Title: | Summarize, Analyze and Visualize MAF Files |
---|---|
Description: | Analyze and visualize Mutation Annotation Format (MAF) files from large scale sequencing studies. This package provides various functions to perform most commonly used analyses in cancer genomics and to create feature rich customizable visualzations with minimal effort. |
Authors: | Anand Mayakonda [aut, cre] |
Maintainer: | Anand Mayakonda <[email protected]> |
License: | MIT + file LICENSE |
Version: | 2.23.0 |
Built: | 2024-11-01 06:14:58 UTC |
Source: | https://github.com/bioc/maftools |
Converts variant annotations from Annovar into a basic MAF.
annovarToMaf( annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL, table = "refGene", ens2hugo = TRUE, basename = NULL, sep = "\t", MAFobj = FALSE, sampleAnno = NULL )
annovarToMaf( annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL, table = "refGene", ens2hugo = TRUE, basename = NULL, sep = "\t", MAFobj = FALSE, sampleAnno = NULL )
annovar |
input annovar annotation file. Can be vector of multiple files. |
Center |
Center field in MAF file will be filled with this value. Default NA. |
refBuild |
NCBI_Build field in MAF file will be filled with this value. Default hg19. |
tsbCol |
column name containing Tumor_Sample_Barcode or sample names in input file. |
table |
reference table used for gene-based annotations. Can be 'ensGene' or 'refGene'. Default 'refGene' |
ens2hugo |
If 'table' is 'ensGene', setting this argument to 'TRUE' converts all ensemble IDs to hugo symbols. |
basename |
If provided writes resulting MAF file to an output file. |
sep |
field seperator for input file. Default tab seperated. |
MAFobj |
If TRUE, returns results as an |
sampleAnno |
annotations associated with each sample/Tumor_Sample_Barcode in input annovar file. If provided it will be included in MAF object. Could be a text file or a data.frame. Ideally annotation would contain clinical data, survival information and other necessary features associated with samples. Default NULL. |
Annovar is one of the most widely used Variant Annotation tools in Genomics. Annovar output is generally in a tabular format with various annotation columns. This function converts such annovar output files into MAF. This function requires that annovar was run with gene based annotation as a first operation, before including any filter or region based annotations. Please be aware that this function performs no transcript prioritization.
e.g,
table_annovar.pl example/ex1.avinput humandb/ -buildver hg19 -out myanno -remove -protocol (refGene
),cytoBand,dbnsfp30a -operation (g
),r,f -nastring NA
This function mainly uses gene based annotations for processing, rest of the annotation columns from input file will be attached to the end of the resulting MAF.
MAF table.
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010).
var.annovar <- system.file("extdata", "variants.hg19_multianno.txt", package = "maftools") var.annovar.maf <- annovarToMaf(annovar = var.annovar, Center = 'CSI-NUS', refBuild = 'hg19', tsbCol = 'Tumor_Sample_Barcode', table = 'ensGene')
var.annovar <- system.file("extdata", "variants.hg19_multianno.txt", package = "maftools") var.annovar.maf <- annovarToMaf(annovar = var.annovar, Center = 'CSI-NUS', refBuild = 'hg19', tsbCol = 'Tumor_Sample_Barcode', table = 'ensGene')
Given a BAM file and target loci, 'bamreadcounts' fetches redcounts for A, T, G, C, Ins, and Del. Function name is an homage to https://github.com/genome/bam-readcount
bamreadcounts( bam = NULL, loci = NULL, zerobased = FALSE, mapq = 10, sam_flag = 1024, op = NULL, fa = NULL, nthreads = 4 )
bamreadcounts( bam = NULL, loci = NULL, zerobased = FALSE, mapq = 10, sam_flag = 1024, op = NULL, fa = NULL, nthreads = 4 )
bam |
Input bam file(s). Required. |
loci |
Loci file. Can be a tsv file or a data.frame. First two columns should contain chromosome and position (by default assumes coordinates are 1-based) |
zerobased |
are coordinates zero-based. Default FALSE. |
mapq |
Map quality. Default 10 |
sam_flag |
SAM FLAG to filter reads. Default 1024 |
op |
Output file basename. Default parses from BAM file |
fa |
Indexed fasta file. If provided, extracts and adds reference base to the output tsv. |
nthreads |
Number of threads to use. Each BAM file will be launched on a separate thread. Works only on Unix and macOS. |
'cancerhotspots' allows rapid genotyping of known somatic variants from the tumor BAM files. This facilitates to get a quick overlook of known somatic hot-spots in a matter of minutes, without spending hours on variant calling and annotation. In simple words, it fetches nucleotide frequencies of known somatic hotspots and prioritizes them based on allele frequency. Output includes a browsable/sharable HTML report of candidate variants. Known cancerhotspots for both GRCh37 and GRCh38 assemblies (3180 variants) are included. This should be sufficient and cover most of the known driver genes/events. See Reference for details.
cancerhotspots( bam = NULL, refbuild = "GRCh37", mapq = 10, sam_flag = 1024, vaf = 0.05, t_depth = 30, t_alt_count = 8, op = NULL, fa = NULL, browse = FALSE )
cancerhotspots( bam = NULL, refbuild = "GRCh37", mapq = 10, sam_flag = 1024, vaf = 0.05, t_depth = 30, t_alt_count = 8, op = NULL, fa = NULL, browse = FALSE )
bam |
Input bam file. Required. |
refbuild |
Default "GRCh37". Can be "GRCh37", "GRCh38", "hg19", "hg38" |
mapq |
Map quality. Default 10 |
sam_flag |
SAM FLAG to filter reads. Default 1024 |
vaf |
VAF threshold. Default 0.05 [Variant filter] |
t_depth |
Depth of coverage threshold. Default 30 [Variant filter] |
t_alt_count |
Min. number of reads supporting tumor allele . Default 8 [Variant filter] |
op |
Output file basename. Default parses from BAM file |
fa |
Indexed fasta file. If provided, extracts and adds reference base to the output tsv. |
browse |
If TRUE opens the html file in browser |
Chang MT, Asthana S, Gao SP, et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol. 2016;34(2):155-163. doi:10.1038/nbt.3391
Takes tsv files generated by cancerhotspots
and aggregates them into an MAF for downstream analysis
cancerhotspotsAggr( tsvs = NULL, minVaf = 0.02, minDepth = 15, sampleNames = NULL, maf = TRUE, ... )
cancerhotspotsAggr( tsvs = NULL, minVaf = 0.02, minDepth = 15, sampleNames = NULL, maf = TRUE, ... )
tsvs |
TSV files generated by |
minVaf |
Min. VAF threshold. Default 0.02 |
minDepth |
Min. depth of coverage. Default 15 |
sampleNames |
samples for each tsv file. Default NULL. Parses from file names. |
maf |
Return as an MAF object. Default TRUE. |
... |
Additional argumnets passed to |
MAF
object
Performs pairwise and groupwise fisher exact tests to find differentially enriched genes for every factor within a clinical feature.
clinicalEnrichment( maf, clinicalFeature = NULL, annotationDat = NULL, minMut = 5, useCNV = TRUE, pathways = FALSE )
clinicalEnrichment( maf, clinicalFeature = NULL, annotationDat = NULL, minMut = 5, useCNV = TRUE, pathways = FALSE )
maf |
|
clinicalFeature |
columns names from 'clinical.data' slot of |
annotationDat |
If MAF file was read without clinical data, provide a custom |
minMut |
Consider only genes with minimum this number of samples mutated. Default 5. |
useCNV |
whether to include copy number events if available. Default TRUE. Not applicable when 'pathways = TRUE' |
pathways |
Summarize genes by pathways before comparing. Default 'FALSE' |
Performs fishers test on 2x2 contingency table for WT/Mutants in group of interest vs rest of the sample. Odds Ratio indicate the odds of observing mutant in the group of interest compared to wild-type
result list containing p-values
## Not run: laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) clinicalEnrichment(laml, 'FAB_classification') ## End(Not run)
## Not run: laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) clinicalEnrichment(laml, 'FAB_classification') ## End(Not run)
Draw two barplots side by side for cohort comparision.
coBarplot( m1, m2, genes = NULL, orderBy = NULL, m1Name = NULL, m2Name = NULL, colors = NULL, normalize = TRUE, yLims = NULL, borderCol = "gray", titleSize = 1, geneSize = 0.8, showPct = TRUE, pctSize = 0.7, axisSize = 0.8, showLegend = TRUE, legendTxtSize = 1, geneMar = 4 )
coBarplot( m1, m2, genes = NULL, orderBy = NULL, m1Name = NULL, m2Name = NULL, colors = NULL, normalize = TRUE, yLims = NULL, borderCol = "gray", titleSize = 1, geneSize = 0.8, showPct = TRUE, pctSize = 0.7, axisSize = 0.8, showLegend = TRUE, legendTxtSize = 1, geneMar = 4 )
m1 |
first |
m2 |
second |
genes |
genes to be drawn. Default takes top 5 mutated genes. |
orderBy |
Order genes by mutation rate in 'm1' or 'm2'. Default 'NULL', keeps the same order of 'genes' |
m1Name |
optional name for first cohort |
m2Name |
optional name for second cohort |
colors |
named vector of colors for each Variant_Classification. |
normalize |
Default TRUE. |
yLims |
Default NULL. Auto estimates. Maximum values for 'm1' and 'm2' respectively |
borderCol |
Default gray |
titleSize |
Default 1 |
geneSize |
Default 0.8 |
showPct |
Default TRUE |
pctSize |
Default 0.7 |
axisSize |
Default 0.8 |
showLegend |
Default TRUE. |
legendTxtSize |
Default 0.8 |
geneMar |
Default 4 |
Draws two barplots side by side to display difference between two cohorts.
Returns nothing. Just draws plot.
#' ##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Plot coBarplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL') dev.off()
#' ##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Plot coBarplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL') dev.off()
Use two GISTIC object or/and two MAF objects to view a vertical arranged version of Gistic Chromosome plot results on the Amp or Del G-scores.
coGisticChromPlot( gistic1 = NULL, gistic2 = NULL, g1Name = "", g2Name = "", type = "Amp", markBands = TRUE, labelGenes = TRUE, gLims = NULL, maf1 = NULL, maf2 = NULL, mutGenes = NULL, mutGenes1 = NULL, mutGenes2 = NULL, fdrCutOff = 0.05, symmetric = TRUE, color = NULL, ref.build = "hg19", cytobandOffset = "auto", txtSize = 0.8, cytobandTxtSize = 1, mutGenesTxtSize = 0.6, rugTickSize = 0.1 )
coGisticChromPlot( gistic1 = NULL, gistic2 = NULL, g1Name = "", g2Name = "", type = "Amp", markBands = TRUE, labelGenes = TRUE, gLims = NULL, maf1 = NULL, maf2 = NULL, mutGenes = NULL, mutGenes1 = NULL, mutGenes2 = NULL, fdrCutOff = 0.05, symmetric = TRUE, color = NULL, ref.build = "hg19", cytobandOffset = "auto", txtSize = 0.8, cytobandTxtSize = 1, mutGenesTxtSize = 0.6, rugTickSize = 0.1 )
gistic1 |
first |
gistic2 |
second |
g1Name |
the title of the left side |
g2Name |
the title of the right side |
type |
default 'Amp', c('Amp',"Del"), choose one to plot, only focal events are shown, 'Amp' only shows the Amplification events, and 'Del' only shows the Deletion events. |
markBands |
default TRUE, integer of length 1 or 2 or TRUE, mark cytoband names of the outer side of the plot |
labelGenes |
if you want to label some genes you are interested along the chromosome, set it to TRUE |
gLims |
Controls the G-score's axis limits. Default NULL. |
maf1 , maf2
|
if labelGenes==TRUE, you need to provide |
mutGenes , mutGenes1 , mutGenes2
|
default NULL, could be NULL, number, or character vector of gene symbols which match the corresponding MAF object's Hugo_Symbol column values. mutGenes controls both sides of the annotation, mutGenes1 controls only left side and corresponding data is extracted from to maf1, and mutGenes2 controls only right side annotation and corresponding to maf2. If 'NULL', extract the top 50 mutated genes from maf1 and maf2 seperatedly then annotate them on the left side (maf1 genes) and right side (maf2 genes). if integer, say N, only top N genes will be extracted seperately from maf1 and maf2. These two condition leads to different genes annotated on both sides. If character vector, then the genes have mutated in maf1 and maf2 will be annotated on both side of the figure which mean the two sides have the same list of genes. if mutGenes is not NULL and both mutGenes1 and mutGenes1 are NULL, then the auto set mutGenes1 = mutGenes2 = mutGenes. |
fdrCutOff |
default 0.05,only items with FDR < fdrCutOff will be colored as Amp or Del ( colored 'Red' or 'Blue'), others will be seen as non-significant events (colored gray) |
symmetric |
default TRUE, If False, when the gistic1 and gistic2 have different max values of G-scores, the Chrom (0 point of x axis) will not be in the center of the whole plot, if you set symmetric==TRUE, then the one with smaller max(G-score) will be stretched larger to make the 0 of the x axis in the middle which eventually make the plot more symmetric. |
color |
NULL or a named vector. the color of the G-score lines, default NULL which will set the color c(Amp = "red", Del = "blue", neutral = 'gray70') |
ref.build |
default "hg19", c('hg18','hg19','hg38') supported at current. |
cytobandOffset |
default 'auto', the width of the chromosome rects (Y axis at 0 point of X axis). by default will be 0.015 of the width of the whole x axis length. |
txtSize |
the zoom value of most of the texts |
cytobandTxtSize |
textsize of the cytoband annotation |
mutGenesTxtSize |
textsize of the mutGenes annotation |
rugTickSize |
the rug line width of the cytoband annotation |
bio_sun - https://github.com/biosunsci
## Not run: gistic_res_folder = system.file("extdata",package = "maftools") laml.gistic = readGistic(gistic_res_folder) laml.gistic2 = readGistic(gistic_res_folder) laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) laml2 = laml # --- plot --- gisticChromPlot2v(gistic1 = laml.gistic, gistic2 = laml.gistic2, type='Del', symmetric = TRUE, g1Name = 'TCGA1', g2Name = 'TCGA2', maf1 = laml, maf2 = laml2, mutGenes = 30) ## End(Not run)
## Not run: gistic_res_folder = system.file("extdata",package = "maftools") laml.gistic = readGistic(gistic_res_folder) laml.gistic2 = readGistic(gistic_res_folder) laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) laml2 = laml # --- plot --- gisticChromPlot2v(gistic1 = laml.gistic, gistic2 = laml.gistic2, type='Del', symmetric = TRUE, g1Name = 'TCGA1', g2Name = 'TCGA2', maf1 = laml, maf2 = laml2, mutGenes = 30) ## End(Not run)
Takes results from extractSignatures
and compares them known COSMIC signatures. Two COSMIC databases are used for comparisons - "legacy" which includes 30 signaures, and "SBS" - which includes updated/refined 65 signatures
compareSignatures(nmfRes, sig_db = "SBS_v34", verbose = TRUE)
compareSignatures(nmfRes, sig_db = "SBS_v34", verbose = TRUE)
nmfRes |
results from |
sig_db |
can be |
verbose |
Default TRUE |
SBS signature database was obtained from https://www.synapse.org/#!Synapse:syn11738319.7
list containing cosine smilarities, aetiologies if available, and best match.
