Package 'microbiomeExplorer'

Title: Microbiome Exploration App
Description: The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
Authors: Joseph Paulson [aut], Janina Reeder [aut, cre], Mo Huang [aut], Genentech [cph, fnd]
Maintainer: Janina Reeder <[email protected]>
License: MIT + file LICENSE
Version: 1.17.0
Built: 2024-12-29 06:24:01 UTC
Source: https://github.com/bioc/microbiomeExplorer

Help Index


Abundance Heatmap module - server

Description

Abundance Heatmap module - server

Usage

abundanceHeatmap(
  input,
  output,
  session,
  aggDat,
  featLevel,
  colorOptions,
  levelOpts,
  hmSort,
  hmFeatList,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

colorOptions

reactive storing filters selected via data input

levelOpts

all available level choices for this dataset

hmSort

reactive storing sorting method for heatmap

hmFeatList

reactive storing list of features to include in heatmap

reset

boolean reactive which resets the module if TRUE

Value

R code needed to generate the heatmap

Author(s)

Janina Reeder


Abundance Heatmap module - UI

Description

Abundance Heatmap module - UI

Usage

abundanceHeatmapUI(id)

Arguments

id

namespace identifier

Value

box holding the UI code

Author(s)

Janina Reeder


Adds a config call based on plotly::config

Description

Adds a config call based on plotly::config

Usage

add_plotly_config(.data)

Arguments

.data

plotly data object to apply the config call to

Value

plotly::config call


Adds a layout call based on plotly::layout

Description

Adds a layout call based on plotly::layout

Usage

add_plotly_layout(.data, plotTitle, xaxis_text, ylab)

Arguments

.data

plotly data object to apply the layout call to

plotTitle

plot title to use

xaxis_text

x axis label to use

ylab

y axis label to use

Value

plotly::layout call


Add feature data to MRobj.

Description

This function adds feature data to the featureData slot in an MRexperiment object.

Usage

addFeatData(MRobj, featdata = NULL)

Arguments

MRobj

An MRexperiment object.

featdata

Feature data frame or file path.

Value

An updated MRexperiment object.


Add phenotype data to object.

Description

This function adds phenotype data to the phenoData slot in an MRexperiment object.

Usage

addPhenoData(MRobj, phenodata = NULL)

Arguments

MRobj

An MRexperiment object.

phenodata

Phenotype data frame or file path.

Value

An updated MRexperiment object.


Aggregates counts by level

Description

This function aggregates counts by a level specified in the featureData slot of the MRexperiment object.

Usage

aggFeatures(MRobj, level = NULL, sort = TRUE)

Arguments

MRobj

An MRexperiment object.

level

Level to aggregate over. If NULL, no aggregation occurs.

sort

boolean determining if resulting aggregated MRexperiment should be sorted based on rowSums; default is TRUE

Value

Aggregated MRexperiment object or matrix depending on out.

Examples

data("mouseData", package = "metagenomeSeq")
aggFeatures(mouseData, level = "genus")

Aggregation module server function

Description

Aggregation module server function

Usage

aggregationTab(
  input,
  output,
  session,
  resetInput,
  levelOpts,
  chosenLevel,
  meData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

resetInput

boolean updated to TRUE if new data is available

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from different instance)

meData

the main MRexperiment object

Value

reactive list holding aggregated object, aggregation code and boolean on normalization

Author(s)

Janina Reeder


Aggregation module ui function

Description

Aggregation module ui function

Usage

aggregationTabUI(id)

Arguments

id

namespace identifier

Value

box holding aggregation input elements

Author(s)

Janina Reeder

Examples

aggregationTabUI("atu_id")

Alpha Diversity module - server

Description

Alpha Diversity module - server

Usage

alphaDiversity(
  input,
  output,
  session,
  aggDat,
  featLevel,
  intraSettings,
  colorOptions,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

intraSettings

analysis settings as passed over from analysis input module

colorOptions

phenotype selections: used for color choices

reset

boolean reactive which resets the module if TRUE

Value

R code used to make the alpha diversity plot

Author(s)

Janina Reeder


Alpha Diversity module - UI

Description

Alpha Diversity module - UI

Usage

alphaDiversityUI(id)

Arguments

id

namespace identifier

Value

box holding the UI code

Author(s)

Janina Reeder


Relative abundance plot module - server

Description

Relative abundance plot module - server

Usage

avgAbundance(
  input,
  output,
  session,
  aggDat,
  featLevel,
  featureSettings,
  normalizedData,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

featureSettings

analysis input settings passed over to this module

normalizedData

boolean indicating whether data has been normalized

reset

boolean reactive which resets the module if TRUE

Value

list storing plot clicks and number of features displayed (passed to feature plot module) as well as the R code to make plot


Relative abundance plot module - UI

Description

Relative abundance plot module - UI

Usage

avgAbundanceUI(id)

Arguments

id

namespace identifier

Value

box containing the ui code

Author(s)

Janina Reeder


Beta Diversity module - server

Description

Beta Diversity module - server

Usage

betaDiversity(
  input,
  output,
  session,
  aggDat,
  aggLevel,
  colorOptions,
  shapeOptions,
  betadistance,
  betaSettings,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

MRExperiment storing data

aggLevel

aggregation level

colorOptions

phenotype selection options for color

shapeOptions

phenotype selection options for shape

betadistance

distance measured used for beta diversity analysis

betaSettings

input choices for beta diversity

reset

boolean reactive which resets the module if TRUE

Value

R code needed to generate the beta diversity plot

Author(s)

Janina Reeder


Beta Diversity module - UI

Description

Beta Diversity module - UI

Usage

betaDiversityUI(id)

Arguments

id

namespace identifier

Value

box holding the ui code

Author(s)

