwat [aut, cre], Richie ´Cotton [aut], Rene Wiegandt [ctb], Mette Bentsen [ctb], Jens Preussner [ctb], Michael Lawrence [ctb], Hervé Pagès [ctb], Johannes Graumann [sad], Mario Looso [sad, rth]
Maintainer: Aditya Bhagwat <[email protected]>
License: GPL-2
Version: 1.17.1
Built: 2024-12-29 07:43:35 UTC
Source: https://github.com/bioc/multicrispr

Help Index


Add genome matches

Description

Add genome matches

Usage

add_genome_matches(
  spacers,
  bsgenome = getBSgenome(genome(spacers)[1]),
  mismatches = 2,
  pam = "NGG",
  offtargetmethod = c("bowtie", "pdict")[1],
  outdir = OUTDIR,
  indexedgenomesdir = INDEXEDGENOMESDIR,
  verbose = TRUE
)

Arguments

spacers

GRanges

bsgenome

BSgenome

mismatches

number

pam

string

offtargetmethod

'bowtie' or 'pdict'

outdir

bowtie output directory

indexedgenomesdir

directory with indexed genomes

verbose

TRUE (default) or FALSE

Value

GRanges

Examples

require(magrittr)
file <- system.file('extdata/SRF.bed', package='multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
targets0 <- bed_to_granges(file, 'mm10')
targets <- extend(targets0)
spacers <- find_spacers(targets, bsgenome, complement = FALSE, 
                        ontargetmethod = NULL, offtargetmethod = NULL)
spacers %<>% extract(1:100)
spacers %<>% add_genome_matches(bsgenome)

Add inverse strand

Description

Add inverse strand

Usage

add_inverse_strand(gr, verbose = FALSE, plot = FALSE, ...)

Arguments

gr

GRanges-class

verbose

TRUE or FALSE (default)

plot

TRUE or FALSE (default)

...

plot_intervals arguments

Value

GRanges-class

Examples

# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
    add_inverse_strand(gr, plot = TRUE)
# TFBS example
#-------------
    bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
    gr <- bed_to_granges(bedfile, genome = 'mm10')
    add_inverse_strand(gr)

Add sequence to GRanges

Description

Add sequence to GRanges

Usage

add_seq(gr, bsgenome, verbose = FALSE, as.character = TRUE)

Arguments

gr

GRanges-class

bsgenome

BSgenome-class

verbose

TRUE or FALSE (default)

as.character

TRUE (default) or FALSE

Value

GRanges-class

Examples

# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
   (gr %<>% add_seq(bsgenome))
   
# TFBS example
#-------------
    bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
    bedfile  <- system.file('extdata/SRF.bed', package='multicrispr')
    gr <- bed_to_granges(bedfile, 'mm10')
    (gr %<>% add_seq(bsgenome))

Add target matches

Description

Add target matches

Usage

add_target_matches(
  spacers,
  targets,
  bsgenome,
  mismatches = 2,
  pam = "NGG",
  outdir = OUTDIR,
  verbose = TRUE
)

Arguments

spacers

GRanges

targets

GRanges

bsgenome

BSgenome

mismatches

number

pam

string

outdir

bowtie output directory

verbose

TRUE (default) or FALSE

Value

GRanges

Examples

require(magrittr)
file <- system.file('extdata/SRF.bed', package='multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
targets0 <- bed_to_granges(file, 'mm10')
targets <- extend(targets0)
spacers <- find_spacers(targets, bsgenome, complement = FALSE, 
                        ontargetmethod = NULL, offtargetmethod = NULL)
spacers %<>% add_target_matches(targets, bsgenome)

Read bedfile into GRanges

Description

Read bedfile into GRanges

Usage

bed_to_granges(
  bedfile,
  genome,
  txdb = NULL,
  do_order = TRUE,
  plot = TRUE,
  verbose = TRUE
)

Arguments

bedfile

file path

genome

string: UCSC genome name (e.g. 'mm10')

txdb

NULL (default) or TxDb-class (used for gene annotation)

do_order

TRUE (default) or FALSE: order on seqnames and star?