trinucleotideMatrix
extractSignatures
plotSignatures
Draw two oncoplots side by side for cohort comparision.
coOncoplot( m1, m2, genes = NULL, m1Name = NULL, m2Name = NULL, clinicalFeatures1 = NULL, clinicalFeatures2 = NULL, annotationColor1 = NULL, annotationColor2 = NULL, annotationFontSize = 1.2, sortByM1 = FALSE, sortByM2 = FALSE, sortByAnnotation1 = FALSE, annotationOrder1 = NULL, sortByAnnotation2 = FALSE, annotationOrder2 = NULL, sampleOrder1 = NULL, sampleOrder2 = NULL, additionalFeature1 = NULL, additionalFeaturePch1 = 20, additionalFeatureCol1 = "white", additionalFeatureCex1 = 0.9, additionalFeature2 = NULL, additionalFeaturePch2 = 20, additionalFeatureCol2 = "white", additionalFeatureCex2 = 0.9, sepwd_genes1 = 0.5, sepwd_samples1 = 0.5, sepwd_genes2 = 0.5, sepwd_samples2 = 0.5, colors = NULL, removeNonMutated = TRUE, anno_height = 2, legend_height = 4, geneNamefont = 0.8, showSampleNames = FALSE, SampleNamefont = 0.5, barcode_mar = 1, outer_mar = 3, gene_mar = 1, legendFontSize = 1.2, titleFontSize = 1.5, keepGeneOrder = FALSE, bgCol = "#ecf0f1", borderCol = "white" )
coOncoplot( m1, m2, genes = NULL, m1Name = NULL, m2Name = NULL, clinicalFeatures1 = NULL, clinicalFeatures2 = NULL, annotationColor1 = NULL, annotationColor2 = NULL, annotationFontSize = 1.2, sortByM1 = FALSE, sortByM2 = FALSE, sortByAnnotation1 = FALSE, annotationOrder1 = NULL, sortByAnnotation2 = FALSE, annotationOrder2 = NULL, sampleOrder1 = NULL, sampleOrder2 = NULL, additionalFeature1 = NULL, additionalFeaturePch1 = 20, additionalFeatureCol1 = "white", additionalFeatureCex1 = 0.9, additionalFeature2 = NULL, additionalFeaturePch2 = 20, additionalFeatureCol2 = "white", additionalFeatureCex2 = 0.9, sepwd_genes1 = 0.5, sepwd_samples1 = 0.5, sepwd_genes2 = 0.5, sepwd_samples2 = 0.5, colors = NULL, removeNonMutated = TRUE, anno_height = 2, legend_height = 4, geneNamefont = 0.8, showSampleNames = FALSE, SampleNamefont = 0.5, barcode_mar = 1, outer_mar = 3, gene_mar = 1, legendFontSize = 1.2, titleFontSize = 1.5, keepGeneOrder = FALSE, bgCol = "#ecf0f1", borderCol = "white" )
m1 |
first |
m2 |
second |
genes |
draw these genes. Default plots top 5 mutated genes from two cohorts. |
m1Name |
optional name for first cohort |
m2Name |
optional name for second cohort |
clinicalFeatures1 |
columns names from 'clinical.data' slot of m1 |
clinicalFeatures2 |
columns names from 'clinical.data' slot of m2 |
annotationColor1 |
list of colors to use for 'clinicalFeatures1' Default NULL. |
annotationColor2 |
list of colors to use for 'clinicalFeatures2' Default NULL. |
annotationFontSize |
font size for annotations Default 1.2 |
sortByM1 |
sort by mutation frequency in 'm1' |
sortByM2 |
sort by mutation frequency in 'm2' |
sortByAnnotation1 |
logical sort oncomatrix (samples) by provided 'clinicalFeatures1'. Sorts based on first 'clinicalFeatures1'. Defaults to FALSE. column-sort |
annotationOrder1 |
Manually specify order for annotations for 'clinicalFeatures1'. Works only for first value. Default NULL. |
sortByAnnotation2 |
same as above but for m2 |
annotationOrder2 |
Manually specify order for annotations for 'clinicalFeatures2'. Works only for first value. Default NULL. |
sampleOrder1 |
Manually specify sample names in m1 for oncolplot ordering. Default NULL. |
sampleOrder2 |
Manually specify sample names in m2 for oncolplot ordering. Default NULL. |
additionalFeature1 |
a vector of length two indicating column name in the MAF and the factor level to be highlighted. |
additionalFeaturePch1 |
Default 20 |
additionalFeatureCol1 |
Default "white" |
additionalFeatureCex1 |
Default 0.9 |
additionalFeature2 |
a vector of length two indicating column name in the MAF and the factor level to be highlighted. |
additionalFeaturePch2 |
Default 20 |
additionalFeatureCol2 |
Default "white" |
additionalFeatureCex2 |
Default 0.9 |
sepwd_genes1 |
Default 0.5 |
sepwd_samples1 |
Default 0.5 |
sepwd_genes2 |
Default 0.5 |
sepwd_samples2 |
Default 0.5 |
colors |
named vector of colors for each Variant_Classification. |
removeNonMutated |
Logical. If |
anno_height |
Height of clinical margin. Default 2 |
legend_height |
Height of legend margin. Default 4 |
geneNamefont |
font size for gene names. Default 1 |
showSampleNames |
whether to show sample names. Defult FALSE. |
SampleNamefont |
font size for sample names. Default 0.5 |
barcode_mar |
Margin width for sample names. Default 1 |
outer_mar |
Margin width for outer. Default 3 |
gene_mar |
Margin width for gene names. Default 1 |
legendFontSize |
font size for legend. Default 1.2 |
titleFontSize |
font size for title. Default 1.5 |
keepGeneOrder |
force the resulting plot to use the order of the genes as specified. Default FALSE |
bgCol |
Background grid color for wild-type (not-mutated) samples. Default gray - "#CCCCCC" |
borderCol |
border grid color for wild-type (not-mutated) samples. Default 'white' |
Draws two oncoplots side by side to display difference between two cohorts.
Invisibly returns a list of sample names in their order of occurrences in M1 and M2 respectively.
#' ##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Plot coOncoplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL') dev.off()
#' ##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Plot coOncoplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL') dev.off()
Checks for drug-gene interactions and druggable categories
drugInteractions( maf, top = 20, genes = NULL, plotType = "bar", drugs = FALSE, fontSize = 0.8 )
drugInteractions( maf, top = 20, genes = NULL, plotType = "bar", drugs = FALSE, fontSize = 0.8 )
maf |
|
top |
Top number genes to check for. Default 20 |
genes |
Manually specify gene list |
plotType |
Can be bar, pie Default bar plot. |
drugs |
Check for known/reported drugs. Default FALSE |
fontSize |
Default 0.8 |
This function takes a list of genes and checks for known/reported drug-gene interactions or Druggable categories. All gene-drug interactions and drug claims are compiled from Drug Gene Interaction Databse. See reference for details and cite it if you use this function.
Griffith, M., Griffith, O. L., Coffman, A. C., Weible, J. V., McMichael, J. F., Spies, N. C., et. al,. 2013. DGIdb - Mining the druggable genome. Nature Methods.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) drugInteractions(maf = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) drugInteractions(maf = laml)
Estimate number of signatures based on cophenetic correlation metric
estimateSignatures( mat, nMin = 2, nTry = 6, nrun = 10, parallel = 4, pConstant = NULL, verbose = TRUE, plotBestFitRes = FALSE )
estimateSignatures( mat, nMin = 2, nTry = 6, nrun = 10, parallel = 4, pConstant = NULL, verbose = TRUE, plotBestFitRes = FALSE )
mat |
Input matrix of diemnsion nx96 generated by |
nMin |
Minimum number of signatures to try. Default 2. |
nTry |
Maximum number of signatures to try. Default 6. |
nrun |
numeric giving the number of run to perform for each value in range. Default 5 |
parallel |
Default 4. Number of cores to use. |
pConstant |
A small positive value to add to the matrix. Use it ONLY if the functions throws an |
verbose |
Default TRUE |
plotBestFitRes |
plots consensus heatmap for range of values tried. Default FALSE |
This function decomposes a non-negative matrix into n signatures. Extracted signatures are compared against 30 experimentally validated signatures by calculating cosine similarity. See http://cancer.sanger.ac.uk/cosmic/signatures for details.
a list with NMF.rank
object and summary stats.
plotCophenetic
extractSignatures
trinucleotideMatrix
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) library("NMF") laml.sign <- estimateSignatures(mat = laml.tnm, plotBestFitRes = FALSE, nMin = 2, nTry = 3, nrun = 2, pConstant = 0.01) ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) library("NMF") laml.sign <- estimateSignatures(mat = laml.tnm, plotBestFitRes = FALSE, nMin = 2, nTry = 3, nrun = 2, pConstant = 0.01) ## End(Not run)
Decompose a matrix of 96 substitution classes into n
signatures.
extractSignatures( mat, n = NULL, plotBestFitRes = FALSE, parallel = 4, pConstant = NULL )
extractSignatures( mat, n = NULL, plotBestFitRes = FALSE, parallel = 4, pConstant = NULL )
mat |
Input matrix of diemnsion nx96 generated by |
n |
decompose matrix into n signatures. Default NULL. Tries to predict best value for |
plotBestFitRes |
plots consensus heatmap for range of values tried. Default FALSE |
parallel |
Default 4. Number of cores to use. |
pConstant |
A small positive value to add to the matrix. Use it ONLY if the functions throws an |
This function decomposes a non-negative matrix into n signatures.
a list with decomposed scaled signatures, signature contributions in each sample and NMF object.
trinucleotideMatrix
plotSignatures
compareSignatures
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) library("NMF") laml.sign <- extractSignatures(mat = laml.tnm, plotBestFitRes = FALSE, n = 2, pConstant = 0.01) ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) library("NMF") laml.sign <- extractSignatures(mat = laml.tnm, plotBestFitRes = FALSE, n = 2, pConstant = 0.01) ## End(Not run)
Filter MAF by genes or samples
filterMaf(maf, genes = NULL, tsb = NULL, isTCGA = FALSE)
filterMaf(maf, genes = NULL, tsb = NULL, isTCGA = FALSE)
maf |
an MAF object generated by |
genes |
remove these genes |
tsb |
remove these samples (Tumor Sample Barcodes) |
isTCGA |
FALSE |
Filtered object of class MAF-class
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) #get rid of samples of interest filterMaf(maf = laml, tsb = c("TCGA-AB-2830", "TCGA-AB-2804")) #remove genes of intrest filterMaf(maf = laml, genes =c("TTN", "AHNAK2"))
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) #get rid of samples of interest filterMaf(maf = laml, tsb = c("TCGA-AB-2830", "TCGA-AB-2804")) #remove genes of intrest filterMaf(maf = laml, genes =c("TTN", "AHNAK2"))
Draw forest plot for differences betweeen cohorts.
forestPlot( mafCompareRes, pVal = 0.05, fdr = NULL, color = c("maroon", "royalblue"), geneFontSize = 0.8, titleSize = 1.2, lineWidth = 1 )
forestPlot( mafCompareRes, pVal = 0.05, fdr = NULL, color = c("maroon", "royalblue"), geneFontSize = 0.8, titleSize = 1.2, lineWidth = 1 )
mafCompareRes |
results from |
pVal |
p-value threshold. Default 0.05. |
fdr |
fdr threshold. Default NULL. If provided uses adjusted pvalues (fdr). |
color |
vector of two colors for the lines. Default 'maroon' and 'royalblue' |
geneFontSize |
Font size for gene symbols. Default 0.8 |
titleSize |
font size for titles. Default 1.2 |
lineWidth |
line width for CI bars. Default 1 |
Plots results from link{mafCompare}
as a forest plot with x-axis as log10 converted odds ratio and differentially mutated genes on y-axis.
Nothing
##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Perform analysis and draw forest plot. pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary', m2Name = 'Relapse', minMut = 5) forestPlot(mafCompareRes = pt.vs.rt)
##Primary and Relapse APL primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") ##Read mafs primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) ##Perform analysis and draw forest plot. pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary', m2Name = 'Relapse', minMut = 5) forestPlot(mafCompareRes = pt.vs.rt)
Extracts Tumor Sample Barcodes where the given genes are mutated.
genesToBarcodes(maf, genes = NULL, justNames = FALSE, verbose = TRUE)
genesToBarcodes(maf, genes = NULL, justNames = FALSE, verbose = TRUE)
maf |
|
genes |
Hogo_Symbol for which sample names to be extracted. |
justNames |
if TRUE, just returns samples names instead of summarized tables. |
verbose |
Default TRUE |
list of data.table
s with samples in which given genes are mutated.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) genesToBarcodes(maf = laml, genes = 'DNMT3A')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) genesToBarcodes(maf = laml, genes = 'DNMT3A')
Creates a Genotype matrix using allele frequcies or by muatation status.
genotypeMatrix( maf, genes = NULL, tsb = NULL, includeSyn = FALSE, vafCol = NULL, vafCutoff = c(0.1, 0.75) )
genotypeMatrix( maf, genes = NULL, tsb = NULL, includeSyn = FALSE, vafCol = NULL, vafCutoff = c(0.1, 0.75) )
maf |
|
genes |
create matrix for only these genes. Define NULL |
tsb |
create matrix for only these tumor sample barcodes/samples. Define NULL |
includeSyn |
whether to include silent mutations. Default FALSE |
vafCol |
specify column name for vaf's. Default NULL. If not provided simply assumes all mutations are heterozygous. |
vafCutoff |
specify minimum and maximum vaf to define mutations as heterozygous. Default range 0.1 to 0.75. Mutations above maximum vafs are defined as homozygous. |
matrix
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) genotypeMatrix(maf = laml, genes = "RUNX1")
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) genotypeMatrix(maf = laml, genes = "RUNX1")
extract annotations from MAF object
getClinicalData(x) ## S4 method for signature 'MAF' getClinicalData(x)
getClinicalData(x) ## S4 method for signature 'MAF' getClinicalData(x)
x |
An object of class MAF |
annotations associated with samples in MAF
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getClinicalData(x = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getClinicalData(x = laml)
extract cytoband summary from GISTIC object
getCytobandSummary(x) ## S4 method for signature 'GISTIC' getCytobandSummary(x)
getCytobandSummary(x) ## S4 method for signature 'GISTIC' getCytobandSummary(x)
x |
An object of class GISTIC |
summarizied gistic results by altered cytobands.
