Package 'methylMnM'

Title: detect different methylation level (DMR)
Description: To give the exactly p-value and q-value of MeDIP-seq and MRE-seq data for different samples comparation.
Authors: Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang
Maintainer: Yan Zhou<[email protected]>
License: GPL-3
Version: 1.45.0
Built: 2024-12-29 06:07:24 UTC
Source: https://github.com/bioc/methylMnM

Help Index


MeDIP-Seq and MRE-Seq data analysis

Description

M&M was developed for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-Seq) and the digestions with the methyl-sensitive restriction enzymes (MRE-Seq). Nevertheless, functionalities like the quality controls may be applied to other types of sequencing data (e.g. ChIP-Seq). MeDIP-MRE (methylMnM) test which combine the two differential techniques (MeDIP-seq and MRE-seq) data to detecting the differentially methylation level of CpG.

Details

Package: methylMnM
Type: Package
Version: 1.0
Date: 2012-12-01
License: GPL-3
LazyLoad: yes
Depends: R (>= 2.12.0)

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Maintainer: Yan Zhou <[email protected]>

References

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang, 2012


Normalization factor.

Description

Amends of TMM normalization for our methond.

Usage

calcFactornew(obs, ref, m, k, logratioTrim=.3, sumTrim=0.05,
 doWeighting=TRUE, Acutoff=-1e10)

Arguments

obs

Counts of treatment sample.

ref

Counts of control sample.

m

The number of CpG in each bin.

k

The number of MRE-CpG in each bin.

logratioTrim

amount of trim to use on log-ratios ("M" values)

sumTrim

amount of trim to use on the combined absolute levels ("A" values)

doWeighting

logical, whether to compute (asymptotic binomial precision) weights

Acutoff

cutoff on "A" values to use before trimming

Value

A real value larger than 0.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

d <- matrix( rpois(1000, lambda=5), nrow=200 )
  m<-rep(1,nrow=200 )
  k<-rep(1,nrow=200 )
  f <- calcFactornew(d[,2], d[,1], m, k, logratioTrim=.3, sumTrim=0.05,
 doWeighting=TRUE, Acutoff=-1e10)

Call C programs to R.

Description

Call C programs to R for calculate MeDIP-seq or CpG count of each bin.

Usage

calculatecount(data2, data3, cpg2, cpg3, datalength, cpglength, 
count=rep(0,cpglength))

Arguments

data2

Start position of each tag.

data3

End position of each tag.

cpg2

Start position of each bin.

cpg3

End position of each bin.

datalength

The number of tags

cpglength

The number of bins

count

Read count of each bin.

Value

Read count of each bin.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

data<-matrix( 1:800, nrow=400 )
  data[,2]<-data[,1]+37
  cpg<-matrix( 1:20, nrow=10)
  cpg[,1]<-seq(0,360,length=10)
  cpg[,2]<-seq(40,400,length=10)
  f <- calculatecount(data[,1], data[,2], cpg[,1], cpg[,2], length(data[,1]),
 length(cpg[,2]), count=rep(0,length(cpg[,2])))

Call C programs to R.

Description

Call C programs to R for calculate MRE-seq "+" direction count of each bin.

Usage

calculatecount1(data2, data3, cpg2, cpg3, datalength, cpglength,
 count=rep(0,cpglength))

Arguments

data2

Start position of each tag.

data3

End position of each tag.

cpg2

Start position of each bin.

cpg3

End position of each bin.

datalength

The number of tags

cpglength

The number of bins

count

Count of MRE-seq "+" direction of each bin.

Value

Count of MRE-seq "+" direction of each bin.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

data<-matrix( 1:400, nrow=200 )
  cpg<-matrix( 1:40, nrow=20)
  cpg[,1]<-seq(0,380,length=20)
  cpg[,2]<-seq(20,400,length=20)
  f <- calculatecount1(data[,1], data[,2], cpg[,1], cpg[,2], length(data[,1]),
 length(cpg[,2]), count=rep(0,length(cpg[,2])))

Call C programs to R.

Description

Call C programs to R for calculate MRE-seq "-" direction count of each bin.

Usage

calculatecountneg(data2, data3, cpg2, cpg3, datalength, cpglength, 
count=rep(0,cpglength))

Arguments

data2

Start position of each tag.

data3

End position of each tag.

cpg2

Start position of each bin.

cpg3

End position of each bin.

datalength

The number of tags

cpglength

The number of bins

count

Count of MRE-seq "-" direction of each bin.