plot

TRUE (default) or FALSE: plot karyogram?

verbose

TRUE (default) or FALSE

Value

GRanges-class

See Also

char_to_granges, genes_to_granges

Examples

bedfile  <- system.file('extdata/SRF.bed', package = 'multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
(gr <- bed_to_granges(bedfile, genome='mm10'))

Convert character vector into GRanges

Description

Convert character vector into GRanges

Usage

char_to_granges(x, bsgenome)

Arguments

x

character vector

bsgenome

BSgenome-class

Value

GRanges-class

See Also

bed_to_granges, genes_to_granges

Examples

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
x <- c(PRNP  = 'chr20:4699600:+',            # snp
       HBB  = 'chr11:5227002:-',            # snp
       HEXA = 'chr15:72346580-72346583:-',  # del
       CFTR = 'chr7:117559593-117559595:+') # ins
gr <- char_to_granges(x, bsgenome)
plot_intervals(gr, facet_var = c('targetname', 'seqnames'))

Double flank

Description

Double flank

Usage

double_flank(
  gr,
  upstart = -200,
  upend = -1,
  downstart = 1,
  downend = 200,
  strandaware = TRUE,
  plot = FALSE,
  linetype_var = "set",
  ...
)

Arguments

gr

GRanges-class

upstart

upstream flank start in relation to start(gr)

upend

upstream flank end in relation to start(gr)

downstart

downstream flank start in relation to end(gr)

downend

downstream flank end in relation to end(gr)

strandaware

TRUE (default) or FALSE

plot

TRUE or FALSE (default)

linetype_var

gr var mapped to linetype

...

passed to plot_intervals

Value

GRanges-class

Examples

# Prime Editing example
#----------------------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
    double_flank(gr, -10,  -1, +1, +20, plot = TRUE)
      
# TFBS example
#-------------
    bedfile  <- system.file('extdata/SRF.bed', package='multicrispr')
    gr  <-  bed_to_granges(bedfile, genome = 'mm10', plot = FALSE)
    double_flank(gr, plot = TRUE)

Extend ranges for prime editing

Description

Extend target ranges to span in which to look for spacer-pam seqs

Usage

extend_for_pe(
  gr,
  bsgenome,
  nrt = 16,
  spacer = strrep("N", 20),
  pam = "NGG",
  plot = FALSE
)

Arguments

gr

GRanges-class

bsgenome

BSgenome-class

nrt

number: reverse transcription length

spacer

string: spacer pattern in extended IUPAC alphabet

pam

string: pam pattern in extended IUPAC alphabet

plot

TRUE (default) or FALSE

Details

Extend target ranges to find nearby spacers for prime editing

Value

GRanges-class

Examples

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
gr <- char_to_granges(c( PRNP = 'chr20:4699600:+',             # snp
                         HBB  = 'chr11:5227002:-',             # snp
                         HEXA = 'chr15:72346580-72346583:-',   # del
                         CFTR = 'chr7:117559593-117559595:+'), # ins
                     bsgenome = bsgenome)
find_primespacers(gr, bsgenome)
(grext <- extend_for_pe(gr))
find_spacers(grext, bsgenome, complement = FALSE)

Extend prime editing target to find GG sites

Description

Extend prime editing target to find GG sites in accessible neighbourhood

Usage

extend_pe_to_gg(gr, nrt = 16, plot = FALSE)

Arguments

gr

target GRanges-class

nrt

n RT nucleotides (default 16, recommended 10-16)

plot

TRUE or FALSE (default)

Details

Extends each target range to the area in which to search for a prime editing GG duplet, as shown in the sketch below.