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) getCytobandSummary(laml.gistic)
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) getCytobandSummary(laml.gistic)
extract available fields from MAF object
getFields(x) ## S4 method for signature 'MAF' getFields(x)
getFields(x) ## S4 method for signature 'MAF' getFields(x)
x |
An object of class MAF |
Field names in MAF file
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getFields(x = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getFields(x = laml)
extract gene summary from MAF or GISTIC object
getGeneSummary(x) ## S4 method for signature 'MAF' getGeneSummary(x) ## S4 method for signature 'GISTIC' getGeneSummary(x)
getGeneSummary(x) ## S4 method for signature 'MAF' getGeneSummary(x) ## S4 method for signature 'GISTIC' getGeneSummary(x)
x |
An object of class MAF or GISTIC |
gene summary table
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getGeneSummary(laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getGeneSummary(laml)
extract sample summary from MAF or GISTIC object
getSampleSummary(x) ## S4 method for signature 'MAF' getSampleSummary(x) ## S4 method for signature 'GISTIC' getSampleSummary(x)
getSampleSummary(x) ## S4 method for signature 'MAF' getSampleSummary(x) ## S4 method for signature 'GISTIC' getSampleSummary(x)
x |
An object of class MAF or GISTIC |
sample summary table
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getSampleSummary(x = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) getSampleSummary(x = laml)
S4 class for storing summarized MAF.
data
data.table of summarized GISTIC file.
cnv.summary
table containing alterations per sample
cytoband.summary
table containing alterations per cytoband
gene.summary
table containing alterations per gene
cnMatrix
character matrix of dimension n*m where n is number of genes and m is number of samples
numericMatrix
numeric matrix of dimension n*m where n is number of genes and m is number of samples
gis.scores
gistic.scores
summary
table with basic GISTIC summary stats
classCode
mapping between numeric values in numericMatrix and copy number events.
getGeneSummary
getSampleSummary
getCytobandSummary
Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each bubble is according to -log10 transformed q values.
gisticBubblePlot( gistic = NULL, color = NULL, markBands = NULL, fdrCutOff = 0.1, log_y = TRUE, txtSize = 3 )
gisticBubblePlot( gistic = NULL, color = NULL, markBands = NULL, fdrCutOff = 0.1, log_y = TRUE, txtSize = 3 )
gistic |
an object of class |
color |
colors for Amp and Del events. |
markBands |
any cytobands to label. Can be cytoband labels, or number of top bands to highlight. Default top 5 lowest q values. |
fdrCutOff |
fdr cutoff to use. Default 0.1 |
log_y |
log10 scale y-axis (# genes affected). Default TRUE |
txtSize |
label size for bubbles. |
Nothing
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticBubblePlot(gistic = laml.gistic, markBands = "")
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticBubblePlot(gistic = laml.gistic, markBands = "")
A genomic plot with segments highlighting signififcant Amplifications and Deletion regions.
gisticChromPlot( gistic = NULL, fdrCutOff = 0.1, markBands = NULL, color = NULL, ref.build = "hg19", cytobandOffset = 0.01, txtSize = 0.8, cytobandTxtSize = 0.6, maf = NULL, mutGenes = NULL, y_lims = NULL, mutGenesTxtSize = 0.6 )
gisticChromPlot( gistic = NULL, fdrCutOff = 0.1, markBands = NULL, color = NULL, ref.build = "hg19", cytobandOffset = 0.01, txtSize = 0.8, cytobandTxtSize = 0.6, maf = NULL, mutGenes = NULL, y_lims = NULL, mutGenesTxtSize = 0.6 )
gistic |
an object of class |
fdrCutOff |
fdr cutoff to use. Default 0.1 |
markBands |
any cytobands to label. Default top 5 lowest q values. |
color |
colors for Amp and Del events. |
ref.build |
reference build. Could be hg18, hg19 or hg38. |
cytobandOffset |
if scores.gistic file is given use this to adjust cytoband size. |
txtSize |
label size for lables |
cytobandTxtSize |
label size for cytoband |
maf |
an optional maf object |
mutGenes |
mutated genes from maf object to be highlighted |
y_lims |
Deafult NULL. A vector upper and lower y-axis limits |
mutGenesTxtSize |
Default 0.6 |
nothing
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticChromPlot(laml.gistic)
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticChromPlot(laml.gistic)
compare two GISTIC objects
gisticCompare( g1, g2, g1Name = NULL, g2Name = NULL, minEvent = 5, pseudoCount = FALSE )
gisticCompare( g1, g2, g1Name = NULL, g2Name = NULL, minEvent = 5, pseudoCount = FALSE )
g1 |
first |
g2 |
second |
g1Name |
optional name for first cohort |
g2Name |
optional name for second cohort |
minEvent |
Consider only cytobands with minimum this number of samples altered in at least one of the cohort for analysis. Helpful to ignore single mutated genes. Default 5. |
pseudoCount |
If TRUE, adds 1 to the contingency table with 0's to avoid 'Inf' values in the estimated odds-ratio. |
Performs fisher test on 2x2 contingency table generated from two GISTIC objects
result list
takes output generated by readGistic and draws a plot similar to oncoplot.
gisticOncoPlot( gistic = NULL, top = NULL, bands = NULL, showTumorSampleBarcodes = FALSE, gene_mar = 5, barcode_mar = 6, right_mar = 2.5, sepwd_genes = 0.5, sepwd_samples = 0.25, clinicalData = NULL, clinicalFeatures = NULL, sortByAnnotation = FALSE, sampleOrder = NULL, annotationColor = NULL, bandsToIgnore = NULL, removeNonAltered = TRUE, colors = NULL, SampleNamefontSize = 0.6, fontSize = 0.8, legendFontSize = 1.2, annotationFontSize = 1.2, borderCol = "white", bgCol = "#CCCCCC" )
gisticOncoPlot( gistic = NULL, top = NULL, bands = NULL, showTumorSampleBarcodes = FALSE, gene_mar = 5, barcode_mar = 6, right_mar = 2.5, sepwd_genes = 0.5, sepwd_samples = 0.25, clinicalData = NULL, clinicalFeatures = NULL, sortByAnnotation = FALSE, sampleOrder = NULL, annotationColor = NULL, bandsToIgnore = NULL, removeNonAltered = TRUE, colors = NULL, SampleNamefontSize = 0.6, fontSize = 0.8, legendFontSize = 1.2, annotationFontSize = 1.2, borderCol = "white", bgCol = "#CCCCCC" )
gistic |
an |
top |
how many top cytobands to be drawn. defaults to all. |
bands |
draw oncoplot for these bands. Default NULL. |
showTumorSampleBarcodes |
logical to include sample names. |
gene_mar |
Default 5 |
barcode_mar |
Default 6 |
right_mar |
Default 2.5 |
sepwd_genes |
Default 0.5 |
sepwd_samples |
Default 0.25 |
clinicalData |
data.frame with columns containing Tumor_Sample_Barcodes and rest of columns with annotations. |
clinicalFeatures |
columns names from 'clinicalData' to be drawn in the plot. Dafault NULL. |
sortByAnnotation |
logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Defaults to FALSE. column-sort |
sampleOrder |
Manually speify sample names for oncolplot ordering. Default NULL. |
annotationColor |
list of colors to use for clinicalFeatures. Default NULL. |
bandsToIgnore |
do not show these bands in the plot Default NULL. |
removeNonAltered |
Logical. If |
colors |
named vector of colors Amp and Del events. |
SampleNamefontSize |
font size for sample names. Default 0.6 |
fontSize |
font size for cytoband names. Default 0.8 |
legendFontSize |
font size for legend. Default 1.2 |
annotationFontSize |
font size for annotations. Default 1.2 |
borderCol |
Default "white" |
bgCol |
Default "#CCCCCC" |
Takes gistic file as input and plots it as a matrix. Any desired annotations can be added at the bottom of the oncoplot by providing annotation
None.
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticOncoPlot(laml.gistic)
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) gisticOncoPlot(laml.gistic)
The function will generate tsv files '<tumor/normal>_nucleotide_counts.tsv' that can be used for downstream analysis. Note that the function will process ~900K loci from Affymetrix Genome-Wide Human SNP 6.0 Array. The process can be sped up by increasing 'nthreads' which will launch each chromosome on a separate thread. Currently hg19 and hg38 are supported. Files need to be further processed with prepAscat
for tumor-normal pair, or prepAscat_t
for tumor only samples.
gtMarkers( t_bam = NULL, n_bam = NULL, build = "hg19", prefix = NULL, add = TRUE, mapq = 10, sam_flag = 1024, loci = NULL, fa = NULL, op = NULL, zerobased = FALSE, nthreads = 4, verbose = TRUE )
gtMarkers( t_bam = NULL, n_bam = NULL, build = "hg19", prefix = NULL, add = TRUE, mapq = 10, sam_flag = 1024, loci = NULL, fa = NULL, op = NULL, zerobased = FALSE, nthreads = 4, verbose = TRUE )
t_bam |
Tumor BAM file. Required |
n_bam |
Normal BAM file. Recommended |
build |
Default hg19. Mutually exclusive with 'loci'. Currently supported 'hg19' and 'hg38' and includes ca. 900K SNPs from Affymetrix Genome-Wide Human SNP 6.0 Array. SNP file has no 'chr' prefix. |
prefix |
Prefix to add or remove from contig names in loci file. For example, in case BAM files have ‘chr' prefix, set prefix = ’chr' |
add |
If prefix is used, default is to add prefix to contig names in loci file. If false prefix will be removed from contig names. |
mapq |
Minimum mapping quality. Default 10 |
sam_flag |
SAM FLAG to filter reads. Default 1024 |
loci |
A tab separated file with chr and position. If not available use 'build' argument. |
fa |
Indexed fasta file. If provided, extracts and adds reference base to the output tsv. |
op |
Output file basename. Default parses from BAM file |
zerobased |
are coordinates zero-based. Default FALSE. Use only if 'loci' is used. |
nthreads |
Number of threads to use. Default 4. Each chromosome will be launched on a separate thread. Works only on Unix and macOS. |
verbose |
Default TRUE |
prepAscat
prepAscat_t
segmentLogR
Converts ICGC Simple Somatic Mutation format file to Mutation Annotation Format. Basic fields are converted as per MAF specififcations, rest of the fields are retained as in the input file. Ensemble gene IDs are converted to HGNC Symbols. Note that by default Simple Somatic Mutation format contains all affected transcripts of a variant resuting in multiple entries of the same variant in same sample. It is hard to choose a single affected transcript based on annotations alone and by default this program removes repeated variants as duplicated entries. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.
icgcSimpleMutationToMAF( icgc, basename = NA, MAFobj = FALSE, clinicalData = NULL, removeDuplicatedVariants = TRUE, addHugoSymbol = FALSE )
icgcSimpleMutationToMAF( icgc, basename = NA, MAFobj = FALSE, clinicalData = NULL, removeDuplicatedVariants = TRUE, addHugoSymbol = FALSE )
icgc |
Input data in ICGC Simple Somatic Mutation format. Can be gz compressed. |
basename |
If given writes to output file with basename. |
MAFobj |
If TRUE returns results as an |
clinicalData |
Clinical data associated with each sample/Tumor_Sample_Barcode in MAF. Could be a text file or a data.frame. Default NULL. |
removeDuplicatedVariants |
removes repeated variants in a particuar sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE. |
addHugoSymbol |
If TRUE replaces ensemble gene IDs with Hugo_Symbols. Default FALSE. |
ICGC Simple Somatic Mutattion format specififcation can be found here: http://docs.icgc.org/submission/guide/icgc-simple-somatic-mutation-format/
tab delimited MAF file.
esca.icgc <- system.file("extdata", "simple_somatic_mutation.open.ESCA-CN.sample.tsv.gz", package = "maftools") esca.maf <- icgcSimpleMutationToMAF(icgc = esca.icgc)
esca.icgc <- system.file("extdata", "simple_somatic_mutation.open.ESCA-CN.sample.tsv.gz", package = "maftools") esca.maf <- icgcSimpleMutationToMAF(icgc = esca.icgc)
takes output generated by read.maf and clusters variants to infer tumor heterogeneity. This function requires VAF for clustering and density estimation. VAF can be on the scale 0-1 or 0-100. Optionally if copy number information is available, it can be provided as a segmented file (e.g, from Circular Binary Segmentation). Those variants in copy number altered regions will be ignored.
inferHeterogeneity( maf, tsb = NULL, top = 5, vafCol = NULL, segFile = NULL, ignChr = NULL, minVaf = 0, maxVaf = 1, useSyn = FALSE, dirichlet = FALSE )
inferHeterogeneity( maf, tsb = NULL, top = 5, vafCol = NULL, segFile = NULL, ignChr = NULL, minVaf = 0, maxVaf = 1, useSyn = FALSE, dirichlet = FALSE )
maf |
|
tsb |
specify sample names (Tumor_Sample_Barcodes) for which clustering has to be done. |
top |
if |
vafCol |
manually specify column name for vafs. Default looks for column 't_vaf' |
segFile |
path to CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale). |
ignChr |
ignore these chromosomes from analysis. e.g, sex chromsomes chrX, chrY. Default NULL. |
minVaf |
filter low frequency variants. Low vaf variants maybe due to sequencing error. Default 0. (on the scale of 0 to 1) |
maxVaf |
filter high frequency variants. High vaf variants maybe due to copy number alterations or impure tumor. Default 1. (on the scale of 0 to 1) |
useSyn |
Use synonymous variants. Default FALSE. |
dirichlet |
Deprecated! No longer supported. uses nonparametric dirichlet process for clustering. Default FALSE - uses finite mixture models. |
This function clusters variants based on VAF to estimate univariate density and cluster classification. There are two methods available for clustering. Default using parametric finite mixture models and another method using nonparametric inifinite mixture models (Dirichlet process).
list of clustering tables.
Chris Fraley and Adrian E. Raftery (2002) Model-based Clustering, Discriminant Analysis and Density Estimation Journal of the American Statistical Association 97:611-631
Jara A, Hanson TE, Quintana FA, Muller P, Rosner GL. DPpackage: Bayesian Semi- and Nonparametric Modeling in R. Journal of statistical software. 2011;40(5):1-30.
Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-72.