Janina Reeder


Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

betaInput(input, output, session, meData, adonisOptions, reset)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment object storing all data

adonisOptions

phenodata colums ready for adonis analysis

reset

reactive boolean determining if all inputs should be reset

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main beta analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description

Main beta analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage

betaInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


Creates an empty plotly plot using the given labels on the x and y axis

Description

Creates an empty plotly plot using the given labels on the x and y axis

Usage

buildEmptyPlotlyPlot(xaxis_text, ylab)

Arguments

xaxis_text

x axis label

ylab

y axis label

Value

call to plotly_empty


Sets up a dataframe used by several plotting functions by joining the required data with relevant phenotype data

Description

Sets up a dataframe used by several plotting functions by joining the required data with relevant phenotype data

Usage

buildPlottingDF(
  df,
  phenoTable,
  x_var = NULL,
  facet1 = NULL,
  facet2 = NULL,
  col_by = NULL,
  col_name = col_by,
  id_var = NULL
)

Arguments

df

dataframe storing plotting data values

phenoTable

pData of the MRexperiment; all following parameters must be a column of the phenoTable

x_var

main plotting variable

facet1

column-based faceting (can be NULL)

facet2

row-based faceting (can be NULL)

col_by

coloring factor (can be NULL)

col_name

character to be used as name for col_by

id_var

variable used to connect samples longitudinally (can be NULL)

Value

dataframe obtained by joining df and relevant columns of phenoTable


Function to compute the PCAs for a given distance matrix

Description

Function to compute the PCAs for a given distance matrix

Usage

calculatePCAs(distmat, pcas)

Arguments

distmat

the distance matrix

pcas

2-element vector of PCAs to include in results

Value

the x slot limited to pcas after calling stats::prcomp on distmat

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
distmat <- computeDistMat(aggdat, dist_method = "bray")
calculatePCAs(distmat, c(1,2))

Helper function to calculate the confidence interval for a cor.test

Description

Helper function to calculate the confidence interval for a cor.test

Usage

computeCI_Interval(num, mS, method)

Arguments

num

number of samples

mS

results of cor.test

method

statistical method used for cor.test

Value

named vector holding lower and upper thresholds


Function to compute the distance matrix using vegdist from the vegan package

Description

Function to compute the distance matrix using vegdist from the vegan package

Usage

computeDistMat(aggdat, dist_method, log = TRUE, nfeatures = nrow(aggmat))

Arguments

aggdat

aggregated MRExperiment

dist_method

distance method from vegan package (See ?vegan::vegdist for details)

log

transform count matrix to log2; default is TRUE

nfeatures

number of features to use; default is all

Value

distance as dist

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
computeDistMat(aggdat, dist_method = "bray")

corr Analysis Module - server

Description

corr Analysis Module - server

Usage

corrAnalysis(
  input,
  output,
  session,
  data,
  levelOpts,
  chosenLevel,
  resetInput,
  aggData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from different instance)

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

Value

reactive holding code to be used in reports


corr Analysis Module - UI

Description

corr Analysis Module - UI

Usage

corrAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

corrAnalysisUI("coranalysis_id")

Scatterplot of two features

Description

This function plots a scatterplot of two features along with sample correlation statistics.

Usage

corrFeature(
  aggdat,
  feat1,
  feat2,
  log = TRUE,
  method = c("spearman", "pearson", "kendall"),
  addRegression = TRUE,
  col_by = NULL,
  facet1 = NULL,
  facet2 = NULL,
  plotTitle = "",
  xlab = NULL,
  ylab = NULL,
  allowWebGL = TRUE,
  pwidth = 550,
  pheight = 200
)

Arguments

aggdat

aggregated MRExperiment

feat1

Feature 1.

feat2

Feature 2.

log

Log2 transform data. Default is TRUE.

method

Correlation coefficient. One of "spearman" (default), "pearson", or "kendall".

addRegression

boolean parameter indicating whether linear regression line should be drawn; default: TRUE

col_by

Phenotype for coloring.

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2.

plotTitle

Plot title. Default is no title.

xlab

X-axis label. Default is feat1.

ylab

Y-axis label. Default is feat2.

allowWebGL

boolean indicating if WebGL should be used for large data

pwidth

overall plot width; default is 550

pheight

overall plot height; default is 200

Value

list holding plotly plot and lm fit

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
corrFeature(aggdat, feat1 = "Bacteroides", feat2 = "Prevotella")

Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

corrInput(
  input,
  output,
  session,
  type,
  meData,
  facetOptions = NULL,
  reset,
  aggDat = reactive(NULL)
)

Arguments

input

shiny input

output

shiny output

session

shiny session

type

of the correlation (feature vs phenotype)

meData

MRExperiment object storing all data

facetOptions

named vector of available facet choices

reset

reactive boolean determining if all inputs should be reset

aggDat

aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main correlation analysis input module. Handles correlation analysis tab in the app

Description

Main correlation analysis input module. Handles correlation analysis tab in the app

Usage

corrInputUI(id, type)

Arguments

id

element identifier - namespace

type

determines if 'feature' or 'pheno' correlation

Value

box containing ui element

Author(s)

Janina Reeder


Scatterplot of a feature and a phenotype

Description

This function plots a scatterplot of a feature and a phenotype along with sample correlation statistics.

Usage

corrPhenotype(
  aggdat,
  feature,
  phenotype,
  log = TRUE,
  method = c("spearman", "pearson", "kendall"),
  addRegression = TRUE,
  col_by = NULL,
  facet1 = NULL,
  facet2 = NULL,
  plotTitle = "",
  xlab = NULL,
  ylab = NULL,
  allowWebGL = TRUE,
  pwidth = 550,
  pheight = 200
)

Arguments

aggdat

aggregated MRExperiment

feature

Feature input.

phenotype

Phenotype input (must be numeric)

log

Log2 transform data. Default is TRUE.

method

Correlation coefficient. One of "spearman" (default), "pearson", or "kendall".

addRegression

boolean parameter indicating whether linear regression line should be drawn; default: TRUE

col_by

Phenotype for coloring.