===============> —-GG———> —-GG———> ** <———GG— <———GG—- <===============

Value

GRanges-class

Examples

# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                           HBB  = 'chr11:5227002:-',              # snp
                           HEXA = 'chr15:72346580-72346583:-',    # del
                           CFTR = 'chr7:117559593-117559595:+'),  # ins
                          bsgenome)
    extend_pe_to_gg(gr, plot = TRUE)

Extract matching subranges

Description

Extract subranges that match pattern

Usage

extract_matchranges(gr, bsgenome, pattern, plot = FALSE)

Arguments

gr

GRanges-class

bsgenome

BSgenome{BSgenome-class}

pattern

string: search pattern in extended IUPAC alphabet

plot

TRUE or FALSE (default)

Value

GRanges-class

Examples

# PE example
#------------
require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                        HBB  = 'chr11:5227002:-',             # snp
                        HEXA = 'chr15:72346580-72346583:-',   # del
                        CFTR = 'chr7:117559593-117559595:+'), # ins
                      bsgenome)
gr %<>% extend_for_pe()
pattern <- strrep('N',20) %>% paste0('NGG')
extract_matchranges(gr, bsgenome, pattern, plot = TRUE)

# TFBS examples
#--------------
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile  <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, 'mm10') %>% extend()
extract_matchranges(gr, bsgenome, pattern = strrep('N',20) %>% paste0('NGG'))

Extract subranges

Description

Extract subranges from a GRanges-class object

Usage

extract_subranges(gr, ir, plot = FALSE)

Arguments

gr

GRanges-class

ir

IRanges-class: subranges to be extracted

plot

TRUE or FALSE (default)

Value

GRanges-class.

Examples

# Extract a subrange
gr <- GenomicRanges::GRanges(c(A = 'chr1:1-100:+', B = 'chr1:1-100:-'))
gr$targetname <- 'AB'
ir <- IRanges::IRanges(c(A = '1-10', A = '11-20', B = '1-10', B = '11-20'))
extract_subranges(gr, ir, plot = TRUE)

# Return empty GRanges for empty IRanges 
extract_subranges(GenomicRanges::GRanges('chr1:345-456'), IRanges::IRanges())

Find GG

Description

Find GG

Usage

find_gg(gr)

Arguments

gr

GRanges-class

Value

GRanges-class

Examples

# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',            # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
    gr %<>% extend_pe_to_gg(plot = TRUE) %>% add_seq(bsgenome) 
    find_gg(gr)

Find prime editing spacers

Description

Find prime editing spacers around target ranges

Usage

find_primespacers(
  gr,
  bsgenome,
  edits = get_plus_seq(bsgenome, gr),
  nprimer = 13,
  nrt = 16,
  ontargetmethod = c("Doench2014", "Doench2016")[1],
  offtargetmethod = c("bowtie", "pdict")[1],
  mismatches = 0,
  nickmatches = 2,
  indexedgenomesdir = INDEXEDGENOMESDIR,
  outdir = OUTDIR,
  verbose = TRUE,
  plot = TRUE,
  ...
)

Arguments

gr

GRanges-class

bsgenome

BSgenome-class

edits

character vector: desired edits on '+' strand. If named, names should be identical to those of gr

nprimer

n primer nucleotides (default 13, max 17)

nrt

n rev transcr nucleotides (default 16, recomm. 10-16)

ontargetmethod

'Doench2014' or 'Doench2016': on-target scoring method

offtargetmethod

'bowtie' or 'pdict'

mismatches

no of primespacer mismatches (default 0, to suppress offtarget analysis: -1)

nickmatches

no of nickspacer offtarget mismatches (default 2, to suppresses offtarget analysis: -1)

indexedgenomesdir

directory with indexed genomes (as created by index_genome)

outdir

directory whre offtarget analysis output is written

verbose

TRUE (default) or FALSE

plot

TRUE (default) or FALSE

...

passed to plot_intervals

Details

Below the architecture of a prime editing site. Edits can be performed anywhere in the revtranscript area.

spacer pam ——————–=== primer revtranscript ————-================ 1..............17....GG.......... .....................CC.......... ———-extension———-

Value

GRanges-class with prime editing spacer ranges and following mcols: * crisprspacer: N20 spacers * crisprpam: NGG PAMs * crisprprimer: primer (on PAM strand) * crisprtranscript: reverse transcript (on PAM strand) * crisprextension: 3' extension of gRNA contains: reverse transcription template + primer binding site sequence can be found on non-PAM strand * crisprextrange: genomic range of crispr extension * Doench2016|4: on-target efficiency scores * off0, off1, off2: number of offtargets with 0, 1, 2 mismatches * off: total number of offtargets: off = off0 + off1 + ... * nickrange: nickspacer range * nickspacer: nickspacer sequence * nickDoench2016|4: nickspacer Doench scores * nickoff: nickspacer offtarget counts