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-2972', vafCol = 'i_TumorVAF_WU') ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-2972', vafCol = 'i_TumorVAF_WU') ## End(Not run)
Draws lollipop plot of amino acid changes. Protein domains are derived from PFAM database.
lollipopPlot( maf, data = NULL, gene = NULL, AACol = NULL, labelPos = NULL, labPosSize = 0.9, showMutationRate = TRUE, showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, roundedRect = TRUE, repel = FALSE, collapsePosLabel = TRUE, showLegend = TRUE, legendTxtSize = 0.8, labPosAngle = 0, domainLabelSize = 0.8, axisTextSize = c(1, 1), printCount = FALSE, colors = NULL, domainAlpha = 1, domainBorderCol = "black", bgBorderCol = "black", labelOnlyUniqueDoamins = TRUE, defaultYaxis = FALSE, titleSize = c(1.2, 1), pointSize = 1.5 )
lollipopPlot( maf, data = NULL, gene = NULL, AACol = NULL, labelPos = NULL, labPosSize = 0.9, showMutationRate = TRUE, showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, roundedRect = TRUE, repel = FALSE, collapsePosLabel = TRUE, showLegend = TRUE, legendTxtSize = 0.8, labPosAngle = 0, domainLabelSize = 0.8, axisTextSize = c(1, 1), printCount = FALSE, colors = NULL, domainAlpha = 1, domainBorderCol = "black", bgBorderCol = "black", labelOnlyUniqueDoamins = TRUE, defaultYaxis = FALSE, titleSize = c(1.2, 1), pointSize = 1.5 )
maf |
|
data |
Provide a custom two column data frame with pos and counts instead of an |
gene |
HGNC symbol for which protein structure to be drawn. |
AACol |
manually specify column name for amino acid changes. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. Changes can be of any format i.e, can be a numeric value or HGVSp annotations (e.g; p.P459L, p.L2195Pfs*30 or p.Leu2195ProfsTer30) |
labelPos |
Amino acid positions to label. If 'all', labels all variants. |
labPosSize |
Text size for labels. Default 0.9 |
showMutationRate |
Whether to show the somatic mutation rate on the title. Default TRUE |
showDomainLabel |
Label domains within the plot. Default TRUE. If 'FALSE“ domains are annotated in legend. |
cBioPortal |
Adds annotations similar to cBioPortals MutationMapper and collapse Variants into Truncating and rest. |
refSeqID |
RefSeq transcript identifier for |
proteinID |
RefSeq protein identifier for |
roundedRect |
Default TRUE. If 'TRUE' domains are drawn with rounded corners. Requires |
repel |
If points are too close to each other, use this option to repel them. Default FALSE. Warning: naive method, might make plot ugly in case of too many variants! |
collapsePosLabel |
Collapses overlapping labels at same position. Default TRUE |
showLegend |
Default TRUE |
legendTxtSize |
Text size for legend. Default 0.8 |
labPosAngle |
angle for labels. Defaults to horizonal 0 degree labels. Set to 90 for vertical; 45 for diagonal labels. |
domainLabelSize |
text size for domain labels. Default 0.8 |
axisTextSize |
text size x and y tick labels. Default c(1,1). |
printCount |
If TRUE, prints number of summarized variants for the given protein. |
colors |
named vector of colors for each Variant_Classification. Default NULL. |
domainAlpha |
Default 1 |
domainBorderCol |
Default "black". Set to NA to remove. |
bgBorderCol |
Default "black". Set to NA to remove. |
labelOnlyUniqueDoamins |
Default TRUE only labels unique doamins. |
defaultYaxis |
If FALSE, just labels min and maximum y values on y axis. |
titleSize |
font size for title and subtitle. Default c(1.2, 1) |
pointSize |
size of lollipop heads. Default 1.5 |
This function by default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change' in maf file. One can also manually specify field name containing amino acid changes.
Nothing
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')
Compare two lollipop plots
lollipopPlot2( m1, m2, gene = NULL, AACol1 = NULL, AACol2 = NULL, m1_name = NULL, m2_name = NULL, m1_label = NULL, m2_label = NULL, refSeqID = NULL, proteinID = NULL, labPosAngle = 0, labPosSize = 0.9, colors = NULL, alpha = 1, axisTextSize = c(1, 1), pointSize = 1.2, roundedRect = TRUE, showDomainLabel = TRUE, domainBorderCol = "black", domainLabelSize = 1, legendTxtSize = 1, verbose = TRUE )
lollipopPlot2( m1, m2, gene = NULL, AACol1 = NULL, AACol2 = NULL, m1_name = NULL, m2_name = NULL, m1_label = NULL, m2_label = NULL, refSeqID = NULL, proteinID = NULL, labPosAngle = 0, labPosSize = 0.9, colors = NULL, alpha = 1, axisTextSize = c(1, 1), pointSize = 1.2, roundedRect = TRUE, showDomainLabel = TRUE, domainBorderCol = "black", domainLabelSize = 1, legendTxtSize = 1, verbose = TRUE )
m1 |
first |
m2 |
second |
gene |
HGNC symbol for which protein structure to be drawn. |
AACol1 |
manually specify column name for amino acid changes in m1. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. |
AACol2 |
manually specify column name for amino acid changes in m2. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. |
m1_name |
name for |
m2_name |
name for |
m1_label |
Amino acid positions to label for |
m2_label |
Amino acid positions to label for |
refSeqID |
RefSeq transcript identifier for |
proteinID |
RefSeq protein identifier for |
labPosAngle |
angle for labels. Defaults to horizonal 0 degree labels. Set to 90 for vertical; 45 for diagonal labels. |
labPosSize |
Text size for labels. Default 3 |
colors |
named vector of colors for each Variant_Classification. Default NULL. |
alpha |
color adjustment. Default 1 |
axisTextSize |
text size for axis labels. Default 1. |
pointSize |
size of lollipop heads. Default 1.2 |
roundedRect |
Default FALSE. If 'TRUE' domains are drawn with rounded corners. Requires |
showDomainLabel |
Label domains within the plot. Default TRUE. If FALSE domains are annotated in legend. |
domainBorderCol |
Default "black". Set to NA to remove. |
domainLabelSize |
text size for domain labels. Default 1. |
legendTxtSize |
Default 1. |
verbose |
Default TRUE |
Draws lollipop plot for a gene from two cohorts
invisible list of domain overlaps
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) lollipopPlot2(m1 = primary.apl, m2 = relapse.apl, gene = "FLT3",AACol1 = "amino_acid_change", AACol2 = "amino_acid_change", m1_name = "Primary", m2_name = "Relapse")
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) lollipopPlot2(m1 = primary.apl, m2 = relapse.apl, gene = "FLT3",AACol1 = "amino_acid_change", AACol2 = "amino_acid_change", m1_name = "Primary", m2_name = "Relapse")
Constructor function which takes non-synonymous, and synonymous variants along with an optional clinical information and generates an MAF object
MAF(nonSyn = NULL, syn = NULL, clinicalData = NULL, verbose = TRUE)
MAF(nonSyn = NULL, syn = NULL, clinicalData = NULL, verbose = TRUE)
nonSyn |
non-synonymous variants as a data.table or any object that can be coerced into a data.table (e.g: data.frame, GRanges) |
syn |
synonymous variants as a data.table or any object that can be coerced into a data.table (e.g: data.frame, GRanges) |
clinicalData |
Clinical data associated with each sample/Tumor_Sample_Barcode in MAF. Could be a text file or a data.frame. Requires at least a column with the name 'Tumor_Sample_Barcode' Default NULL. |
verbose |
Default TRUE |
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml_dt = data.table::fread(input = laml.maf) laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #Clinical data # Just for demonstration nsyn_vars = laml_dt[Variant_Classification %in% "Missense_Mutation"] syn_vars = laml_dt[Variant_Classification %in% "Silent"] maftools::MAF(nonSyn = nsyn_vars, syn = syn_vars, clinicalData = laml.clin)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml_dt = data.table::fread(input = laml.maf) laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #Clinical data # Just for demonstration nsyn_vars = laml_dt[Variant_Classification %in% "Missense_Mutation"] syn_vars = laml_dt[Variant_Classification %in% "Silent"] maftools::MAF(nonSyn = nsyn_vars, syn = syn_vars, clinicalData = laml.clin)
S4 class for storing summarized MAF.
data
data.table of MAF file containing all non-synonymous variants.
variants.per.sample
table containing variants per sample
variant.type.summary
table containing variant types per sample
variant.classification.summary
table containing variant classification per sample
gene.summary
table containing variant classification per gene
summary
table with basic MAF summary stats
maf.silent
subset of main MAF containing only silent variants
clinical.data
clinical data associated with each sample/Tumor_Sample_Barcode in MAF.
getGeneSummary
getSampleSummary
getFields
Generates an object of class MultiAssayExperiment
from MAF
object
maf2mae(m = NULL)
maf2mae(m = NULL)
m |
an |
laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) maf2mae(laml)
laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools') laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml = read.maf(maf = laml.maf, clinicalData = laml.clin) maf2mae(laml)
Takes an MAF object and generates a barplot of mutated genes color coded for variant classification
mafbarplot( maf, n = 20, genes = NULL, color = NULL, fontSize = 0.7, includeCN = FALSE, legendfontSize = 0.7, borderCol = "#34495e", showPct = TRUE )
mafbarplot( maf, n = 20, genes = NULL, color = NULL, fontSize = 0.7, includeCN = FALSE, legendfontSize = 0.7, borderCol = "#34495e", showPct = TRUE )
maf |
an |
n |
Number of genes to include. Default 20. |
genes |
Manually provide names of genes. Default NULL. |
color |
named vector of colors for each Variant_Classification. Default NULL. |
fontSize |
Default 0.7 |
includeCN |
Include copy number events if available? Default FALSE |
legendfontSize |
Default 0.7 |
borderCol |
Default "#34495e". Set to 'NA' for no border color. |
showPct |
Default TRUE. Show percent altered samples. |
laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml = read.maf(maf = laml.maf) mafbarplot(maf = laml)
laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml = read.maf(maf = laml.maf) mafbarplot(maf = laml)
compare two cohorts (MAF).
mafCompare( m1, m2, m1Name = NULL, m2Name = NULL, minMut = 5, useCNV = TRUE, pathways = NULL, custom_pw = NULL, pseudoCount = FALSE )
mafCompare( m1, m2, m1Name = NULL, m2Name = NULL, minMut = 5, useCNV = TRUE, pathways = NULL, custom_pw = NULL, pseudoCount = FALSE )
m1 |
first |
m2 |
second |
m1Name |
optional name for first cohort |
m2Name |
optional name for second cohort |
minMut |
Consider only genes with minimum this number of samples mutated in atleast one of the cohort for analysis. Helful to ignore single mutated genes. Default 5. |
useCNV |
whether to include copy number events. Default TRUE if available.. Not applicable when 'pathways = TRUE' |
pathways |
Summarize genes by pathways before comparing. Can be either 'sigpw' or 'smgbp', 'sigpw' uses known oncogenic signalling pathways (Sanchez/Vega et al) whereas 'smgbp' uses pan cancer significantly mutated genes classified according to biological process (Bailey et al). Default |
custom_pw |
Optional. Can be a two column data.frame/tsv-file with pathway-name and genes involved in them. Default 'NULL'. This argument is mutually exclusive with |
pseudoCount |
If TRUE, adds 1 to the contingency table with 0's to avoid 'Inf' values in the estimated odds-ratio. |
Performs fisher test on 2x2 contigency table generated from two cohorts to find differentially mutated genes.
result list
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary', m2Name = 'Relapse', minMut = 5)
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools") relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools") primary.apl <- read.maf(maf = primary.apl) relapse.apl <- read.maf(maf = relapse.apl) pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary', m2Name = 'Relapse', minMut = 5)
Summarizes genes and samples irrespective of the type of alteration. This is different from getSampleSummary
and getGeneSummary
which returns summaries of only non-synonymous variants.
mafSummary(maf)
mafSummary(maf)
maf |
an MAF object generated by |
This function takes MAF object as input and returns summary table.
Returns a list of summarized tables
getGeneSummary
getSampleSummary
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) mafSummary(maf = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) mafSummary(maf = laml)
Similar to mafSurvival
but for a geneset
mafSurvGroup( maf, geneSet = NULL, minMut = NA, clinicalData = NULL, time = "Time", Status = "Status" )
mafSurvGroup( maf, geneSet = NULL, minMut = NA, clinicalData = NULL, time = "Time", Status = "Status" )
maf |
|
geneSet |
gene names for which survival analysis needs to be performed. |
minMut |
minimum number of mutated genes in the 'geneSet' to consider a sample as a mutant. Default, 'NA', samples with all the genes mutated are treated as mutant group. |
clinicalData |
|
time |
column name containing time in |
Status |
column name containing status of patients in |
Survival plot
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) mafSurvGroup(maf = laml, geneSet = c('DNMT3A', 'FLT3'), time = 'days_to_last_followup', Status = 'Overall_Survival_Status')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) mafSurvGroup(maf = laml, geneSet = c('DNMT3A', 'FLT3'), time = 'days_to_last_followup', Status = 'Overall_Survival_Status')
Performs survival analysis by grouping samples from maf based on mutation status of given gene(s) or manual grouping of samples.
mafSurvival( maf, genes = NULL, samples = NULL, clinicalData = NULL, time = "Time", Status = "Status", groupNames = c("Mutant", "WT"), showConfInt = TRUE, addInfo = TRUE, col = c("maroon", "royalblue"), isTCGA = FALSE, textSize = 12 )
mafSurvival( maf, genes = NULL, samples = NULL, clinicalData = NULL, time = "Time", Status = "Status", groupNames = c("Mutant", "WT"), showConfInt = TRUE, addInfo = TRUE, col = c("maroon", "royalblue"), isTCGA = FALSE, textSize = 12 )
maf |
|
genes |
gene names for which survival analysis needs to be performed. Samples with mutations in any one of the genes provided are used as mutants. |
samples |
samples to group by. Genes and samples are mutually exclusive. |
clinicalData |
dataframe containing events and time to events. Default looks for clinical data in annotation slot of |
time |
column name contining time in |
Status |
column name containing status of patients in |
groupNames |
names for groups. Should be of length two. Default c("Mutant", "WT") |
showConfInt |
TRUE. Whether to show confidence interval in KM plot. |
addInfo |
TRUE. Whether to show survival info in the plot. |
col |
colors for plotting. |
isTCGA |
FALSE. Is data is from TCGA. |
textSize |
Text size for surv table. Default 7. |
This function takes MAF file and groups them based on mutation status associated with given gene(s) and performs survival analysis. Requires dataframe containing survival status and time to event. Make sure sample names match to Tumor Sample Barcodes from MAF file.