Value

Count of MRE-seq "-" direction of each bin.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

data<-matrix( 1:400, nrow=200 )
  cpg<-matrix( 1:40, nrow=20)
  cpg[,1]<-seq(0,380,length=20)
  cpg[,2]<-seq(20,400,length=20)
  f <-calculatecountneg(data[,1], data[,2], cpg[,1], cpg[,2], length(data[,1]),
 length(cpg[,2]), count=rep(0,length(cpg[,2])))

Normalize copy number variation (CNV).

Description

The function is used to normalize copy number variation.

Usage

CNVnormal(CNVfile,bincount)

Arguments

CNVfile

The path of copy number variation file.

bincount

Count of all bins.

Value

Count of all bins after CNV normalization.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  CpGsite<-read.table(file1, header=FALSE,skip=0, nrows=200, as.is=TRUE) 
  winbin<-CpGsite[1:100,1:4]
  winbin[,2]<-seq(0,49500,500)
  winbin[,3]<-winbin[,2]+500
  winbin[,4]<-rpois(100, lambda=5)
  cnv<-winbin[1:5,]
  cnv[,2]<-c(0,10000,20000,30000,40000)
  cnv[,3]<-cnv[,2]+10000
  cnv[,4]<-c(1.2,1.6,1,2,1)
  CNVfile<-paste(setwd(getwd()), "/CNVfile.bed", sep = "")  
  write.table(cnv, CNVfile, quote=FALSE, row.names =FALSE,col.names =FALSE)
  f<-CNVnormal(CNVfile,winbin)

Compute the total CpG number of each bin with each CpG site.

Description

The function is used to compute the total CpG number of each bin with each CpG site.

Usage

countcpgbin(file.cpgsite,file.blacklist=NULL,file.bin=NULL, writefile=NULL,
 reportfile=NULL, binlength=500)

Arguments

file.cpgsite

The path of cpg site file or sequence tag file.

file.blacklist

The path of blacklist file (If we do not use the file, there will be defaulted as NULL).

file.bin

The path of all cpg bin file. For computing the number of sequence tag of each window, we use the file as a normalization window position. (If we do not use the file, there will be defaulted as NULL).

writefile

The path of output results. (If writefile=NULL, there will return the results back to main program.)

reportfile

The path of output results of bin length, the number of bin, total reads before processing and total reads after processing.

binlength

The length of each window.(Defaulted length is 500).

Value

The CpG site should include at least three columns "chromosome", "start position" and "end position". The output file is include four columns, that is "chromosome", "start position", "end position" and "CpG count". Also, the function output a report for some parameters.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file.cpgsite<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  f<-countcpgbin(file.cpgsite, binlength=5000)

Compute the total MeDIP-seq number of each bin.

Description

The function is used to compute the total MeDIP-seq number of each bin.

Usage

countMeDIPbin (file.Medipsite,file.blacklist=NULL,file.bin=NULL,
file.CNV=NULL, writefile=NULL, reportfile=NULL, binlength=500)

Arguments

file.Medipsite

The path of MeDIP-seq site file or sequence tag file.

file.blacklist

The path of blacklist file (If we do not use the file, there will be defaulted as NULL).

file.bin

The path of all bins file. For computing the number of sequence tag of each window, we use the file as a normalization window position. (If we do not use the file, there will be defaulted as NULL).

file.CNV

If need, we should input CNV file to normalize count of each bin.

writefile

The path of output results. (If writefile=NULL, there will return the results back to main program.)

reportfile

The path of output results of bin length, the number of bin, total reads before processing and total reads after processing.

binlength

The length of each window.(Defaulted length is 500).

Value

The MeDIP-seq site should include at least three columns "chromosome", "start position" and "end position". The output file is include four columns, that is "chromosome", "start position", "end position" and "MeDIP-seq count". Also, the function output a report for some parameters.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file.Medipsite<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  f<-countMeDIPbin(file.Medipsite, binlength=5000)

Compute the total MRE-seq number of each bin.

Description

The function is used to compute the total MRE-seq number of each bin.

Usage

countMREbin(file.MREsite,file.blacklist=NULL, file.bin=NULL,
file.CNV=NULL, cutoff=0,writefile=NULL, 
reportfile=NULL, binlength=500)

Arguments

file.MREsite

The path of MRE-seq sites file.

file.blacklist

The path of blacklist file (If we do not use the file, there will be defaulted as NULL).

file.bin

The path of all bin file. For computing the number of sequence tag of each window, we use the file as a normalization window position. (If we do not use the file, there will be defaulted as NULL).

file.CNV

If need, we should input CNV file to normalize count of each bin.

cutoff

The critical value of PCR. (If we do not use the critical value, there will be defaulted as 0.)

writefile

The path of output results. (If writefile=NULL, there will return the results back to main program.)

reportfile

The path of output results of bin length, the number of bin, total reads before processing and total reads after processing.

binlength

The length of each window.(Defaulted length is 500).