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2. (WIP/TODO)

plotTitle

Plot title. Default is no title.

xlab

X-axis label. Default is feat1.

ylab

Y-axis label. Default is feat2.

allowWebGL

boolean indicating if WebGL should be used for large data

pwidth

overall plot width; default is 550

pheight

overall plot height; default is 200

Value

list holding plotly plot and lm fit

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
corrPhenotype(aggdat, feature = "Bacteroides", phenotype = "relativeTime")

Makes header for R script

Description

This function makes the header for the report R script to be rendered by knitr into Rmarkdown and rendered into HTML, PDF, or Word.

Usage

createHeader(
  title = "MicrobiomeExplorer Report",
  author = "",
  date = "",
  data.source = "",
  output = getOption("me.reportformat"),
  toc = TRUE
)

Arguments

title

Title of the report.

author

Author of the report.

date

Date of the report.

data.source

R code used to obtain the dataset

output

Output of Rmarkdown file.

toc

Table of contents. Default is TRUE.

Details

This was adapted from https://yihui.name/knitr/demo/stitch/

Value

A character vector where each element is a line in the R script.


Main Data input server where the user selects files to upload to the app or connects to database

Description

Main Data input server where the user selects files to upload to the app or connects to database

Usage

dataInput(
  input,
  output,
  session,
  dataSource,
  dataFilterRep,
  qcRep,
  addPheno,
  resetReports
)

Arguments

input

module input

output

module output

session

app session

dataSource

reactive Value storing commands for loading data

dataFilterRep

reactive Value storing commands for filtering data

qcRep

reactive Value storing commands for producing qc plots

addPheno

reactive boolean keeping track of phenodata changes

resetReports

reactive boolean indicating whether reports need to be reset

Value

list of reactives containing the uploaded and filtered data as well as the filterChoices on phenotypes

Author(s)

Janina Reeder


Main Data input UI where the user selects files to upload to the app or connects to database

Description

Main Data input UI where the user selects files to upload to the app or connects to database

Usage

dataInputUI(id)

Arguments

id

module identifier

Value

fluidRow holding UI interface

Author(s)

Janina Reeder

Examples

dataInputUI("datainput_id")

Produce design matrix of pairwise comparisons

Description

This function takes in the levels of a factor phenotype and outputs a design matrix of all pairwise comparisons.

Usage

designPairs(levels)

Arguments

levels

Character vector of the levels of a factor phenotype

Value

A model matrix


diff Analysis Module - server

Description

diff Analysis Module - server

Usage

diffAnalysis(
  input,
  output,
  session,
  data,
  levelOpts,
  chosenLevel,
  resetInput,
  aggData,
  normalizedData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from different instance)

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

normalizedData

boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder


Diff Analysis Module - UI

Description

Diff Analysis Module - UI

Usage

diffAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

diffAnalysisUI("diffanalysis_id")

Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

diffInput(input, output, session, meData, facetOptions = NULL, reset)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment object storing all data

facetOptions

named vector of available facet choices

reset

reactive boolean determining if all inputs should be reset

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Description

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Usage

diffInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


Differential analysis module server code

Description

Differential analysis module server code

Usage

diffTable(
  input,
  output,
  session,
  aggDat,
  featLevel,
  diffSettings,
  reset,
  normalized
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

diffSettings

reactive storing values selected in analysis input interface

reset

boolean reactive which resets the module if TRUE

normalized

boolean reactive indicating if data has been normalized

Value

list containing R code for analysis and for feature plots

Author(s)

Janina Reeder


Differential Analysis module UI

Description

Differential Analysis module UI

Usage

diffTableUI(id)

Arguments

id

namespace identifier

Value

row containing the UI elements

Author(s)

Janina Reeder


Extends existing phenodata for an object

Description

This function adds phenotype data to the phenoData slot in an MRexperiment object.

Usage

extendPhenoData(MRobj, phenodata = NULL)

Arguments

MRobj

An MRexperiment object.

phenodata

Phenotype data frame or file path.

Value

An updated MRexperiment object.


Feature plot module - server

Description

Feature plot module - server

Usage

featAbundance(
  input,
  output,
  session,
  aggDat,
  featLevel,
  intraSettings,
  selectedFeat,
  featName,
  numOfFeats,
  ylabMode,
  normalizedData,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

intraSettings

analysis settings passed over from analysis input module

selectedFeat

feature selected via drop down element of analysis input

featName

plotly click event passed via relative abundance

numOfFeats

number of features shown in relative abundance plot (affects plotly click data)

ylabMode

character indication if raw \"Reads\" or \"Percentage\" should be shown

normalizedData

boolean indicating whether data has been normalized

reset

boolean reactive which resets the module if TRUE

Value

R code needed to build the feature plot

Author(s)

Janina Reeder


Feature plot module - UI

Description

Feature plot module - UI

Usage

featAbundanceUI(id)

Arguments

id

namespace identifier

Value

box holding the UI code


feature Analysis Module - server

Description

feature Analysis Module - server

Usage

featureAnalysis(
  input,
  output,
  session,
  data,
  resetInput,
  aggData,
  normalizedData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

normalizedData

boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder


feature Analysis Module - UI

Description

feature Analysis Module - UI

Usage

featureAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

featureAnalysisUI("featureanalysis_id")