Survival plot
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) mafSurvival(maf = laml, genes = 'DNMT3A', time = 'days_to_last_followup', Status = 'Overall_Survival_Status', isTCGA = TRUE)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) mafSurvival(maf = laml, genes = 'DNMT3A', time = 'days_to_last_followup', Status = 'Overall_Survival_Status', isTCGA = TRUE)
calcuates MATH scores from variant allele frequencies. Mutant-Allele Tumor Heterogeneity (MATH) score is a measure of intra-tumor genetic heterogeneity. High MATH scores are related to lower survival rates. This function requies vafs.
math.score(maf, vafCol = NULL, sampleName = NULL, vafCutOff = 0.075)
math.score(maf, vafCol = NULL, sampleName = NULL, vafCutOff = 0.075)
maf |
|
vafCol |
manually specify column name for vafs. Default looks for column 't_vaf' |
sampleName |
sample name for which MATH score to be calculated. If NULL, calculates for all samples. |
vafCutOff |
minimum vaf for a variant to be considered for score calculation. Default 0.075 |
data.table
with MATH score for every Tumor_Sample_Barcode
Mroz, Edmund A. et al. Intra-Tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. Ed. Andrew H. Beck. PLoS Medicine 12.2 (2015): e1001786.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.math <- math.score(maf = laml, vafCol = 'i_TumorVAF_WU', sampleName = c('TCGA-AB-3009', 'TCGA-AB-2849', 'TCGA-AB-3002', 'TCGA-AB-2972'))
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.math <- math.score(maf = laml, vafCol = 'i_TumorVAF_WU', sampleName = c('TCGA-AB-3009', 'TCGA-AB-2849', 'TCGA-AB-3002', 'TCGA-AB-2972'))
Merges multiple maf files/objects/data.frames into a single MAF.
merge_mafs(mafs, verbose = TRUE, ...)
merge_mafs(mafs, verbose = TRUE, ...)
mafs |
a list of |
verbose |
Default TRUE |
... |
additional arguments passed |
MAF
object
Generates a count matrix of mutations. i.e, number of mutations per gene per sample.
mutCountMatrix( maf, includeSyn = FALSE, countOnly = NULL, removeNonMutated = TRUE )
mutCountMatrix( maf, includeSyn = FALSE, countOnly = NULL, removeNonMutated = TRUE )
maf |
an MAF object generated by |
includeSyn |
whether to include sysnonymous variants in ouput matrix. Default FALSE |
countOnly |
Default NULL - counts all variants. You can specify type of 'Variant_Classification' to count. For e.g, countOnly = 'Splice_Site' will generates matrix for only Splice_Site variants. |
removeNonMutated |
Logical Default |
Integer Matrix
getFields
getGeneSummary
getSampleSummary
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) ##Generate matrix mutCountMatrix(maf = laml) ##Generate count matrix of Splice_Site mutations mutCountMatrix(maf = laml, countOnly = 'Splice_Site')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) ##Generate matrix mutCountMatrix(maf = laml) ##Generate count matrix of Splice_Site mutations mutCountMatrix(maf = laml, countOnly = 'Splice_Site')
Clusters variants based on their position to detect disease causing genes.
oncodrive( maf, AACol = NULL, minMut = 5, pvalMethod = "zscore", nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL )
oncodrive( maf, AACol = NULL, minMut = 5, pvalMethod = "zscore", nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL )
maf |
|
AACol |
manually specify column name for amino acid changes. Default looks for field 'AAChange' |
minMut |
minimum number of mutations required for a gene to be included in analysis. Default 5. |
pvalMethod |
either zscore (default method for oncodriveCLUST), poisson or combined (uses lowest of the two pvalues). |
nBgGenes |
minimum number of genes required to estimate background score. Default 100. Do not change this unless its necessary. |
bgEstimate |
If FALSE skips background estimation from synonymous variants and uses predifined values estimated from COSMIC synonymous variants. |
ignoreGenes |
Ignore these genes from analysis. Default NULL. Helpful in case data contains large number of variants belonging to polymorphic genes such as mucins and TTN. |
This is the re-implimentation of algorithm defined in OncodriveCLUST article. Concept is based on the fact that most of the variants in cancer causing genes are enriched at few specific loci (aka hotspots). This method takes advantage of such positions to identify cancer genes. Cluster score of 1 means, a single hotspot hosts all observed variants. If you use this function, please cite OncodriveCLUST article.
data table of genes ordered according to p-values.
Tamborero D, Gonzalez-Perez A and Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013; doi: 10.1093/bioinformatics/btt395s
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)
takes output generated by read.maf and draws an oncoplot
oncoplot( maf, top = 20, minMut = NULL, genes = NULL, altered = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, leftBarVline = NULL, leftBarVlineCol = "gray70", rightBarData = NULL, rightBarLims = NULL, rightBarVline = NULL, rightBarVlineCol = "gray70", topBarData = NULL, topBarLims = NULL, topBarHline = NULL, topBarHlineCol = "gray70", logColBar = FALSE, includeColBarCN = TRUE, clinicalFeatures = NULL, annotationColor = NULL, annotationDat = NULL, pathways = NULL, topPathways = 3, path_order = NULL, selectedPathways = NULL, collapsePathway = FALSE, pwLineCol = "#535c68", pwLineWd = 1, draw_titv = FALSE, titv_col = NULL, showTumorSampleBarcodes = FALSE, tsbToPIDs = NULL, barcode_mar = 4, barcodeSrt = 90, gene_mar = 5, anno_height = 1, legend_height = 4, sortByAnnotation = FALSE, groupAnnotationBySize = TRUE, annotationOrder = NULL, sortByMutation = FALSE, keepGeneOrder = FALSE, GeneOrderSort = TRUE, sampleOrder = NULL, additionalFeature = NULL, additionalFeaturePch = 20, additionalFeatureCol = "gray70", additionalFeatureCex = 0.9, genesToIgnore = NULL, removeNonMutated = FALSE, fill = TRUE, cohortSize = NULL, colors = NULL, cBioPortal = FALSE, bgCol = "#ecf0f1", borderCol = "white", annoBorderCol = NA, numericAnnoCol = NULL, drawBox = FALSE, fontSize = 0.8, SampleNamefontSize = 1, titleFontSize = 1.5, legendFontSize = 1.2, annotationFontSize = 1.2, sepwd_genes = 0.5, sepwd_samples = 0.25, writeMatrix = FALSE, colbar_pathway = FALSE, showTitle = TRUE, titleText = NULL, showPct = TRUE )
oncoplot( maf, top = 20, minMut = NULL, genes = NULL, altered = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, leftBarVline = NULL, leftBarVlineCol = "gray70", rightBarData = NULL, rightBarLims = NULL, rightBarVline = NULL, rightBarVlineCol = "gray70", topBarData = NULL, topBarLims = NULL, topBarHline = NULL, topBarHlineCol = "gray70", logColBar = FALSE, includeColBarCN = TRUE, clinicalFeatures = NULL, annotationColor = NULL, annotationDat = NULL, pathways = NULL, topPathways = 3, path_order = NULL, selectedPathways = NULL, collapsePathway = FALSE, pwLineCol = "#535c68", pwLineWd = 1, draw_titv = FALSE, titv_col = NULL, showTumorSampleBarcodes = FALSE, tsbToPIDs = NULL, barcode_mar = 4, barcodeSrt = 90, gene_mar = 5, anno_height = 1, legend_height = 4, sortByAnnotation = FALSE, groupAnnotationBySize = TRUE, annotationOrder = NULL, sortByMutation = FALSE, keepGeneOrder = FALSE, GeneOrderSort = TRUE, sampleOrder = NULL, additionalFeature = NULL, additionalFeaturePch = 20, additionalFeatureCol = "gray70", additionalFeatureCex = 0.9, genesToIgnore = NULL, removeNonMutated = FALSE, fill = TRUE, cohortSize = NULL, colors = NULL, cBioPortal = FALSE, bgCol = "#ecf0f1", borderCol = "white", annoBorderCol = NA, numericAnnoCol = NULL, drawBox = FALSE, fontSize = 0.8, SampleNamefontSize = 1, titleFontSize = 1.5, legendFontSize = 1.2, annotationFontSize = 1.2, sepwd_genes = 0.5, sepwd_samples = 0.25, writeMatrix = FALSE, colbar_pathway = FALSE, showTitle = TRUE, titleText = NULL, showPct = TRUE )
maf |
|
top |
how many top genes to be drawn. defaults to 20. |
minMut |
draw all genes with 'min' number of mutations. Can be an integer or fraction (of samples mutated), Default NULL |
genes |
Just draw oncoplot for these genes. Default NULL. |
altered |
Default FALSE. Chooses top genes based on muatation status. If |
drawRowBar |
logical. Plots righ barplot for each gene. Default |
drawColBar |
logical plots top barplot for each sample. Default |
leftBarData |
Data for leftside barplot. Must be a data.frame with two columns containing gene names and values. Default 'NULL' |
leftBarLims |
limits for 'leftBarData'. Default 'NULL'. |
leftBarVline |
Draw vertical lines at these values. Default 'NULL'. |
leftBarVlineCol |
Line color for 'leftBarVline' Default gray70 |
rightBarData |
Data for rightside barplot. Must be a data.frame with two columns containing to gene names and values. Default 'NULL' which draws distribution by variant classification. This option is applicable when only 'drawRowBar' is TRUE. |
rightBarLims |
limits for 'rightBarData'. Default 'NULL'. |
rightBarVline |
Draw vertical lines at these values. Default 'NULL'. |
rightBarVlineCol |
Line color for 'rightBarVline' Default gray70 |
topBarData |
Default 'NULL' which draws absolute number of mutation load for each sample. Can be overridden by choosing one clinical indicator(Numeric) or by providing a two column data.frame containing sample names and values for each sample. This option is applicable when only 'drawColBar' is TRUE. |
topBarLims |
limits for 'topBarData'. Default 'NULL'. |
topBarHline |
Draw horizontal lines at these values. Default 'NULL'. |
topBarHlineCol |
Line color for 'topBarHline.' Default gray70 |
logColBar |
Plot top bar plot on log10 scale. Default |
includeColBarCN |
Whether to include CN in column bar plot. Default TRUE |
clinicalFeatures |
columns names from 'clinical.data' slot of |
annotationColor |
Custom colors to use for 'clinicalFeatures'. Must be a named list containing a named vector of colors. Default NULL. See example for more info. |
annotationDat |
If MAF file was read without clinical data, provide a custom |
pathways |
Default 'NULL'. Can be 'sigpw', 'smgbp', or a two column data.frame/tsv-file with genes and corresponding pathway mappings.' |
topPathways |
Top most altered pathways to draw. Default 3. Mutually exclusive with 'selectedPathways' |
path_order |
Default 'NULL' Manually specify the order of pathways |
selectedPathways |
Manually provide the subset of pathway names to be selected from 'pathways'. Default NULL. In case 'pathways' is 'auto' draws top 3 altered pathways. |
collapsePathway |
Shows only rows corresponding to the pathways. Default FALSE. |
pwLineCol |
Color for the box around the pathways Default #535c68 |
pwLineWd |
Line width for the box around the pathways Default Default 1 |
draw_titv |
logical Includes TiTv plot. |
titv_col |
named vector of colors for each transition and transversion classes. Should be of length six with the names "C>T" "C>G" "C>A" "T>A" "T>C" "T>G". Default NULL. |
showTumorSampleBarcodes |
logical to include sample names. |
tsbToPIDs |
Custom names for Tumor_Sample_Barcodes. Can be a column name in clinicaldata or a 2 column data.frame of Tumor_Sample_Barcodes to patient ID mappings. Applicable only when 'showTumorSampleBarcodes = TRUE'. Default NULL. |
barcode_mar |
Margin width for sample names. Default 4 |
barcodeSrt |
Rotate sample labels. Default 90. |
gene_mar |
Margin width for gene names. Default 5 |
anno_height |
Height of plotting area for sample annotations. Default 1 |
legend_height |
Height of plotting area for legend. Default 4 |
sortByAnnotation |
logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Sorts based on first 'clinicalFeatures'. Defaults to FALSE. column-sort |
groupAnnotationBySize |
Further group 'sortByAnnotation' orders by their size. Defaults to TRUE. Largest groups comes first. |
annotationOrder |
Manually specify order for annotations. Works only for first 'clinicalFeatures'. Default NULL. |
sortByMutation |
Force sort matrix according mutations. Helpful in case of MAF was read along with copy number data. Default FALSE. |
keepGeneOrder |
logical whether to keep order of given genes. Default FALSE, order according to mutation frequency |
GeneOrderSort |
logical this is applicable when 'keepGeneOrder' is TRUE. Default TRUE |
sampleOrder |
Manually speify sample names for oncolplot ordering. Default NULL. |
additionalFeature |
a vector of length two indicating column name in the MAF and the factor level to be highlighted. Provide a list of values for highlighting more than one features |
additionalFeaturePch |
Default 20 |
additionalFeatureCol |
Default "gray70" |
additionalFeatureCex |
Default 0.9 |
genesToIgnore |
do not show these genes in Oncoplot. Default NULL. |
removeNonMutated |
Logical. If |
fill |
Logical. If |
cohortSize |
Number of sequenced samples in the cohort. Default all samples from Cohort. You can manually specify the cohort size. Default |
colors |
named vector of colors for each Variant_Classification. |
cBioPortal |
Adds annotations similar to cBioPortals MutationMapper and collapse Variants into Truncating and rest. |
bgCol |
Background grid color for wild-type (not-mutated) samples. Default "#ecf0f1" |
borderCol |
border grid color (not-mutated) samples. Default 'white'. |
annoBorderCol |
border grid color for annotations. Default NA. |
numericAnnoCol |
color palette used for numeric annotations. Default 'YlOrBr' from RColorBrewer |
drawBox |
logical whether to draw a box around main matrix. Default FALSE |
fontSize |
font size for gene names. Default 0.8. |
SampleNamefontSize |
font size for sample names. Default 1 |
titleFontSize |
font size for title. Default 1.5 |
legendFontSize |
font size for legend. Default 1.2 |
annotationFontSize |
font size for annotations. Default 1.2 |
sepwd_genes |
size of lines seperating genes. Default 0.5 |
sepwd_samples |
size of lines seperating samples. Default 0.25 |
writeMatrix |
writes character coded matrix used to generate the plot to an output file. |
colbar_pathway |
Draw top column bar with respect to diplayed pathway. Default FALSE. |
showTitle |
Default TRUE |
titleText |
Custom title. Default 'NULL' |
showPct |
Default TRUE. Shows percent altered to the right side of the plot. |
Takes an MAF
object as an input and plots it as a matrix. Any desired clincal features can be added at the bottom of the oncoplot by providing clinicalFeatures
.
Oncoplot can be sorted either by mutations or by clinicalFeatures using arguments sortByMutation
and sortByAnnotation
respectively.
By setting 'pathways' argument either 'sigpw' or 'smgbp' - cohort can be summarized by altered pathways. pathways argument also accepts a custom pathway list in the form of a two column tsv file or a data.frame containing gene names and their corresponding pathway.