Value

The MRE-seq sites should include at least three columns "chromosome", "start position" and "end position". The output file is include four columns, that is "chromosome", "start position", "end position" and "MRE-seq count". Also, the function output a report for some parameters.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file.MREsite<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  f<-countMREbin(file.MREsite, binlength=5000)

Compute the MRE CpG number of each bin with MRE CpG sites.

Description

The function is used to compute the MRE CpG number of each bin with MRE CpG sites. MRE CpG is some specific CpGs in genome-wide, such as "CCGG", "GCGC" and "CCGC". The specific CpG number is directly bound up with each experiment.

Usage

countMREcpgbin(mrecpg.site,file.allcpgsite,file.bin=NULL,
writefile=NULL, binlength=500)

Arguments

mrecpg.site

The data of mreCpG site.

file.allcpgsite

The path of all cpg site file or sequence tag file.

file.bin

The path of all bins file. For computing the number of sequence tag of each window, we use the file as a normalize window position. (If we do not use the file, there will be defaulted as NULL).

writefile

The path of output result. (If writefile=NULL, there will return the results back to main program )

binlength

The length of each window. (Defaulted length is 500)

Value

The output file is include four columns, that is "chromosome", "start position", "end position" and "MRE CpG count".

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file<-paste(filepath,"/three_Mre_CpGsite_chr18.txt",sep="")
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  five_Mre_CpGsite<-read.table(file, header=FALSE, as.is=TRUE)  
  f<-countMREcpgbin(mrecpg.site=five_Mre_CpGsite[1:1000,],
file.allcpgsite=file1,binlength=5000)

Call C programs to R.

Description

Call C programs to R for calculate which CpG are contained in MRE-CpG.

Usage

cpgcount(data2, data3, cpg2, cpg3, datalength, cpglength, 
count=rep(0,cpglength))

Arguments

data2

Start position of each MRE-CpG.

data3

End position of each MRE-CpG.

cpg2

Start position of each CpG.

cpg3

End position of each CpG.

datalength

The number of MRE-CpG.

cpglength

The number of MRE-CpG.

count

MRE-CpG count of each CpG.

Value

MRE-CpG count of each CpG.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

cpg<-matrix( 1:800, nrow=400 )
  cpg[,2]<-cpg[,1]+2
  data<-cpg[3:100,]
  data[,1]<-data[,1]-1
  data[,2]<-data[,2]+1
  f <- cpgcount(data[,1], data[,2], cpg[,1], cpg[,2], length(data[,1]),
 length(cpg[,2]), count=rep(0,length(cpg[,2])))

Estimate the q-values for a given set of p-values

Description

The function is used to estimate the q-values for a given set of p-values. The q-value of a test measures the proportion of false positives incurred (called the false discovery rate) when that particular test is called significant.

Usage

MnM.qvalue(datafile,writefile=NULL,reportfile=NULL)

Arguments

datafile

Input data of p-values file (Including all input)

writefile

The file path of output result. (If writefile=NULL,there will return the results back to main program )

reportfile

The path of output results of bin length, the number of bin, total reads before processing and total reads after processing.

Value

The output file is just add a q-value column to the input file.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  CpGsite<-read.table(file1, header=FALSE,skip=0, nrows=200, as.is=TRUE) 
  winbin<-CpGsite[1:100,1:4]
  winbin[,2]<-seq(0,49500,500)
  winbin[,3]<-winbin[,2]+500
  count<-matrix(rpois(600, lambda=5), nrow=100 )
  count[,6]<-count[,5]
  pvalue<-runif(100, min=0, max=1)
  ts<-rnorm(100, mean=0, sd=1) 
  cpgpq<-cbind(winbin[,1:3],count,pvalue,ts)
  colnames(cpgpq)=c("chr", "chrSt","chrEnd","Medip1","Medip2","MRE1",
"MRE2","cg","mrecg","pvalue",'Ts')
  pvaluefile<-paste(setwd(getwd()), "/pvalue.bed", sep = "")  
  write.table(cpgpq, pvaluefile,sep="\t", quote=FALSE,row.names =FALSE)
  f<-MnM.qvalue(datafile=pvaluefile)

Select significants of each comparation.

Description

The function is used to select significants of each comparation.