Feature correlation analysis server module

Description

Feature correlation analysis server module

Usage

featureCorr(
  input,
  output,
  session,
  aggDat,
  colorOptions,
  corFeatBase,
  corFeat2,
  corFacet1,
  corFacet2,
  corMethod,
  reset
)

Arguments

input

module input

output

module output

session

app session

aggDat

aggregated MRExperiment

colorOptions

reactive storing filters available via data input

corFeatBase

first correlation feature

corFeat2

second correlation feature

corFacet1

first correlation facet

corFacet2

second correlation facet

corMethod

correlation method to use

reset

boolean reactive which resets the module if TRUE

Value

R code used to do the correlation analysis (character)

Author(s)

Janina Reeder


Feature correlation analysis module UI

Description

Feature correlation analysis module UI

Usage

featureCorrUI(id)

Arguments

id

namespace identifier

Value

box containing the UI elements

Author(s)

Janina Reeder


Server side for the feature analysis input module

Description

Server side for the feature analysis input module

Usage

featureInput(
  input,
  output,
  session,
  meData,
  facetOptions = NULL,
  reset,
  aggDat = reactive(NULL)
)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment object storing all data

facetOptions

named vector of available facet choices

reset

reactive boolean determining if all inputs should be reset

aggDat

aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main feature analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description

Main feature analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage

featureInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


Feature table module server code

Description

Feature table module server code

Usage

featureTable(input, output, session, meData, featureModRep)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment storing the data

featureModRep

reactiveValue storing modifications performed on fData

Value

feature table server fragment - no return value

Author(s)

Janina Reeder


Feature table UI module

Description

Feature table UI module

Usage

featureTableUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the UI code for feature tables

Author(s)

Janina Reeder

Examples

featureTableUI("feature_id")

Module handling file upload for the application: server

Description

Module handling file upload for the application: server

Usage

fileUpload(
  input,
  output,
  session,
  meData,
  meName,
  initializeData,
  addPheno,
  dataSource,
  resetFile = reactive(NULL)
)

Arguments

input

module input

output

module output

session

app session

meData

main reactive storing the MRexperiment data

meName

main reactive storing the filename uploaded

initializeData

reactiveVal keeping track of new uploads to reset data

addPheno

reactiveVal keeping track of phenodata changes

dataSource

reactive Value storing commands for loading data

resetFile

indicating if module should be reset

Value

boolean denoting successful upload of a file

Author(s)

Janina Reeder


Module handling file upload for the application: UI In a deployed version this module should be replaced with database access

Description

Module handling file upload for the application: UI In a deployed version this module should be replaced with database access

Usage

fileUploadUI(id)

Arguments

id

module identifier

Value

div holding ui elements

Author(s)

Janina Reeder


Function to filter the MRexperiment by certain phenotype values

Description

Function to filter the MRexperiment by certain phenotype values

Usage

filterByPheno(MRobj, rm_phenovalues)

Arguments

MRobj

the MRexperiment to subset

rm_phenovalues

list of named vectors with names corresponding to column names in pData and values representing phenotypes within the column

Value

the filtered MRobj

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
filterByPheno(MRobj = mouseData, 
  rm_phenovalues = list("diet" = c("BK"),"mouseID" = c("PM1","PM10")))

Function to filter the MRexperiment data by numerical parameters

Description

Function to filter the MRexperiment data by numerical parameters

Usage

filterMEData(MRobj, minpresence = 1, minfeats = 2, minreads = 2)

Arguments

MRobj

MRExperiment object to filter

minpresence

minimum sample presence per feature

minfeats

minimum number of features per sample

minreads

minimum number of reads per sample

Value

the filtered MRobj

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
filterMEData(MRobj = mouseData, minpresence = 4, minfeats = 300)

Generates report

Description

This function generates the pieces of the report, which includes the R script, Rmarkdown file, and any Rmarkdown outputs.

Usage

generateReport(
  rcode,
  filename = "report",
  dir = "out",
  title = "MicrobiomeExplorer Report",
  author = "",
  date = "`r format(Sys.time(), '%d %B, %Y')`",
  data.source = "",
  output = c("html_document"),
  toc = TRUE,
  intro_text = NULL
)

Arguments

rcode

A named list where each element corresponds to a different analysis (Alpha diversity, Beta diversity). The name of the list is used to denote the first part of the code chunks in each analysis section (alpha, beta). Each element is itself a list of R commands corresponding to a code chunk.

filename

Name of output files. Default is "report".

dir

Directory of output. Default is "out".

title

Title of the report.

author

Author of the report.

date

Date of the report.

data.source

R code used to obtain the dataset

output

Output of Rmarkdown file. Options defined in global.R

toc

Table of contents. Default is TRUE.

intro_text

Introductory text to include with the report (optional)

Details

Adapted from https://yihui.name/knitr/demo/stitch/

Value

A character vector where each element is a line in the R script.


Helper function returning the fData modifications as strings for report generation

Description

Helper function returning the fData modifications as strings for report generation

Usage

getFeatModCode(featureanno)

Arguments

featureanno

type of feature annotation; values are "Mark unknown" or "Roll down"

Value

String containing R code performing the modification


Helper function returning the fData modifications as strings for report generation

Description

Helper function returning the fData modifications as strings for report generation

Usage

getFeatSplitCode(splittaxonomy)

Arguments

splittaxonomy

name of column to split on

Value

String containing R code performing the modification


Helper function assigning different file extensions to specific short texts identifying the types

Description

Helper function assigning different file extensions to specific short texts identifying the types

Usage

getFileType(fileext)

Arguments

fileext

the file extension found after '.'