Invisibly returns a list with components 1. 'oncomatrix' A matrix used for drawing the oncoplot. Values are numeric coded for each variant classification 2. 'vc_legend' A mapping of variant classification to numeric values in the oncomatrix 3. 'vc_color' Color coding used for each variant classification
Bailey, Matthew H et al. “Comprehensive Characterization of Cancer Driver Genes and Mutations.” Cell vol. 173,2 (2018): 371-385.e18. doi:10.1016/j.cell.2018.02.060 Sanchez-Vega, Francisco et al. “Oncogenic Signaling Pathways in The Cancer Genome Atlas.” Cell vol. 173,2 (2018): 321-337.e10. doi:10.1016/j.cell.2018.03.035
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) #Basic onocplot oncoplot(maf = laml, top = 3) #Changing colors for variant classifications (You can use any colors, here in this example we will use a color palette from RColorBrewer) col = RColorBrewer::brewer.pal(n = 8, name = 'Paired') names(col) = c('Frame_Shift_Del','Missense_Mutation', 'Nonsense_Mutation', 'Multi_Hit', 'Frame_Shift_Ins', 'In_Frame_Ins', 'Splice_Site', 'In_Frame_Del') #Color coding for FAB classification; try getAnnotations(x = laml) to see available annotations. fabcolors = RColorBrewer::brewer.pal(n = 8,name = 'Spectral') names(fabcolors) = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7") fabcolors = list(FAB_classification = fabcolors) oncoplot(maf = laml, colors = col, clinicalFeatures = 'FAB_classification', sortByAnnotation = TRUE, annotationColor = fabcolors)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) #Basic onocplot oncoplot(maf = laml, top = 3) #Changing colors for variant classifications (You can use any colors, here in this example we will use a color palette from RColorBrewer) col = RColorBrewer::brewer.pal(n = 8, name = 'Paired') names(col) = c('Frame_Shift_Del','Missense_Mutation', 'Nonsense_Mutation', 'Multi_Hit', 'Frame_Shift_Ins', 'In_Frame_Ins', 'Splice_Site', 'In_Frame_Del') #Color coding for FAB classification; try getAnnotations(x = laml) to see available annotations. fabcolors = RColorBrewer::brewer.pal(n = 8,name = 'Spectral') names(fabcolors) = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7") fabcolors = list(FAB_classification = fabcolors) oncoplot(maf = laml, colors = col, clinicalFeatures = 'FAB_classification', sortByAnnotation = TRUE, annotationColor = fabcolors)
draw an oncostrip similar to cBioportal oncoprinter output.
oncostrip(maf = NULL, ...)
oncostrip(maf = NULL, ...)
maf |
an |
... |
arguments passed |
This is just a wrapper around oncoplot
with drawRowBar and drawColBar set to FALSE
None.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) dev.new() oncostrip(maf = laml, genes = c('NPM1', 'RUNX1'))
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) dev.new() oncostrip(maf = laml, genes = c('NPM1', 'RUNX1'))
Checks for enrichment of known or custom pathways
pathways( maf, pathdb = "sigpw", pathways = NULL, fontSize = 1, panelWidths = c(2, 4, 4), plotType = NA, col = "#f39c12" )
pathways( maf, pathdb = "sigpw", pathways = NULL, fontSize = 1, panelWidths = c(2, 4, 4), plotType = NA, col = "#f39c12" )
maf |
|
pathdb |
Either 'sigpw' or 'smgbp', 'sigpw' uses known oncogenic signalling pathways (Sanchez/Vega et al) whereas 'smgbp' uses pan cancer significantly mutated genes classified according to biological process (Bailey et al). Default |
pathways |
Can be a two column data.frame/tsv-file with gene names and pathway-name involved in them. Default 'NULL'. This argument is mutually exclusive with |
fontSize |
Default 1 |
panelWidths |
Default c(2, 4, 4) |
plotType |
Can be 'treemap' or 'bar'. Set NA to suppress plotting. Default NA |
col |
Default #f39c12 |
Oncogenic signalling and SMG pathways are derived from TCGA cohorts. See references for details.
fraction of altered pathway. attr genes contain pathway contents
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S et al. 2018. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173: 321-337 e310 Bailey, Matthew H et al. “Comprehensive Characterization of Cancer Driver Genes and Mutations.” Cell vol. 173,2 (2018): 371-385.e18.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) pathways(maf = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) pathways(maf = laml)
Summarizes amino acid positions and annotates them with pfam domain information.
pfamDomains( maf = NULL, AACol = NULL, summarizeBy = "AAPos", top = 5, domainsToLabel = NULL, baseName = NULL, varClass = "nonSyn", width = 5, height = 5, labelSize = 1 )
pfamDomains( maf = NULL, AACol = NULL, summarizeBy = "AAPos", top = 5, domainsToLabel = NULL, baseName = NULL, varClass = "nonSyn", width = 5, height = 5, labelSize = 1 )
maf |
|
AACol |
manually specify column name for amino acid changes. Default looks for field 'AAChange' |
summarizeBy |
Summarize domains by amino acid position or conversions. Can be "AAPos" or "AAChange" |
top |
How many top mutated domains to label in the scatter plot. Defaults to 5. |
domainsToLabel |
Default NULL. Exclusive with top argument. |
baseName |
If given writes the results to output file. Default NULL. |
varClass |
which variants to consider for summarization. Can be nonSyn, Syn or all. Default nonSyn. |
width |
width of the file to be saved. |
height |
height of the file to be saved. |
labelSize |
font size for labels. Default 1. |
returns a list two tables summarized by amino acid positions and domains respectively. Also plots top 5 most mutated domains as scatter plot.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) pfamDomains(maf = laml, AACol = 'Protein_Change')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) pfamDomains(maf = laml, AACol = 'Protein_Change')
Plots differences between APOBEC enriched and non-APOBEC enriched samples
plotApobecDiff( tnm, maf, pVal = 0.05, title_size = 1, axis_lwd = 1, font_size = 1.2 )
plotApobecDiff( tnm, maf, pVal = 0.05, title_size = 1, axis_lwd = 1, font_size = 1.2 )
tnm |
output generated by |
maf |
an |
pVal |
p-value threshold for fisher's test. Default 0.05. |
title_size |
size of title. Default 1.3 |
axis_lwd |
axis width. Default 1 |
font_size |
font size. Default 1.2 |
Plots differences between APOBEC enriched and non-APOBEC enriched samples (TCW). Plot includes differences in mutations load, tCw motif distribution and top genes altered.
list of table containing differenatially altered genes. This can be passed to forestPlot
to plot results.
trinucleotideMatrix
plotSignatures
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) plotApobecDiff(laml.tnm) ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) plotApobecDiff(laml.tnm) ## End(Not run)
Plots segmented copy number data.
plotCBSsegments( cbsFile = NULL, maf = NULL, tsb = NULL, savePlot = FALSE, ylims = NULL, seg_size = 0.1, width = 6, height = 3, genes = NULL, ref.build = "hg19", writeTable = FALSE, removeXY = FALSE, color = NULL )
plotCBSsegments( cbsFile = NULL, maf = NULL, tsb = NULL, savePlot = FALSE, ylims = NULL, seg_size = 0.1, width = 6, height = 3, genes = NULL, ref.build = "hg19", writeTable = FALSE, removeXY = FALSE, color = NULL )
cbsFile |
CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale). |
maf |
optional |
tsb |
If segmentation file contains many samples (as in gistic input), specify sample name here. Defualt plots head 1 sample. Set 'ALL' for plotting all samples. If you are maping maf, make sure sample names in Sample column of segmentation file matches to those Tumor_Sample_Barcodes in MAF. |
savePlot |
If true plot is saved as pdf. |
ylims |
Default NULL |
seg_size |
Default 0.1 |
width |
width of plot |
height |
height of plot |
genes |
If given and maf object is specified, maps all mutataions from maf onto segments. Default NULL |
ref.build |
Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19. |
writeTable |
If true and if maf object is specified, writes plot data with each variant and its corresponding copynumber to an output file. |
removeXY |
don not plot sex chromosomes. |
color |
Manually specify color scheme for chromosomes. Default NULL. i.e, aletrnating Gray70 and midnightblue |
this function takes segmented copy number data and plots it. If MAF object is specified, all mutations are highlighted on the plot.
Draws plot
tcga.ab.009.seg <- system.file("extdata", "TCGA.AB.3009.hg19.seg.txt", package = "maftools") plotCBSsegments(cbsFile = tcga.ab.009.seg)
tcga.ab.009.seg <- system.file("extdata", "TCGA.AB.3009.hg19.seg.txt", package = "maftools") plotCBSsegments(cbsFile = tcga.ab.009.seg)
Plots results from inferHeterogeneity.
plotClusters( clusters, tsb = NULL, genes = NULL, showCNvars = FALSE, colors = NULL )
plotClusters( clusters, tsb = NULL, genes = NULL, showCNvars = FALSE, colors = NULL )
clusters |
clustering results from |
tsb |
sample to plot from clustering results. Default plots all samples from results. |
genes |
genes to highlight on the plot. Can be a vector of gene names, |
showCNvars |
show copy numbered altered variants on the plot. Default FALSE. |
colors |
manual colors for clusters. Default NULL. |
returns nothing.
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) seg = system.file('extdata', 'TCGA.AB.3009.hg19.seg.txt', package = 'maftools') TCGA.AB.3009.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-3009', segFile = seg, vafCol = 'i_TumorVAF_WU') plotClusters(TCGA.AB.3009.clust, genes = c('NF1', 'SUZ12'), showCNvars = TRUE) ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) seg = system.file('extdata', 'TCGA.AB.3009.hg19.seg.txt', package = 'maftools') TCGA.AB.3009.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-3009', segFile = seg, vafCol = 'i_TumorVAF_WU') plotClusters(TCGA.AB.3009.clust, genes = c('NF1', 'SUZ12'), showCNvars = TRUE) ## End(Not run)
Draw an elbow plot of cophenetic correlation metric.
plotCophenetic(res = NULL, bestFit = NULL)
plotCophenetic(res = NULL, bestFit = NULL)
res |
output from |
bestFit |
rank to highlight. Default NULL |
This function draws an elbow plot of cophenetic correlation metric.
estimateSignatures
plotCophenetic
Plots results from clinicalEnrichment analysis
plotEnrichmentResults( enrich_res, pVal = 0.05, ORthr = 1, featureLvls = NULL, cols = NULL, annoFontSize = 0.8, geneFontSize = 0.8, legendFontSize = 0.8, showTitle = TRUE, ylims = c(-1, 1) )
plotEnrichmentResults( enrich_res, pVal = 0.05, ORthr = 1, featureLvls = NULL, cols = NULL, annoFontSize = 0.8, geneFontSize = 0.8, legendFontSize = 0.8, showTitle = TRUE, ylims = c(-1, 1) )
enrich_res |
results from |
pVal |
Default 0.05 |
ORthr |
Default 1. Odds ratio threshold. >1 indicates positive enrichment in the group of interest. |
featureLvls |
Plot results from the selected levels. Default NULL, plots all. |
cols |
named vector of colors for factor in a clinical feature. Default NULL |
annoFontSize |
cex for annotation font size. Default 0.8 |
geneFontSize |
cex for gene font size. Default 0.8 |
legendFontSize |
cex for legend font size. Default 0.8 |
showTitle |
Default TRUE |
ylims |
Default c(-1, 1) |
returns nothing.
clinicalEnrichment
signatureEnrichment
Plots maf summary.
plotmafSummary( maf, rmOutlier = TRUE, dashboard = TRUE, titvRaw = TRUE, log_scale = FALSE, addStat = NULL, showBarcodes = FALSE, fs = 1, textSize = 0.8, color = NULL, titleSize = c(1, 0.8), titvColor = NULL, top = 10 )
plotmafSummary( maf, rmOutlier = TRUE, dashboard = TRUE, titvRaw = TRUE, log_scale = FALSE, addStat = NULL, showBarcodes = FALSE, fs = 1, textSize = 0.8, color = NULL, titleSize = c(1, 0.8), titvColor = NULL, top = 10 )
maf |
|
rmOutlier |
If TRUE removes outlier from boxplot. |
dashboard |
If FALSE plots simple summary instead of dashboard style. |
titvRaw |
TRUE. If false instead of raw counts, plots fraction. |
log_scale |
FALSE. If TRUE log10 transforms Variant Classification, Variant Type and Variants per sample sub-plots. |
addStat |
Can be either mean or median. Default NULL. |
showBarcodes |
include sample names in the top bar plot. |
fs |
base size for text. Default 1 |
textSize |
font size if showBarcodes is TRUE. Default 0.8 |
color |
named vector of colors for each Variant_Classification. |
titleSize |
font size for title and subtitle. Default c(10, 8) |
titvColor |
colors for SNV classifications. |
top |
include top n genes dashboard plot. Default 10. |
Prints plot.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf, useAll = FALSE) plotmafSummary(maf = laml, addStat = 'median')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf, useAll = FALSE) plotmafSummary(maf = laml, addStat = 'median')
Plot results from mosdepth output for Tumor/Normal pair
plotMosdepth( t_bed = NULL, n_bed = NULL, segment = TRUE, sample_name = NULL, col = c("#95a5a6", "#7f8c8d") )
plotMosdepth( t_bed = NULL, n_bed = NULL, segment = TRUE, sample_name = NULL, col = c("#95a5a6", "#7f8c8d") )
t_bed |
mosdepth output from tumor |
n_bed |
mosdepth output from matched normal |
segment |
Performs CBS segmentation. Default TRUE |
sample_name |
sample name. Default parses from 't_bed' |
col |
Colors. Default c("#95a5a6", "#7f8c8d") |
Invisibly returns DNAcopy
object if 'segment' is 'TRUE'
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867-868. doi:10.1093/bioinformatics/btx699
Plot results from mosdepth output
plotMosdepth_t( bed = NULL, col = c("#95a5a6", "#7f8c8d"), sample_name = NULL, segment = FALSE )
plotMosdepth_t( bed = NULL, col = c("#95a5a6", "#7f8c8d"), sample_name = NULL, segment = FALSE )
bed |
mosdepth output |
col |
Colors. Default c("#95a5a6", "#7f8c8d") |
sample_name |
sample name. Default parses from 'bed' |
segment |
Performs CBS segmentation. Default FALSE |
Invisibly returns DNAcopy
object if 'segment' is 'TRUE'
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867-868. doi:10.1093/bioinformatics/btx699
oncodrive
Takes results from oncodrive
and plots them as a scatter plot. Size of the gene shows number of clusters (hotspots), x-axis can either be an absolute number of variants
accumulated in these clusters or a fraction of total variants found in these clusters. y-axis is fdr values transformed into -log10 for better representation. Labels indicate Gene name with number clusters
observed.