See Also

find_spacers to find standard crispr sites

Examples

# Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(
        PRNP = 'chr20:4699600:+',             # snp: prion disease
        HBB  = 'chr11:5227002:-',             # snp: sickle cell anemia
        HEXA = 'chr15:72346580-72346583:-',   # del: tay sachs disease
        CFTR = 'chr7:117559593-117559595:+'), # ins: cystic fibrosis
        bsgenome)
    spacers <- find_primespacers(gr, bsgenome)
    spacers <- find_spacers(extend_for_pe(gr), bsgenome, complement = FALSE)
    
# Edit PRNP locus for resistance against prion disease (Anzalone et al, 2019)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+'), bsgenome)
    find_primespacers(gr, bsgenome)
    find_primespacers(gr, bsgenome, edits = 'T')

Find crispr spacers in targetranges

Description

Find crispr spacers in targetranges

Usage

find_spacers(
  gr,
  bsgenome,
  spacer = strrep("N", 20),
  pam = "NGG",
  complement = TRUE,
  ontargetmethod = c("Doench2014", "Doench2016")[1],
  offtargetmethod = c("bowtie", "pdict")[1],
  offtargetfilterby = character(0),
  subtract_targets = FALSE,
  mismatches = 2,
  indexedgenomesdir = INDEXEDGENOMESDIR,
  outdir = OUTDIR,
  verbose = TRUE,
  plot = TRUE,
  ...
)

Arguments

gr

GRanges-class

bsgenome

BSgenome-class

spacer

string: spacer pattern in extended IUPAC alphabet

pam

string: pam pattern in extended IUPAC alphabet

complement

TRUE (default) or FALSE: also search in compl ranges?

ontargetmethod

'Doench2016','Doench2016' or NULL (no on-target score)

offtargetmethod

'bowtie', 'pdict', or NULL (no offtarget analysis)

offtargetfilterby

filter for best off-target counts by this variable

subtract_targets

TRUE or FALSE (default): whether to subtract target (mis)matches from offtarget counts

mismatches

0-3: allowed mismatches in offtargetanalysis (choose mismatch=-1 to suppress offtarget analysis)

indexedgenomesdir

directory with Bowtie-indexed genomes (as produced with index_genome)

outdir

directory where bowtie analysis results are written to

verbose

TRUE (default) or FALSE

plot

TRUE (default) or FALSE

...

passed to plot_intervals

Value

GRanges-class

See Also

find_primespacers to find prime editing spacers

Examples

# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
    plot_intervals(gr)
    find_primespacers(gr, bsgenome)
    find_spacers(extend_for_pe(gr), bsgenome, complement=FALSE, mismatches=0)
          # complement = FALSE because extend_for_pe  already 
          # adds  reverse complements and does so in a strand-specific 
          # manner
    
# TFBS example
#-------------
    bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
    bedfile  <- system.file('extdata/SRF.bed', package='multicrispr')
    gr <- bed_to_granges(bedfile, 'mm10') %>% extend()
    gr %<>% extract(1:100)
    find_spacers(gr, bsgenome, subtract_targets = TRUE)

Convert geneids into GRanges

Description

Convert geneids into GRanges

Usage

genes_to_granges(geneids, txdb, complement = TRUE, plot = TRUE, verbose = TRUE)

genefile_to_granges(file, txdb, complement = TRUE, plot = TRUE)

Arguments

geneids

Gene identifier vector

txdb

TxDb-class or EnsDb-class

complement

TRUE (default) or FALSE: add complementary strand?

plot

TRUE (default) or FALSE

verbose

TRUE (default) or FALSE

file

Gene identifier file (one per row)