Value

character string for the filetype

Author(s)

Janina Reeder


Helper function to filter phenodata for interesting phenotypes to be used for filtering or subsetting

Description

Helper function to filter phenodata for interesting phenotypes to be used for filtering or subsetting

Usage

getFilterChoices(MRobj)

Arguments

MRobj

the MRexperiment storing the data

Value

list of named vectors with names being pData column headers and values being unique entries; columns with only one entry or those with different values for each samples are omitted

Author(s)

Janina Reeder


Function to find a non-empty facet in the last row. This will be the one to be connected to the plot legend to avoid duplicates within

Description

Function to find a non-empty facet in the last row. This will be the one to be connected to the plot legend to avoid duplicates within

Usage

getLegendLevel(df2, facets, facet2s)

Arguments

df2

plotting data frame

facets

column facets

facet2s

row facets

Value

the name of the column-based facet which can be used as legend


Helper function returning the code used to modify the data types of the pheno table

Description

Helper function returning the code used to modify the data types of the pheno table

Usage

getPhenoChanges(phenotype, datatype)

Arguments

phenotype

name of the phenotype column header

datatype

variable type to assign to column

Value

String storing code to perform modification

Author(s)

Janina Reeder


Helper function returning the code used to modify the phenotable as a string

Description

Helper function returning the code used to modify the phenotable as a string

Usage

getPhenoModCode(name, pheno1, pheno2)

Arguments

name

interaction name

pheno1

first interaction phenotype

pheno2

second interaction phenotype

Value

String storing code to perform modification

Author(s)

Janina Reeder


Helper function to account for issues plotly has with very small widths (these end up being 1 and cover the entire plotting area)

Description

Helper function to account for issues plotly has with very small widths (these end up being 1 and cover the entire plotting area)

Usage

getWidths(df2, facets, x_var, drop = TRUE)

Arguments

df2

dataframe storing plotting data

facets

column facets

x_var

x variable

drop

passed on as .drop to dplyr::group_by

Value

widths for each facet


Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

heatmapInput(input, output, session, meData, reset, aggDat = reactive(NULL))

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment object storing all data

reset

reactive boolean determining if all inputs should be reset

aggDat

aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Heatmap analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description

Heatmap analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage

heatmapInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


inter Analysis Module - server

Description

inter Analysis Module - server

Usage

interAnalysis(
  input,
  output,
  session,
  data,
  levelOpts,
  chosenLevel,
  resetInput,
  aggData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from different instance)

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

Value

reactive holding code to be used in reports


inter Analysis Module - UI

Description

inter Analysis Module - UI

Usage

interAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

interAnalysisUI("interanalysis_id")

Intra Analysis Module - server

Description

Intra Analysis Module - server

Usage

intraAnalysis(
  input,
  output,
  session,
  data,
  levelOpts,
  chosenLevel,
  resetInput,
  aggData,
  normalizedData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from different instance)

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

normalizedData

boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder


Intra Analysis Module - UI

Description

Intra Analysis Module - UI

Usage

intraAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

intraAnalysisUI("intraanalysis_id")

Server side for the intra analysis input module

Description

Server side for the intra analysis input module

Usage

intraInput(
  input,
  output,
  session,
  meData,
  facetOptions = NULL,
  reset,
  aggDat = reactive(NULL)
)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment object storing all data

facetOptions

named vector of available facet choices

reset

reactive boolean determining if all inputs should be reset

aggDat

aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main intra analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description

Main intra analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage

intraInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


long Analysis Module - server

Description

long Analysis Module - server

Usage

longAnalysis(
  input,
  output,
  session,
  data,
  levelOpts,
  chosenLevel,
  resetInput,
  aggData,
  normalizedData
)

Arguments

input

shiny input

output

shiny output

session

shiny session

data

the main data object returned from data_input_module

levelOpts

available levels to aggregate on (depends on input data)

chosenLevel

previously selected level (passed from longerent instance)

resetInput

reactive boolean determining if reset is required

aggData

the aggregated MRExperiment object

normalizedData

boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder


Long Analysis Module - UI

Description

Long Analysis Module - UI

Usage

longAnalysisUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

longAnalysisUI("longanalysis_id")

Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

longInput(
  input,
  output,
  session,
  meData,
  facetOptions = NULL,
  reset,
  aggDat = reactive(NULL)
)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRexperiment object storing all data

facetOptions

named vector of available facet choices

reset

reactive boolean determining if all inputs should be reset

aggDat

aggregated MRexperiment

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder


Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Description

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Usage

longInputUI(id)

Arguments

id

element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder


Longitudinal analysis module server code

Description

Longitudinal analysis module server code

Usage

longResults(
  input,
  output,
  session,
  aggDat,
  featLevel,
  longSettings,
  normalizedData,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

longSettings

reactive storing values selected in analysis input interface

normalizedData

reactive boolean indicating if data has been normalized

reset

boolean reactive which resets the module if TRUE

Value

list containing R code for analysis and for feature plots

Author(s)

Janina Reeder


Longitudinal Analysis module UI

Description

Longitudinal Analysis module UI

Usage

longResultsUI(id)

Arguments

id

namespace identifier

Value

row containing the UI elements

Author(s)

Janina Reeder


Plots sequencing statistics scatterplot

Description

This function makes a scatterplot of read and feature counts for each sample. It was adjusted based on original work by Mo Huang

Usage

makeQCPlot(
  MRobj,
  col_by = NULL,
  log = "none",
  filter_feat = 0,
  filter_read = 0,
  allowWebGL = TRUE,
  pwidth = 550,
  pheight = 550
)

Arguments

MRobj

metagenomeSeq object to be plotted

col_by

factor by which to color the points

log

character indicating which (if any) axes should be shown as log

filter_feat

Numeric Y-coordinate to draw horizontal dashed line to indicate feature filtering. If 0 (default), no line is drawn.

filter_read

Numeric X-coordinate to draw vertical dashed line to indicate read count filtering. If 0 (default), no line is drawn.

allowWebGL

boolean indicating if webGL should be added

pwidth

overall plot width; default is 550 (125 are added for legend)

pheight

overall plot height; default is 550

Value

the plotly QC plot

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
makeQCPlot(mouseData)

Calls appropriate normalization functions depending on input parameter The two available methods included in the package are based on either calculating proportions or by using cumulative sum scaling (CSS), Paulson, et al. Nat Meth 2013.