plotOncodrive( res = NULL, fdrCutOff = 0.05, useFraction = FALSE, colCode = NULL, bubbleSize = 1, labelSize = 1 )
plotOncodrive( res = NULL, fdrCutOff = 0.05, useFraction = FALSE, colCode = NULL, bubbleSize = 1, labelSize = 1 )
res |
results from |
fdrCutOff |
fdr cutoff to call a gene as a driver. |
useFraction |
if TRUE uses a fraction of total variants as X-axis scale instead of absolute counts. |
colCode |
Colors to use for indicating significant and non-signififcant genes. Default NULL |
bubbleSize |
Size for bubbles. Default 2. |
labelSize |
font size for labelling genes. Default 1. |
Nothing
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5) plotOncodrive(res = laml.sig, fdrCutOff = 0.1)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5) plotOncodrive(res = laml.sig, fdrCutOff = 0.1)
Plot oncogenic pathways
plotPathways( maf = NULL, pathlist = NULL, pathnames = NULL, removeNonMutated = FALSE, fontSize = 1, showTumorSampleBarcodes = FALSE, sampleOrder = NULL, SampleNamefontSize = 0.6, mar = c(4, 6, 2, 3) )
plotPathways( maf = NULL, pathlist = NULL, pathnames = NULL, removeNonMutated = FALSE, fontSize = 1, showTumorSampleBarcodes = FALSE, sampleOrder = NULL, SampleNamefontSize = 0.6, mar = c(4, 6, 2, 3) )
maf |
an |
pathlist |
Output from |
pathnames |
Names of the pathways to be drawn. Default NULL, plots everything from input 'pathlist' |
removeNonMutated |
Default FALSE |
fontSize |
Default 1 |
showTumorSampleBarcodes |
logical to include sample names. |
sampleOrder |
Manually speify sample names for oncolplot ordering. Default NULL. |
SampleNamefontSize |
font size for sample names. Default 0.6 |
mar |
margins Default c(4, 6, 2, 3). Margins to bottom, left, top and right respectively |
Draws pathway burden123
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S et al. 2018. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173: 321-337 e310
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) p <- pathways(maf = laml) plotPathways(maf = laml, pathlist = p)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) p <- pathways(maf = laml) plotPathways(maf = laml, pathlist = p)
Display protein domains
plotProtein( gene, refSeqID = NULL, proteinID = NULL, domainAlpha = 0.9, showLegend = FALSE, bgBorderCol = "black", axisTextSize = c(1, 1), roundedRect = TRUE, domainBorderCol = "black", showDomainLabel = TRUE, domainLabelSize = 0.8, titleSize = c(1.2, 1), legendTxtSize = 1, legendNcol = 1 )
plotProtein( gene, refSeqID = NULL, proteinID = NULL, domainAlpha = 0.9, showLegend = FALSE, bgBorderCol = "black", axisTextSize = c(1, 1), roundedRect = TRUE, domainBorderCol = "black", showDomainLabel = TRUE, domainLabelSize = 0.8, titleSize = c(1.2, 1), legendTxtSize = 1, legendNcol = 1 )
gene |
HGNC symbol for which protein structure to be drawn. |
refSeqID |
RefSeq transcript identifier for |
proteinID |
RefSeq protein identifier for |
domainAlpha |
Default 1 |
showLegend |
Default TRUE |
bgBorderCol |
Default "black". Set to NA to remove. |
axisTextSize |
text size x and y tick labels. Default c(1,1). |
roundedRect |
Default TRUE. If 'TRUE' domains are drawn with rounded corners. Requires |
domainBorderCol |
Default "black". Set to NA to remove. |
showDomainLabel |
Default TRUE |
domainLabelSize |
text size for domain labels. Default 0.8 |
titleSize |
font size for title and subtitle. Default c(1.2, 1) |
legendTxtSize |
Text size for legend. Default 0.8 |
legendNcol |
Default 1 |
par(mfrow = c(2, 1)) plotProtein(gene = "KIT") plotProtein(gene = "DNMT3A")
par(mfrow = c(2, 1)) plotProtein(gene = "KIT") plotProtein(gene = "DNMT3A")
Takes results from extractSignatures
and plots decomposed mutational signatures as a barplot.
plotSignatures( nmfRes = NULL, contributions = FALSE, absolute = FALSE, color = NULL, patient_order = NULL, font_size = 0.6, show_title = TRUE, sig_db = "SBS_v34", axis_lwd = 1, title_size = 0.9, show_barcodes = FALSE, yaxisLim = NA, ... )
plotSignatures( nmfRes = NULL, contributions = FALSE, absolute = FALSE, color = NULL, patient_order = NULL, font_size = 0.6, show_title = TRUE, sig_db = "SBS_v34", axis_lwd = 1, title_size = 0.9, show_barcodes = FALSE, yaxisLim = NA, ... )
nmfRes |
results from |
contributions |
If TRUE plots contribution of signatures in each sample. |
absolute |
Whether to plot absolute contributions. Default FALSE. |
color |
colors for each Ti/Tv conversion class. Default NULL |
patient_order |
User defined ordering of samples. Default NULL. |
font_size |
font size. Default 0.6 |
show_title |
If TRUE compares signatures to COSMIC signatures and prints them as title |
sig_db |
Only applicable if show_title is TRUE. can be |
axis_lwd |
axis width. Default 1. |
title_size |
size of title. Default 1.3 |
show_barcodes |
Default FALSE |
yaxisLim |
Default NA. |
... |
further plot options passed to |
Nothing
trinucleotideMatrix
plotSignatures
Takes results generated from titv
and plots the Ti/Tv ratios and contributions of 6 mutational conversion classes in each sample.
plotTiTv( res = NULL, plotType = "both", sampleOrder = NULL, color = NULL, showBarcodes = FALSE, textSize = 0.8, baseFontSize = 1, axisTextSize = c(1, 1), plotNotch = FALSE )
plotTiTv( res = NULL, plotType = "both", sampleOrder = NULL, color = NULL, showBarcodes = FALSE, textSize = 0.8, baseFontSize = 1, axisTextSize = c(1, 1), plotNotch = FALSE )
res |
results generated by |
plotType |
Can be 'bar', 'box' or 'both'. Defaults to 'both' |
sampleOrder |
Sample names in which the barplot should be ordered. Default NULL |
color |
named vector of colors for each coversion class. |
showBarcodes |
Whether to include sample names for barplot |
textSize |
fontsize if showBarcodes is TRUE. Deafult 2. |
baseFontSize |
font size. Deafult 1. |
axisTextSize |
text size x and y tick labels. Default c(1,1). |
plotNotch |
logical. Include notch in boxplot. |
None.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.titv = titv(maf = laml, useSyn = TRUE) plotTiTv(laml.titv)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.titv = titv(maf = laml, useSyn = TRUE) plotTiTv(laml.titv)
Plots vaf distribution of genes as a boxplot. Each dot in the jitter is a variant.
plotVaf( maf, vafCol = NULL, genes = NULL, top = 10, orderByMedian = TRUE, keepGeneOrder = FALSE, flip = FALSE, fn = NULL, gene_fs = 0.8, axis_fs = 0.8, height = 5, width = 5, showN = TRUE, color = NULL )
plotVaf( maf, vafCol = NULL, genes = NULL, top = 10, orderByMedian = TRUE, keepGeneOrder = FALSE, flip = FALSE, fn = NULL, gene_fs = 0.8, axis_fs = 0.8, height = 5, width = 5, showN = TRUE, color = NULL )
maf |
|
vafCol |
manually specify column name for vafs. Default looks for column 't_vaf' |
genes |
specify genes for which plots has to be generated |
top |
if |
orderByMedian |
Orders genes by decreasing median VAF. Default TRUE |
keepGeneOrder |
keep gene order. Default FALSE |
flip |
if TRUE, flips axes. Default FALSE |
fn |
Filename. If given saves plot as a output pdf. Default NULL. |
gene_fs |
font size for gene names. Default 0.8 |
axis_fs |
font size for axis. Default 0.8 |
height |
Height of plot to be saved. Default 5 |
width |
Width of plot to be saved. Default 4 |
showN |
if TRUE, includes number of observations |
color |
manual colors. Default NULL. |
Nothing.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) plotVaf(maf = laml, vafCol = 'i_TumorVAF_WU')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) plotVaf(maf = laml, vafCol = 'i_TumorVAF_WU')
Corrects gene names for MutSig compatibility.
prepareMutSig(maf, fn = NULL)
prepareMutSig(maf, fn = NULL)
maf |
|
fn |
basename for output file. If provided writes MAF to an output file with the given basename. |
MutSig/MutSigCV is most widely used program for detecting driver genes. However, we have observed that covariates files (gene.covariates.txt and exome_full192.coverage.txt) which are bundled with MutSig have non-standard gene names (non Hugo_Symbols). This discrepancy between Hugo_Symbols in MAF and non-Hugo_symbols in covariates file causes MutSig program to ignore such genes. For example, KMT2D - a well known driver gene in Esophageal Carcinoma is represented as MLL2 in MutSig covariates. This causes KMT2D to be ignored from analysis and is represented as an insignificant gene in MutSig results. This function attempts to correct such gene symbols with a manually curated list of gene names compatible with MutSig covariates list.
returns a MAF with gene symbols corrected.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) prepareMutSig(maf = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) prepareMutSig(maf = laml)
Function takes the output from gtMarkers
and generates 'logR' and 'BAF' files required for ASCAT analysis.
prepAscat( t_counts = NULL, n_counts = NULL, sample_name = NA, min_depth = 15, normalize = TRUE )
prepAscat( t_counts = NULL, n_counts = NULL, sample_name = NA, min_depth = 15, normalize = TRUE )
t_counts |
read counts from tumor generated by |
n_counts |
read counts from normal generated by |
sample_name |
Sample name. Used as a basename for output files. Default 'NA', parses from 't_counts' file. |
min_depth |
Min read depth required to consider a marker. Default 15 |
normalize |
If TRUE, normalizes for library size. Default TRUE |
The function will filter SNPs with low coverage (default <15), estimate BAF, logR, and generates the input files for ASCAT. Alternatively, logR file can be segmented with segmentLogR
Van Loo P, Nordgard SH, Lingjærde OC, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107(39):16910-16915. doi:10.1073/pnas.1009843107
gtMarkers
prepAscat_t
segmentLogR
Function takes the output from gtMarkers
and generates 'logR' and 'BAF' files required for ASCAT analysis.
prepAscat_t(t_counts = NULL, sample_name = NA, min_depth = 15)
prepAscat_t(t_counts = NULL, sample_name = NA, min_depth = 15)
t_counts |
read counts from tumor generated by |
sample_name |
Sample name. Used as a basename for output files. Default NA, parses from 't_counts' file. |
min_depth |
Min read depth required to consider a marker. Default 15 |
The function will filter SNPs with low coverage (default <15), estimate BAF, logR, and generates the input files for ASCAT. Tumor 'logR' file will be normalized for median depth of coverage. Alternatively, logR file can be segmented with segmentLogR
Generates logR and BAF files required by ASCAT
Van Loo P, Nordgard SH, Lingjærde OC, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107(39):16910-16915. doi:10.1073/pnas.1009843107
gtMarkers
prepAscat
segmentLogR
Plots inter variant distance as a function of genomic locus.
rainfallPlot( maf, tsb = NULL, detectChangePoints = FALSE, ref.build = "hg19", color = NULL, savePlot = FALSE, width = 6, height = 3, fontSize = 1.2, pointSize = 0.4 )
rainfallPlot( maf, tsb = NULL, detectChangePoints = FALSE, ref.build = "hg19", color = NULL, savePlot = FALSE, width = 6, height = 3, fontSize = 1.2, pointSize = 0.4 )
maf |
|
tsb |
specify sample names (Tumor_Sample_Barcodes) for which plotting has to be done. If NULL, draws plot for most mutated sample. |
detectChangePoints |
If TRUE, detectes genomic change points where potential kataegis are formed. Results are written to an output tab delimted file. |
ref.build |
Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19. |
color |
named vector of colors for each coversion class. |
savePlot |
If TRUE plot is saved to output pdf. Default FALSE. |
width |
width of plot to be saved. |
height |
height of plot to be saved. |
fontSize |
Default 12. |
pointSize |
Default 0.8. |
If 'detectChangePoints“ is set to TRUE, this function will identify Kataegis loci. Kategis detection algorithm by Moritz Goretzky at WWU Munster, which exploits the definition of Kategis (six consecutive mutations with an avg. distance of 1000bp ) to idetify hyper mutated genomic loci. Algorithm starts with a double-ended queue to which six consecutive mutations are added and their average intermutation distance is calculated. If the average intermutation distance is larger than 1000, one element is added at the back of the queue and one is removed from the front. If the average intermutation distance is less or equal to 1000, further mutations are added until the average intermutation distance is larger than 1000. After that all mutations in the double-ended queue are written into output as one kataegis and the double-ended queue is reinitialized with six mutations.
Results are written to an output file with suffix changePoints.tsv
Takes tab delimited MAF (can be plain text or gz compressed) file as an input and summarizes it in various ways. Also creates oncomatrix - helpful for visualization.
read.maf( maf, clinicalData = NULL, rmFlags = FALSE, removeDuplicatedVariants = TRUE, useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all", cnTable = NULL, isTCGA = FALSE, vc_nonSyn = NULL, verbose = TRUE )
read.maf( maf, clinicalData = NULL, rmFlags = FALSE, removeDuplicatedVariants = TRUE, useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all", cnTable = NULL, isTCGA = FALSE, vc_nonSyn = NULL, verbose = TRUE )
maf |
tab delimited MAF file. File can also be gz compressed. Required. Alternatively, you can also provide already read MAF file as a dataframe. |
clinicalData |
Clinical data associated with each sample/Tumor_Sample_Barcode in MAF. Could be a text file or a data.frame. Default NULL. |
rmFlags |
Default FALSE. Can be TRUE or an integer. If TRUE removes all the top 20 FLAG genes. If integer, remove top n FLAG genes. |
removeDuplicatedVariants |
removes repeated variants in a particuar sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE. |
useAll |
logical. Whether to use all variants irrespective of values in Mutation_Status. Defaults to TRUE. If FALSE, only uses with values Somatic. |
gisticAllLesionsFile |
All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Default NULL. |
gisticAmpGenesFile |
Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL. |
gisticDelGenesFile |
Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL. |
gisticScoresFile |
scores.gistic file generated by gistic. Default NULL |
cnLevel |
level of CN changes to use. Can be 'all', 'deep' or 'shallow'. Default uses all i.e, genes with both 'shallow' or 'deep' CN changes |
cnTable |
Custom copynumber data if gistic results are not available. Input file or a data.frame should contain three columns in aforementioned order with gene name, Sample name and copy number status (either 'Amp' or 'Del'). Default NULL. Recommended to include additional columns 'Chromosome' 'Start_Position' 'End_Position' |
isTCGA |
Is input MAF file from TCGA source. If TRUE uses only first 12 characters from Tumor_Sample_Barcode. |
vc_nonSyn |
NULL. Provide manual list of variant classifications to be considered as non-synonymous. Rest will be considered as silent variants. Default uses Variant Classifications with High/Moderate variant consequences. https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html: "Frame_Shift_Del", "Frame_Shift_Ins", "Splice_Site", "Translation_Start_Site","Nonsense_Mutation", "Nonstop_Mutation", "In_Frame_Del","In_Frame_Ins", "Missense_Mutation" |
verbose |
TRUE logical. Default to be talkative and prints summary. |
This function takes MAF file as input and summarizes them. If copy number data is available, e.g from GISTIC, it can be provided too via arguments gisticAllLesionsFile, gisticAmpGenesFile, and gisticDelGenesFile. Copy number data can also be provided as a custom table containing Gene name, Sample name and Copy Number status.