Value

GRanges-class

See Also

char_to_granges, bed_to_granges

Examples

# Entrez
#-------
    genefile <- system.file('extdata/SRF.entrez', package='multicrispr')
    geneids  <- as.character(read.table(genefile)[[1]])
    txdb     <- getFromNamespace('TxDb.Mmusculus.UCSC.mm10.knownGene',
                             'TxDb.Mmusculus.UCSC.mm10.knownGene')
    (gr <- genes_to_granges(geneids, txdb))
    (gr <- genefile_to_granges(genefile, txdb))

# Ensembl
#--------
    # txdb <- AnnotationHub::AnnotationHub()[["AH75036"]]
    # genefile <- system.file('extdata/SRF.ensembl', package='multicrispr')
    # geneids <- as.character(read.table(genefile)[[1]])
    # (gr <- genes_to_granges(geneids, txdb))
    # (gr <- genefile_to_granges(genefile, txdb))

GRanges <-> data.table

Description

GRanges <-> data.table

Usage

gr2dt(gr)

dt2gr(dt, seqinfo)

Arguments

gr

GRanges-class

dt

data.table

seqinfo

Seqinfo-class

Value

data.table (gr2dt) or GRanges (dt2gr)

Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                            HBB  = 'chr11:5227002:-',             # snp
                            HEXA = 'chr15:72346580-72346583:-',   # del
                            CFTR = 'chr7:117559593-117559595:+'), # ins
                          bsgenome)
(dt <- gr2dt(gr))
(gr <- dt2gr(dt, BSgenome::seqinfo(bsgenome)))

Has been indexed?

Description

Has been indexed?

Usage

has_been_indexed(bsgenome, indexedgenomesdir = INDEXEDGENOMESDIR)

Arguments

bsgenome

BSgenome

indexedgenomesdir

directory with indexed genomes

Value

TRUE or FALSE

Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
has_been_indexed(bsgenome)

Index genome

Description

Bowtie index genome

Usage

index_genome(
  bsgenome,
  indexedgenomesdir = INDEXEDGENOMESDIR,
  download = TRUE,
  overwrite = FALSE
)

Arguments

bsgenome

BSgenome-class

indexedgenomesdir

string: directory with bowtie-indexed genome

download

TRUE (default) or FALSE: whether to download pre-indexed version if available

overwrite

TRUE or FALSE (default)

Details

Checks whether already available locally. If not, checks whether indexed version can be downloaded from our s3 storage. If not, builds the index with bowtie. This can take a few hours, but is a one-time operation.

Value

invisible(genomdir)

Examples

bsgenome <- BSgenome.Scerevisiae.UCSC.sacCer1::Scerevisiae
index_genome(bsgenome, indexedgenomesdir = tempdir())

Index targets

Description

Bowtie index targets

Usage

index_targets(
  targets,
  bsgenome = getBSgenome(genome(targets)[1]),
  outdir = OUTDIR,
  verbose = TRUE
)

Arguments

targets

GRanges-class

bsgenome

BSgenome-class

outdir

string: output directory

verbose

TRUE (default) or FALSE

Value

invisible(targetdir)

Examples

require(magrittr)
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile  <- system.file('extdata/SRF.bed', package = 'multicrispr')
targets <- extend(bed_to_granges(bedfile, genome = 'mm10'))
index_targets(targets, bsgenome)

Interval plot GRanges

Description

Interval plot GRanges

Usage

plot_intervals(
  gr,
  xref = "targetname",
  y = default_y(gr),
  nperchrom = 2,
  nchrom = 4,
  color_var = "targetname",
  facet_var = "seqnames",
  linetype_var = default_linetype(gr),
  size_var = default_size_var(gr),
  alpha_var = default_alpha_var(gr),
  title = NULL,
  scales = "free"
)

Arguments

gr

GRanges-class

xref

gr var used for scaling x axis

y

'names' (default) or name of gr variable

nperchrom

number (default 1): n head (and n tail) targets shown per chromosome

nchrom

number (default 6) of chromosomes shown

color_var

'seqnames' (default) or other gr variable

facet_var

NULL(default) or gr variable mapped to facet

linetype_var

NULL (default) or gr variable mapped to linetype

size_var

NULL (default) or gr variable mapped to size

alpha_var

NULL or gr variable mapped to alpha

title

NULL or string: plot title

scales

'free', 'fixed', etc

Value

ggplot object

See Also

plot_karyogram

Examples

# SRF sites
    require(magrittr)
    bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
    bedfile <-  system.file('extdata/SRF.bed',  package = 'multicrispr')
    targets   <- bed_to_granges(bedfile, 'mm10', plot = FALSE)
    plot_intervals(targets)
    