Usage

MnM.selectDMR(frames = NULL, up =1.45, down = 1/1.45, p.value.MM = 0.01,
 p.value.SAGE = 0.01,q.value = 0.01,cutoff="q-value",  quant= 0.6)

Arguments

frames

The input dataset and q-values of each bin.

up

The ratio of Medip1/Medip2 should be larger than "up" value if we call it significant.

down

The ratio of Medip1/Medip2 should be smaller than "down" value if we call it significant.

p.value.MM

The p-value of the bin which use MM test should be smaller than "p.value.MM" if we call it significant.

p.value.SAGE

The p-value of the bin which use SAGE test should be smaller than "p.value.SAGE" if we call it significant.

q.value

The q-value of the bin should be smaller than "q.value" if we call it significant.

cutoff

We should use p-value or q-value cutoff to detect DMRs (If cutoff="q-value", then we use q-value to detect DMRs, else we use p-value ).

quant

The rank of absolute value of (Medip1-Medip2) should be larger than "quant" value if we call it significant.

Value

The DMRs of the comparation.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM")
  filepath<-datafile[1]
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  CpGsite<-read.table(file1, header=FALSE,skip=0, nrows=200, as.is=TRUE) 
  winbin<-CpGsite[1:100,1:4]
  winbin[,2]<-seq(0,49500,500)
  winbin[,3]<-winbin[,2]+500
  count<-matrix(rpois(600, lambda=5), nrow=100 )
  count[,6]<-count[,5]
  pvalue<-runif(100, min=0, max=1)
  ts<-rnorm(100, mean=0, sd=1) 
  cpgpq<-cbind(winbin[,1:3],count,pvalue,ts)
  colnames(cpgpq)=c("chr", "chrSt","chrEnd","Medip1","Medip2","MRE1",
  "MRE2","cg","mrecg","pvalue",'Ts')
  f<-MnM.selectDMR(frames=cpgpq, p.value.MM = 0.1, 
  p.value.SAGE = 0.1,cutoff="p-value")

Compute p-value of each bin.

Description

The function is used to compute p-value of each bin.

Usage

MnM.test(file.dataset=NULL,chrstring=NULL,file.cpgbin=NULL,
file.mrecpgbin=NULL,writefile=NULL,reportfile=NULL,
mreratio=3/7,method="XXYY", psd=2,mkadded=1,a=1e-16,
cut=100,top=500)

Arguments

file.dataset

The files path of sample. (datafile should be c(datafile1,datafile2,datafile3,datafile4), where datafile1 and datafile2 are path of Medip-seq data, datafile3 and datafile4 are path of MRE-seq data).

chrstring

The chromosome should be test.

file.cpgbin

The file path of all CpG number of each bin.

file.mrecpgbin

The file path of MRE-CpG number of each window (If NULL, mrecpgfile will equal to cpgfile).

writefile

The file path of output result. (If writefile=NULL, there will return the results back to main program )

reportfile

The path of output results of bin length, the number of bin, total reads before processing and total reads after processing.

mreratio

The ratio of total unmethylation level with total methylation level (Defaulted mreratio is 3/7).

method

Option different data for the test.

psd

The parameters of pseudo count, which pseudo count added to Medip-seq and MRE-seq count.

mkadded

Added to all CpG and MRE CpG (We set psd=2 and mkadded=1 as defaulted for robust)

a

Cut-off for recalculating p-value with multinomial distribution when normal p-values smaller than a and the sum of observations smaller than top.

cut

Cut-off for recalculating p-value with multinomial distribution when the sum of observations smaller than cut.

top

Cut-off for recalculating p-value with multinomial distribution when normal p-values smaller than a and the sum of observations smaller than top.

Value

The output file "writefile" will own eleven columns, that is, "chr", "chrSt", "chrEnd", "Medip1", "Medip2", "MRE1", "MRE2", "cg", "mrecg", "pvalue" and "plus-minus". We also output a report file which will include parameters "s1/s2", "s3/s4", "N1", "N2", "N3", "N4", "c1", "c2", "Number of windows" and "Spend time".