Description

Calls appropriate normalization functions depending on input parameter The two available methods included in the package are based on either calculating proportions or by using cumulative sum scaling (CSS), Paulson, et al. Nat Meth 2013.

Usage

normalizeData(MRobj, norm_method)

Arguments

MRobj

the MRexperiment

norm_method

method to use for normalization; CSS or Proportional

Value

the normalized MRobj

Examples

data("mouseData", package = "metagenomeSeq")
normalizeData(mouseData, norm_method = "CSS")

Helper function used to build a correct interactionName based on the chosen columns

Description

Helper function used to build a correct interactionName based on the chosen columns

Usage

parseInteractionName(interactionName)

Arguments

interactionName

as chosen by user. This may not be good to store internally

Value

updated interactionName or warning/error string


Phenotype correlation analysis server module

Description

Phenotype correlation analysis server module

Usage

phenotypeCorr(
  input,
  output,
  session,
  aggDat,
  colorOptions,
  corFeatBase,
  corPheno,
  corFacet1,
  corFacet2,
  corMethod,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

colorOptions

reactive storing filters available via data input

corFeatBase

first correlation feature

corPheno

correlation phenotype

corFacet1

first correlation facet

corFacet2

second correlation facet

corMethod

correlation method to use

reset

boolean reactive which resets the module if TRUE

Value

R code used to do the correlation analysis (character)

Author(s)

Janina Reeder


Phenotype correlation analysis module

Description

Phenotype correlation analysis module

Usage

phenotypeCorrUI(id)

Arguments

id

namespace identifier

Value

box containing the UI element

Author(s)

Janina Reeder


Phenotype table server module

Description

Phenotype table server module

Usage

phenotypeTable(input, output, session, meData, phenoModRep, addPheno)

Arguments

input

shiny input

output

shiny output

session

shiny session

meData

MRExperiment storing the data

phenoModRep

reactive Value storing any phenotable modifications made

addPheno

reactive boolean keeping track of pheno data modifications

Value

phenotype table server fragment - no return value

Author(s)

Janina Reeder


Phenotype table UI module

Description

Phenotype table UI module

Usage

phenotypeTableUI(id)

Arguments

id

namespace identifier

Value

fluidRow holding the ui code

Author(s)

Janina Reeder

Examples

phenotypeTableUI("phenotype_id")

Plot relative abundance

Description

This function plots the relative abundance of the top abundant features.

Usage

plotAbundance(
  aggdat,
  level,
  x_var = "SAMPLE_ID",
  ind = seq_len(10),
  plotTitle = "",
  ylab = "Reads",
  facet1 = NULL,
  facet2 = NULL,
  source = "A",
  pwidth = 650,
  pheight = 150
)

Arguments

aggdat

aggregated MRExperiment object

level

Feature level.

x_var

Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".

ind

Indices of top abundant features to plot. Rest of features are aggregated and displayed as "other".

plotTitle

Plot title. Default shows no title.

ylab

Y-axis label. Default is "Reads"

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2.

source

name of the plot (needed for event handling); default is "A"

pwidth

overall plot width; default is 650

pheight

overall plot height; default is 150

Value

plotly plot

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotAbundance(aggdat, level = "genus", x_var = "diet")

Plot alpha diversity

Description

This function plots the alpha diversity. See ?vegan::diversity for details on the available index

Usage

plotAlpha(
  aggdat,
  level,
  index = c("shannon", "simpson", "invsimpson", "richness"),
  x_var = "SAMPLE_ID",
  ylab = index,
  col_by = NULL,
  facet1 = NULL,
  facet2 = NULL,
  plotTitle = "",
  pwidth = 500,
  pheight = 150
)

Arguments

aggdat

aggregated MRExperiment

level

Feature level

index

Diversity index, one of "shannon", "simpson", "invsimpson" or "richness" (=number of features). Default is "shannon".

x_var

Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".

ylab

Y-axis label. Default is "Reads".

col_by

Phenotype for coloring.

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2.

plotTitle

Plot title. By default, no title is used.

pwidth

overall plot width; default is 650

pheight

overall plot height; default is 150

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotAlpha(aggdat, level = "genus", index = "shannon", x_var = "diet")

Plot average relative abundance

Description

This function plots the average relative abundance of the top abundant features.

Usage

plotAvgAbundance(
  aggdat,
  level,
  ind = seq_len(10),
  plotTitle = "",
  ylab = "Reads",
  facet1 = NULL,
  facet2 = NULL,
  source = "A",
  pwidth = 500,
  pheight = 150
)

Arguments

aggdat

aggregated MRExperiment object

level

Feature level.

ind

Indices of top abundant features to plot. Rest of features are aggregated and displayed as "other".

plotTitle

Plot title. Default shows no title.

ylab

Y-axis label. Default is "Reads"

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2.

source

name of the plot (needed for event handling); default is "A"

pwidth

overall plot width; default is 500

pheight

overall plot height; default is 150

Value

plotly plot

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotAvgAbundance(aggdat, level = "genus")

Plot beta diversity

Description

This functions plots the beta diversity as a PCoA plot.