# PE targets
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',
                            HBB  = 'chr11:5227002:-',
                            HEXA = 'chr15:72346580-72346583:-',
                            CFTR = 'chr7:117559593-117559595:+'), 
                          bsgenome)
    spacers <- find_primespacers(gr, bsgenome, plot = FALSE)
    plot_intervals(gr)
    plot_intervals(extend_for_pe(gr))
    plot_intervals(spacers)
    
# Empty gr
    plot_intervals(GenomicRanges::GRanges())

Karyo/Interval Plot GRanges(List)

Description

Karyo/Interval Plot GRanges(List)

Usage

plot_karyogram(grlist, title = unique(genome(grlist)))

Arguments

grlist

GRanges-class

title

plot title

Value

list

See Also

plot_intervals

Examples

# Plot GRanges
    bedfile <-  system.file('extdata/SRF.bed',  package = 'multicrispr')
    gr <- bed_to_granges(bedfile, 'mm10', plot = FALSE)
    plot_karyogram(gr)
  
# Plot GRangesList
    flanks  <- up_flank(gr, stranded=FALSE)
    grlist <- GenomicRanges::GRangesList(sites = gr, flanks = flanks)
    plot_karyogram(grlist)

Add on-target efficiency scores

Description

Add Doench2014 or Doench2016 on-target efficiency scores

Usage

score_ontargets(
  spacers,
  bsgenome,
  ontargetmethod = c("Doench2014", "Doench2016")[1],
  chunksize = 10000,
  verbose = TRUE,
  plot = TRUE,
  ...
)

Arguments

spacers

GRanges-class: spacers

bsgenome

BSgenome-class

ontargetmethod

'Doench2014' (default) or 'Doench2016' (requires non-NULL argument python, virtualenv, or condaenv)

chunksize

Doench2016 is executed in chunks of chunksize

verbose

TRUE (default) or FALSE

plot

TRUE (default) or FALSE

...

passed to plot_intervals

Details

add_ontargets adds efficiency scores filter_ontargets adds efficiency scores and filters on them

Value

numeric vector

References

Doench 2014, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, doi: 10.1038/nbt.3026

Doench 2016, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, doi: 10.1038/nbt.3437

Python module azimuth: github/MicrosoftResearch/azimuth

Examples

# Install azimuth 
#----------------
    ## With reticulate
    # require(reticulate)
    # conda_create('azienv', c('python=2.7'))
    # use_condaenv('azienv')
    # py_install(c('azimuth', 'scikit-learn==0.17.1', 'biopython=='1.76'), 
    #            'azienv', pip = TRUE)
    
    ## Directly
    # conda create --name azienv python=2.7
    # conda activate azienv
    # pip install scikit-learn==0.17.1
    # pip install biopython==1.76
    # pip install azimuth
    
# PE example
#-----------
    require(magrittr)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    targets <- char_to_granges(c(PRNP = 'chr20:4699600:+',             # snp
                                 HBB  = 'chr11:5227002:-',             # snp
                                 HEXA = 'chr15:72346580-72346583:-',   # del
                                 CFTR = 'chr7:117559593-117559595:+'), # ins
                               bsgenome)
    spacers <- find_primespacers(targets, bsgenome, ontargetmethod=NULL, 
                                offtargetmethod=NULL)
    spacers %<>% score_ontargets(bsgenome, 'Doench2014')
    # reticulate::use_condaenv('azienv')
    # reticulate::import('azimuth')
    # spacers %<>% score_ontargets(bsgenome, 'Doench2016')
    