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM")
  filepath<-datafile[1]
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  CpGsite<-read.table(file1, header=FALSE,skip=0, nrows=200, as.is=TRUE) 
  winbin<-CpGsite[1:100,1:4]
  winbin[,2]<-seq(0,49500,500)
  winbin[,3]<-winbin[,2]+500
  winbin[,4]<-rpois(100, lambda=5)
  winbinfile1<-paste(setwd(getwd()), "/winbinfile1.bed", sep = "")  
  write.table(winbin, winbinfile1,sep="\t", quote=FALSE, row.names =FALSE)
  winbin1<-winbin
  winbin1[,4]<-winbin[,4]+20
  winbinfile2<-paste(setwd(getwd()), "/winbinfile2.bed", sep = "")  
  write.table(winbin1, winbinfile2,sep="\t", quote=FALSE, row.names =FALSE)
  datafile<-c(winbinfile1,winbinfile2)
  cpg<-winbin
  cpg[,4]<-rpois(100, lambda=12)
  cpgfile<-paste(setwd(getwd()), "/cpgfile.bed", sep = "")  
  write.table(cpg, cpgfile, sep="\t", quote=FALSE, row.names =FALSE)
  f<-MnM.test(file.dataset=datafile,file.cpgbin=cpgfile)

Compute p-value with normal distribution.

Description

The function is used to compute p-value with normal distribution.

Usage

normpdf(t,n,p,c1,c2)

Arguments

t

Statistic.

n

The sum of MeDIP-seq count and MRE-seq count of each bin of two samples.

p

The probability in multinomial distribution.

c1

A constant to balance MeDIP-seq of sample 1 and sample 2.

c2

A constant to balance MRE-seq of sample 1 and sample 2.

Value

p-values.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

t<-0.1
n<-200
p<-c(0.25,0.25,0.25,0.25)
c1<-1
c2<-1
f<-normpdf(t,n,p,c1,c2)

Compute p-value with normal distribution.

Description

The function is used to compute p-value with normal distribution.

Usage

normpdft1(t,n,p,c1,c2)

Arguments

t

Statistic.

n

The sum of MeDIP-seq count and MRE-seq count of each bin of two samples.

p

The probability in multinomial distribution.

c1

A constant to balance MeDIP-seq of sample 1 and sample 2.

c2

A constant to balance MRE-seq of sample 1 and sample 2.

Value

statistic of a bin.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

t<-0.1
n<-200
p<-c(0.25,0.25,0.25,0.25)
c1<-1
c2<-1
f<-normpdft1(t,n,p,c1,c2)

Call C programs to R.

Description

Call C programs to R for calculate p-value of each bin with multinomial distribution.

Usage

pmultinom(T, SIZE,length, P1, P2, P3, P4, C1, C2,
 pvalue=rep(0,length(T)))

Arguments

T

Statistic.

SIZE

The sum of MeDIP-seq count and MRE-seq count of each bin of two samples.

length

The number of bins.

P1

The probability of MeDIP-seq of sample 1 in multinomial distribution.

P2

The probability of MeDIP-seq of sample 2 in multinomial distribution.

P3

The probability of MRE-seq of sample 1 in multinomial distribution.

P4

The probability of MRE-seq of sample 2 in multinomial distribution.

C1

A constant to balance MeDIP-seq of sample 1 and sample 2.

C2

A constant to balance MRE-seq of sample 1 and sample 2.

pvalue

p-values of windows.

Value

p-value.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

T<-4
SIZE<-200
p<-c(0.25,0.25,0.25,0.25)
c1<-1
c2<-1
length<-1
f<-pmultinom(T, SIZE,length, p[1], p[2], p[3], p[4], c1,
 c2, pvalue=rep(0,length(T)))

Rank values.

Description

The function is used to rank values.

Usage

qvalue.rank(x)

Arguments

x

Value.

Value

Ranked values.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

x<-c(4,2,50,42,80,9)
qvalue.rank(x)

Remove blacklist.

Description

The function is used to remove blacklist which we are not interest.

Usage

removeblacklist(file2,cpg)

Arguments

file2

The path of blacklist site file.

cpg

All bins.

Value

All bins except blacklist region.

Author(s)

Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang

Examples

datafile<-system.file("extdata",  package = "methylMnM") 
  filepath<-datafile[1]
  file1<-paste(filepath,"/all_CpGsite_chr18.txt",sep="")
  CpGsite<-read.table(file1, header=FALSE,skip=0, nrows=200, as.is=TRUE) 
  winbin<-CpGsite[1:100,1:4]
  winbin[,2]<-seq(0,49500,500)
  winbin[,3]<-winbin[,2]+500
  winbin[,4]<-rpois(100, lambda=5)
  blacklist<-winbin[1:5,]
  blacklist[,2]<-c(0,10000,20000,30000,40000)
  blacklist[,3]<-blacklist[,2]+1000
  blacklistfile<-paste(setwd(getwd()), "/blacklist.bed", sep = "")  
  write.table(blacklist, blacklistfile, quote=FALSE, 
 row.names =FALSE,col.names =FALSE)
  f<-removeblacklist(blacklistfile,winbin)