Usage

plotBeta(
  aggdat,
  dim = c(1, 2),
  log = TRUE,
  dist_method = "bray",
  pcas = NULL,
  nfeatures = nrow(aggdat),
  col_by = NULL,
  shape_by = NULL,
  plotTitle = "",
  xlab = NULL,
  ylab = NULL,
  pt_size = 8,
  plotText = NULL,
  confInterval = NULL,
  allowWebGL = TRUE,
  pwidth = 550,
  pheight = 550
)

Arguments

aggdat

aggregated MRExperiment

dim

Vector of length 2 specifying which dimensions to plot.

log

Log2 transform data. Default is TRUE.

dist_method

Which distance method to use. See ?vegan::vegdist for more vegdist() for options. Default is "bray".

pcas

precalculated pcas to avoid recalculation via CalcPCs

nfeatures

Number of top features in terms of standard deviation. Default is all.

col_by

Phenotype for coloring.

shape_by

Phenotype for shape.

plotTitle

Plot title. By default, becomes PCoA (codedist.method).

xlab

X-axis label. By default, shows dimension and percent variance explained.

ylab

Y-axis label. By default, shows dimension and percent variance explained.

pt_size

the size of the markers

plotText

adonis text to be added to plot

confInterval

numeric value indicating confidence level for ellipses

allowWebGL

boolean indicating if WebGL should be used

pwidth

overall plot width; default is 550 (125 are added for legend)

pheight

overall plot height; default is 550

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotBeta(aggdat)

Plot heatmap

Description

This function plots a heatmap of feature abundance.

Usage

plotHeatmap(
  aggdat,
  features = NULL,
  log = TRUE,
  sort_by = c("Fano", "MAD", "Variance"),
  nfeat = 50,
  col_by = NULL,
  row_by = NULL,
  plotTitle = ""
)

Arguments

aggdat

aggregated MRExperiment

features

Vector of features to plot. If NULL, the top 'nfeat' features in terms of 'sort_by' will be plotted.

log

Log2 transform data. Default is TRUE.

sort_by

Dispersion measure to sort features, one of "Fano", "MAD", and "Variance"

nfeat

Number of features to display. Default is 50.

col_by

Vector of phenotypes for coloring.

row_by

Name of feature level for coloring.

plotTitle

Plot title. By default, no title.

Value

plotly heatmap

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotHeatmap(aggdat, sort_by = "Fano")

Plot longitudinal features

Description

This function plots the reads of a particular feature over different time points.

Usage

plotLongFeature(
  aggdat,
  feature,
  x_var,
  id_var = "SAMPLE_ID",
  plotTitle = NULL,
  ylab = "Reads",
  log = FALSE,
  showLines = TRUE,
  fixedHeight = NULL,
  x_levels = NULL,
  pwidth = 650
)

Arguments

aggdat

aggregated MRExperiment

feature

Feature to plot.

x_var

Phenotype to show along on X-axis.

id_var

phenotype used to connect data points. Default is "SAMPLE_ID"

plotTitle

Plot title. Default shows no title.

ylab

Y-axis label. Default is "Reads"

log

Log2 transform data. Default is FALSE.

showLines

add lines between the points

fixedHeight

sets a specific plot height (differential analysis)

x_levels

restrict to specific levels of x_var (differential analysis)

pwidth

overall plot width; default is 650

Value

plotly object holding long feature plot

Author(s)

Janina Reeder, Mo Huang

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotLongFeature(aggdat, feature = "Prevotella", x_var = "diet", 
                id_var = "mouseID")

Function plotting a plotly histogram on the given histvalue

Description

Function plotting a plotly histogram on the given histvalue

Usage

plotlyHistogram(
  histvalue,
  plotTitle,
  xaxisTitle = "",
  yaxisTitle = "",
  pwidth = 200,
  pheight = 200
)

Arguments

histvalue

the value to plot as a histogram

plotTitle

title of the plot

xaxisTitle

name of xaxis; default is ""

yaxisTitle

name of yaxis; default is ""

pwidth

overall plot width; default is 200

pheight

overall plot height; default is 200

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
plotlyHistogram(histvalue = colSums(MRcounts(mouseData) > 0),
  plotTitle = "Feature distribution",
  xaxisTitle = "features", yaxisTitle = "frequency")

Function plotting a barplot showing number of OTUs per samples

Description

Function plotting a barplot showing number of OTUs per samples

Usage

plotlySampleBarplot(
  MRobj,
  col_by = NULL,
  xaxisTitle = "",
  yaxisTitle = "",
  pwidth = 600,
  pheight = 450,
  sortbyfreq = FALSE,
  pheno_sort = NULL,
  x_levels = NULL
)

Arguments

MRobj

containing data to plot

col_by

phenotype to color bars by; default is NULL

xaxisTitle

name of xaxis; default is ""

yaxisTitle

name of yaxis; default is ""

pwidth

overall plot width; default is 600

pheight

overall plot height; default is 450

sortbyfreq

boolean determining if bars should be sorted by frequency; default is FALSE

pheno_sort

order of pheno levels to sort by; ignored if sortbyfreq is TRUE

x_levels

character vector holding x values in order to be shown

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
plotlySampleBarplot(mouseData)

Plot features

Description

This function plots the reads of a particular feature or set of features.