# TFBS example
#-------------
    bedfile  <- system.file('extdata/SRF.bed', package = 'multicrispr')
    bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
    targets <- extend(bed_to_granges(bedfile, 'mm10'))
    spacers <- find_spacers(targets, bsgenome, ontargetmethod=NULL, 
                            offtargetmethod=NULL)
    spacers %<>% score_ontargets(bsgenome, 'Doench2014')
    # reticulate::use_condaenv('azienv')
    # reticulate::import('azimuth')
    # spacers %>%  score_ontargets(bsgenome, 'Doench2016')

Extend or Flank GRanges

Description

Returns extensions, upstream flanks, or downstream flanks

Usage

up_flank(
  gr,
  start = -200,
  end = -1,
  strandaware = TRUE,
  bsgenome = NULL,
  verbose = FALSE,
  plot = FALSE,
  linetype_var = "set",
  ...
)

down_flank(
  gr,
  start = 1,
  end = 200,
  strandaware = TRUE,
  bsgenome = NULL,
  verbose = FALSE,
  plot = FALSE,
  linetype_var = "set",
  ...
)

extend(
  gr,
  start = -22,
  end = 22,
  strandaware = TRUE,
  bsgenome = NULL,
  verbose = FALSE,
  plot = FALSE,
  linetype_var = "set",
  ...
)

Arguments

gr

GRanges-class

start

number or vector (same length as gr): start definition, relative to gr start (up_flank, extend) or gr end (down_flank).

end

number or vector (same length as gr): end definition, relative to gr start (up_flank) or gr end (extend, down_flank).

strandaware

TRUE (default) or FALSE: consider strand information?

bsgenome

NULL (default) or BSgenome-class. Required to update gr$seq if present.

verbose

TRUE or FALSE (default)

plot

TRUE or FALSE (default)

linetype_var

string: gr var mapped to linetype

...

passed to plot_intervals

Details

up_flank returns upstream flanks, in relation to start(gr). down_flank returns downstream flanks, in relation to end(gr). extend returns extensions, in relation to start(gr) and end(gr)

Value

a GRanges-class

Examples

# PE example
#-----------
require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
gr <- char_to_granges(c(PRNP  = 'chr20:4699600:+',         # snp
                         HBB  = 'chr11:5227002:-',            # snp
                         HEXA = 'chr15:72346580-72346583:-',  # del
                         CFTR = 'chr7:117559593-117559595:+'),# ins
                      bsgenome = bsgenome)
gr %>% up_flank( -22,  -1, plot=TRUE)
gr %>% up_flank( c(-10,-20,-30,-40),  -1, plot=TRUE)
gr %>% up_flank( -22,  -1, plot=TRUE, strandaware=FALSE)

gr %>% down_flank(+1, +22, plot=TRUE)
gr %>% down_flank(+1, c(10, 20, 30, 40), plot=TRUE)
gr %>% down_flank(+1, +22, plot=TRUE, strandaware=FALSE)

gr %>% extend(   -10, +20, plot=TRUE)
gr %>% extend(   -10, +20, plot=TRUE, strandaware=FALSE)

# TFBS example
#-------------
    bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
    gr <- bed_to_granges(bedfile, genome = 'mm10')
    gr %>% extend(plot = TRUE)
    gr %>% up_flank(plot = TRUE)
    gr %>% down_flank(plot = TRUE)

Write GRanges to file

Description

Write GRanges to file

Usage

write_ranges(gr, file, verbose = TRUE)

read_ranges(file, bsgenome)

Arguments

gr

GRanges-class

file

file

verbose

TRUE (default) or FALSE

bsgenome

BSgenome-class

Value

GRanges-class for read_ranges

Examples

# Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
    bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38  
    gr <- char_to_granges(c(
        PRNP = 'chr20:4699600:+',             # snp: prion disease
        HBB  = 'chr11:5227002:-',             # snp: sickle cell anemia
        HEXA = 'chr15:72346580-72346583:-',   # del: tay sachs disease
        CFTR = 'chr7:117559593-117559595:+'), # ins: cystic fibrosis
        bsgenome)
    file <- file.path(tempdir(), 'gr.txt')
    write_ranges(gr, file)
    read_ranges(file, bsgenome)