Usage

plotSingleFeature(
  aggdat,
  feature = "other",
  x_var = "SAMPLE_ID",
  ind = seq_len(10),
  plotTitle = NULL,
  ylab = "Reads",
  xlab = NULL,
  facet1 = NULL,
  facet2 = NULL,
  log = FALSE,
  showPoints = FALSE,
  fixedHeight = NULL,
  x_levels = NULL,
  pwidth = 500
)

Arguments

aggdat

aggregated MRExperiment

feature

Feature to plot.

x_var

Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".

ind

Indices of top abundant features to plot. Needed to determine appropriate color

plotTitle

Plot title. Default shows no title.

ylab

Y-axis label. Default is "Reads"

xlab

X-axis label. If NULL, x_var will be used as label.

facet1

Phenotype for facet 1.

facet2

Phenotype for facet 2.

log

Log2 transform data. Default is FALSE.

showPoints

add points for each sample on plot

fixedHeight

sets a specific plot height (differential analysis)

x_levels

restrict to specific levels of x_var (differential analysis)

pwidth

overall plot width; default is 650

Value

plotly plot object

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotSingleFeature(aggdat, feature = "Prevotella", x_var = "diet")

Reads in data

Description

This function reads in an MRexperiment object saved as an RDS file, a Biom file, or a tab - delimited count matrix with features as rows and samples as columns.

Usage

readData(filepath, type = "RDS")

Arguments

filepath

Relative or absolute file path of data object.

type

The type of file to be read; default is "RDS", other options are "RDATA", "BIOM", "TAB", "CSV"

Value

An MRexperiment object.


Relative abundance plot module - server

Description

Relative abundance plot module - server

Usage

relAbundance(
  input,
  output,
  session,
  aggDat,
  featLevel,
  intraSettings,
  normalizedData,
  reset
)

Arguments

input

shiny input

output

shiny output

session

shiny session

aggDat

aggregated MRExperiment

featLevel

chosen feature level (aggregation level)

intraSettings

analysis input settings passed over to this module

normalizedData

boolean indicating whether data has been normalized

reset

boolean reactive which resets the module if TRUE

Value

list storing plot clicks and number of features displayed (passed to feature plot module) as well as the R code to make plot


Relative abundance plot module - UI

Description

Relative abundance plot module - UI

Usage

relAbundanceUI(id)

Arguments

id

namespace identifier

Value

box containing the ui code

Author(s)

Janina Reeder


Helper function to replace any un-annotated features with the term unknown

Description

Helper function to replace any un-annotated features with the term unknown

Usage

replaceWithUnknown(featcol)

Arguments

featcol

vector of entried to be replaced where needed (fData column)

Value

modified featcol

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
featcol <- fData(mouseData)[["genus"]]
featcol[featcol == "NA"] <- NA
replaceWithUnknown(featcol)

Report tab module server

Description

Report tab module server

Usage

reportList(
  input,
  output,
  session,
  dataSource,
  preprocessRep,
  qcRep,
  analysisRep,
  aggIndex,
  reset
)

Arguments

input

module input

output

module output

session

app session

dataSource

R code to obtain data for rendering

preprocessRep

R code containing preprocessing steps of data

qcRep

R Code to generate QC plots

analysisRep

R Code to generate all analyses saved to reports

aggIndex

boolean value representing aggregation steps in analysisRep

reset

boolean reactive which resets the module if TRUE

Value

report list server fragment - no return value

Author(s)

Janina Reeder


report tab ui

Description

report tab ui

Usage

reportListUI(id)

Arguments

id

namespace identifier

Value

fluidRow holding ui elements

Author(s)

Janina Reeder

Examples

reportListUI("reportlist_id")

Report Row

Description

Report Row

Usage

reportRow(input, output, session, type, content)

Arguments

input

module input

output

module output

session

app session

type

boolean indicating whether checkbox should be included

content

R code to show

Value

reactive boolean indicating whether row is selected

Author(s)

Janina Reeder


Report row module consisting of a checkbox, image and description/R code area

Description

Report row module consisting of a checkbox, image and description/R code area

Usage

reportRowUI(id, type)

Arguments

id

namespace identifier

type

boolean indicating if a selector checkbox should be added

Value

div holding the UI code

Author(s)

Janina Reeder


Helper function which rolls down annotated from closest higher order with annotation

Description

Helper function which rolls down annotated from closest higher order with annotation

Usage

rollDownFeatures(featrow)

Arguments

featrow

vector of entries to be replaced where needed (fData row)

Value

modified featurerow

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
featrow <- fData(mouseData)[5,]
rollDownFeatures(featrow)

Performs differential abundance testing

Description

This function performs differential abundance testing between groups of a specified phenotype. Four methods are available: limma, Kruskal-Wallis, ZILN and DESeq2 (see details).

Usage

runDiffTest(
  aggdat,
  level,
  phenotype,
  phenolevels = NULL,
  log = TRUE,
  coef = NULL,
  method = c("limma", "Kruskal-Wallis", "DESeq2")
)

Arguments

aggdat

aggregated MRExperiment

level

Feature level.

phenotype

Phenotype to test.

phenolevels

levels of the phenotype to restrict the comparison to

log

Log2 transform data. Default is TRUE.

coef

Numeric which indicates which pairwise comparison to analyze when there are more than two groups. Corresponds to the column number of the model matrix produced by designPairs(). If NULL, a test of any difference between all groups is performed.

method

Differential testing method. One of "limma" (default), "Kruskal-Wallis", or "DESeq2".

Details

limma is a differential expression tool for microarray data using linear models. It can also be applied to microbiome data.

The Kruskal-Wallis test is a non-parametric rank test which examines if groups come from the same distribution. A significant result indicates at least one group is distributionally different than another group.

ZILN is a zero-inflated log-normal model implemented in fitFeatureModel() of the metagenomeSeq package.

DeSeq2 performs differential gene expression analysis based on the negative binomial distribution

Value

data.frame holding results of the differential analysis

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
runDiffTest(aggdat = aggdat,level = "genus", 
            phenotype = "diet", method = "Kruskal-Wallis")

Main function to start the Microbiome Explorer Shiny app via a command line call

Description

Main function to start the Microbiome Explorer Shiny app via a command line call

Usage

runMicrobiomeExplorer()

Value

the shiny application