Note that if input MAF file contains multiple affected transcripts of a variant, this function by default removes them as duplicates, while keeping single unique entry per variant per sample. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.
FLAGS - If you get a note on possible FLAGS while reading MAF, it means some of the top mutated genes are fishy. These genes are often non-pathogenic and passengers, but are frequently mutated in most of the public exome studies. Examples of such genes include TTN, MUC16, etc. This note can be ignored without any harm, it's only generated as to make user aware of such genes. See references for details on FLAGS.
An object of class MAF.
Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics 2014; 7: 64.
plotmafSummary
write.mafSummary
laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #clinical data laml = read.maf(maf = laml.maf, clinicalData = laml.clin)
laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #clinical data laml = read.maf(maf = laml.maf, clinicalData = laml.clin)
A little function to summarize gistic output files. Summarized output is returned as a list of tables.
readGistic( gisticDir = NULL, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all", isTCGA = FALSE, verbose = TRUE )
readGistic( gisticDir = NULL, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all", isTCGA = FALSE, verbose = TRUE )
gisticDir |
Directory containing GISTIC results. Default NULL. If provided all relevent files will be imported. Alternatively, below arguments can be used to import required files. |
gisticAllLesionsFile |
All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Required. Default NULL. |
gisticAmpGenesFile |
Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL. |
gisticDelGenesFile |
Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL. |
gisticScoresFile |
scores.gistic file generated by gistic. |
cnLevel |
level of CN changes to use. Can be 'all', 'deep' or 'shallow'. Default uses all i.e, genes with both 'shallow' or 'deep' CN changes |
isTCGA |
Is the data from TCGA. Default FALSE. |
verbose |
Default TRUE |
Requires output files generated from GISTIC. Gistic documentation can be found here ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTICDocumentation_standalone.htm
A list of summarized data.
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic, isTCGA = TRUE)
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic, isTCGA = TRUE)
Given a list BAM files, the function genotypes known SNPs and identifies potentially related samples. For the source of SNPs, see reference
sampleSwaps( bams = NULL, build = "hg19", prefix = NULL, add = TRUE, min_depth = 30, ncores = 4, ... )
sampleSwaps( bams = NULL, build = "hg19", prefix = NULL, add = TRUE, min_depth = 30, ncores = 4, ... )
bams |
Input bam files. Required. |
build |
reference genome build. Default "hg19". Can be hg19 or hg38 |
prefix |
Prefix to add or remove from contig names in SNP file. If BAM files are aligned GRCh37/38 genome, use prefix 'chr' to 'add' |
add |
If prefix is used, default is to add prefix to contig names in SNP file. If FALSE prefix will be removed from contig names. |
min_depth |
Minimum read depth for a SNP to be considered. Default 30. |
ncores |
Default 4. Each BAM file will be launched on a separate thread. Works only on Unix and macOS. |
... |
Additional arguments passed to |
a list with results summarized
Westphal, M., Frankhouser, D., Sonzone, C. et al. SMaSH: Sample matching using SNPs in humans. BMC Genomics 20, 1001 (2019). https://doi.org/10.1186/s12864-019-6332-7
The function takes logR file generated by prepAscat
or prepAscat_t
and performs segmentation with DNAcopy
segmentLogR(tumor_logR = NULL, sample_name = NULL, build = "hg19")
segmentLogR(tumor_logR = NULL, sample_name = NULL, build = "hg19")
tumor_logR |
logR.txt file generated by |
sample_name |
Default NULL. Parses from 'tumor_logR' file |
build |
Reference genome. Default hg19. Can be hg18, hg19, or hg38 |
Invisibly returns DNAcopy
object
Summarize CBS segmentation results
segSummarize( seg = NULL, build = "hg19", cytoband = NULL, thr = 0.3, verbose = TRUE, maf = NULL, genes = NULL, topanno = NULL, topannocols = NA )
segSummarize( seg = NULL, build = "hg19", cytoband = NULL, thr = 0.3, verbose = TRUE, maf = NULL, genes = NULL, topanno = NULL, topannocols = NA )
seg |
segmentation results generated from |
build |
genome build. Default hg19. Can be hg19, hg38. If other than these, use 'cytoband' argument |
cytoband |
cytoband data from UCSC genome browser. Only needed if 'build' is other than 'hg19' or 'hg38' |
thr |
threshold to call amplification and deletion. Any cytobands or chromosomal arms with median logR above or below this will be called. Default 0.3 |
verbose |
Default TRUE |
maf |
optional MAF |
genes |
Add mutation status of these genes as an annotation to the heatmap |
topanno |
annotation for each sample. This is passed as an input to 'annotation_col' of 'pheatmap' |
topannocols |
annotation cols for 'topanno'. This is passed as an input to 'annotation_colors' of 'pheatmap' |
A handy function to summarize CBS segmentation results. Takes segmentation results generated by DNAcopy package segment
and summarizes the CN for each cytoband and chromosomal arms.
List of median CN values for each cytoband and chromosomal arm along with the plotting matrix
laml.seg <- system.file("extdata", "LAML_CBS_segments.tsv.gz", package = "maftools") segSummarize(seg = laml.seg) #Heighlight some genes as annotation laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #clinical data laml = read.maf(maf = laml.maf, clinicalData = laml.clin) segSummarize(seg = laml.seg, maf = laml, genes = c("FLT3", "DNMT3A"))
laml.seg <- system.file("extdata", "LAML_CBS_segments.tsv.gz", package = "maftools") segSummarize(seg = laml.seg) #Heighlight some genes as annotation laml.maf = system.file("extdata", "tcga_laml.maf.gz", package = "maftools") #MAF file laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools') #clinical data laml = read.maf(maf = laml.maf, clinicalData = laml.clin) segSummarize(seg = laml.seg, maf = laml, genes = c("FLT3", "DNMT3A"))
Set Operations for MAF objects
setdiffMAF(x, y, mafObj = TRUE, refAltMatch = TRUE, ...) intersectMAF(x, y, refAltMatch = TRUE, mafObj = TRUE, ...)
setdiffMAF(x, y, mafObj = TRUE, refAltMatch = TRUE, ...) intersectMAF(x, y, refAltMatch = TRUE, mafObj = TRUE, ...)
x |
the first 'MAF' object. |
y |
the second 'MAF' object. |
mafObj |
Return output as an 'MAF' object. Default 'TRUE' |
refAltMatch |
Set operations are done by matching ref and alt alleles in addition to loci (Default). If FALSE only loci (chr, start, end positions) are matched. |
... |
other parameters passing to 'subsetMaf' for subsetting operations. |
subset table or an object of class MAF-class
. If no overlaps found returns 'NULL'
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) x <- subsetMaf(maf = laml, tsb = c('TCGA-AB-3009')) y <- subsetMaf(maf = laml, tsb = c('TCGA-AB-2933')) setdiffMAF(x, y) intersectMAF(x, y) #Should return NULL due to no common variants
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) x <- subsetMaf(maf = laml, tsb = c('TCGA-AB-3009')) y <- subsetMaf(maf = laml, tsb = c('TCGA-AB-2933')) setdiffMAF(x, y) intersectMAF(x, y) #Should return NULL due to no common variants
Performs k-means clustering to assign signature to samples and performs enrichment analysis. Note - Do not use this function. This will be removed in future updates.
signatureEnrichment(maf, sig_res, minMut = 5, useCNV = FALSE, fn = NULL)
signatureEnrichment(maf, sig_res, minMut = 5, useCNV = FALSE, fn = NULL)
maf |
an |
sig_res |
Signature results from |
minMut |
Consider only genes with minimum this number of samples mutated. Default 5. |
useCNV |
whether to include copy number events. Only applicable when MAF is read along with copy number data. Default TRUE if available. |
fn |
basename for output file. Default NULL. |
result list containing p-values
Performs Pair-wise Fisher's Exact test to detect mutually exclusive or co-occuring events.
somaticInteractions( maf, top = 25, genes = NULL, pvalue = c(0.05, 0.01), returnAll = TRUE, geneOrder = NULL, fontSize = 0.8, leftMar = 4, topMar = 4, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", revPal = FALSE, showSum = TRUE, plotPadj = FALSE, colNC = 9, nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
somaticInteractions( maf, top = 25, genes = NULL, pvalue = c(0.05, 0.01), returnAll = TRUE, geneOrder = NULL, fontSize = 0.8, leftMar = 4, topMar = 4, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", revPal = FALSE, showSum = TRUE, plotPadj = FALSE, colNC = 9, nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
maf |
|
top |
check for interactions among top 'n' number of genes. Defaults to top 25. |
genes |
List of genes among which interactions should be tested. If not provided, test will be performed between top 25 genes. |
pvalue |
Default c(0.05, 0.01) p-value threshold. You can provide two values for upper and lower threshold. |
returnAll |
If TRUE returns test statistics for all pair of tested genes. Default FALSE, returns for only genes below pvalue threshold. |
geneOrder |
Plot the results in given order. Default NULL. |
fontSize |
cex for gene names. Default 0.8 |
leftMar |
Left margin. Default 4 |
topMar |
Top margin. Default 4 |
showSigSymbols |
Default TRUE. Heighlight significant pairs |
showCounts |
Default TRUE. Include number of events in the plot |
countStats |
Default 'all'. Can be 'all' or 'sig' |
countType |
Default 'cooccur'. Can be 'all', 'cooccur', 'mutexcl' |
countsFontSize |
Default 0.8 |
countsFontColor |
Default 'black' |
colPal |
colPalBrewer palettes. See RColorBrewer::display.brewer.all() for details |
revPal |
Reverse the color palette. Default FALSE |
showSum |
show [sum] with gene names in plot, Default TRUE |
plotPadj |
Plot adj. p-values instead |
colNC |
Number of different colors in the palette, minimum 3, default 9 |
nShiftSymbols |
shift if positive shift SigSymbols by n to the left, default = 5 |
sigSymbolsSize |
size of symbols in the matrix and in legend |
sigSymbolsFontSize |
size of font in legends |
pvSymbols |
vector of pch numbers for symbols of p-value for upper and lower thresholds c(upper, lower) |
limitColorBreaks |
limit color to extreme values. Default TRUE |
This function and plotting is inspired from genetic interaction analysis performed in the published study combining gene expression and mutation data in MDS. See reference for details.
list of data.tables
Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications. 2015;6:5901. doi:10.1038/ncomms6901.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) somaticInteractions(maf = laml, top = 5)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) somaticInteractions(maf = laml, top = 5)
Subsets MAF based on given conditions.
subsetMaf( maf, tsb = NULL, genes = NULL, query = NULL, clinQuery = NULL, ranges = NULL, keepNA = FALSE, mult = "first", fields = NULL, mafObj = TRUE, includeSyn = TRUE, isTCGA = FALSE, dropLevels = TRUE, restrictTo = "all", verbose = TRUE )
subsetMaf( maf, tsb = NULL, genes = NULL, query = NULL, clinQuery = NULL, ranges = NULL, keepNA = FALSE, mult = "first", fields = NULL, mafObj = TRUE, includeSyn = TRUE, isTCGA = FALSE, dropLevels = TRUE, restrictTo = "all", verbose = TRUE )
maf |
an MAF object generated by |
tsb |
subset by these samples (Tumor Sample Barcodes) |
genes |
subset by these genes |
query |
query string. e.g, "Variant_Classification == 'Missense_Mutation'" returns only Missense variants. |
clinQuery |
query by clinical variable. |
ranges |
subset by ranges. data.frame with 3 column (chr, start, end). Overlaps are identified by |
keepNA |
Keep NAs while sub-setting for ranges. Default 'FALSE' - removes rows with missing loci prior to overlapping. Set to TRUE to keep them as is. |
mult |
When multiple loci in 'ranges' match to the variants maf, mult=. controls which values are returned - "all" , "first" (default) or "last". This value is passed to 'mult' argument of |
fields |
include only these fields along with necessary fields in the output |
mafObj |
returns output as MAF class |
includeSyn |
Default TRUE, only applicable when mafObj = FALSE. If mafObj = TRUE, synonymous variants will be stored in a seperate slot of MAF object. |
isTCGA |
Is input MAF file from TCGA source. |
dropLevels |
Default TRUE. |
restrictTo |
restrict subset operations to these. Can be 'all', 'cnv', or 'mutations'. Default 'all'. If 'cnv' or 'mutations', subset operations will only be applied on copy-number or mutation data respectively, while retaining other parts as is. |
verbose |
Default TRUE |
subset table or an object of class MAF-class
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) ##Select all Splice_Site mutations from DNMT3A and NPM1 subsetMaf(maf = laml, genes = c('DNMT3A', 'NPM1'), query = "Variant_Classification == 'Splice_Site'") ##Select all variants with VAF above 30% subsetMaf(maf = laml, query = "i_TumorVAF_WU > 30") ##Extract data for samples 'TCGA.AB.3009' and 'TCGA.AB.2933' but only include vaf filed. subsetMaf(maf = laml, tsb = c('TCGA-AB-3009', 'TCGA-AB-2933'), fields = 'i_TumorVAF_WU') ##Subset by ranges ranges = data.frame(chr = c("2", "17"), start = c(25457000, 7571720), end = c(25458000, 7590868)) subsetMaf(laml, ranges = ranges)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) ##Select all Splice_Site mutations from DNMT3A and NPM1 subsetMaf(maf = laml, genes = c('DNMT3A', 'NPM1'), query = "Variant_Classification == 'Splice_Site'") ##Select all variants with VAF above 30% subsetMaf(maf = laml, query = "i_TumorVAF_WU > 30") ##Extract data for samples 'TCGA.AB.3009' and 'TCGA.AB.2933' but only include vaf filed. subsetMaf(maf = laml, tsb = c('TCGA-AB-3009', 'TCGA-AB-2933'), fields = 'i_TumorVAF_WU') ##Subset by ranges ranges = data.frame(chr = c("2", "17"), start = c(25457000, 7571720), end = c(25458000, 7590868)) subsetMaf(laml, ranges = ranges)
Predict genesets associated with survival
survGroup( maf, top = 20, genes = NULL, geneSetSize = 2, minSamples = 5, clinicalData = NULL, time = "Time", Status = "Status", verbose = TRUE, plot = FALSE )
survGroup( maf, top = 20, genes = NULL, geneSetSize = 2, minSamples = 5, clinicalData = NULL, time = "Time", Status = "Status", verbose = TRUE, plot = FALSE )
maf |
|
top |
If genes is |
genes |
Manual set of genes |
geneSetSize |
Default 2 |
minSamples |
minimum number of samples to be mutated to be considered for analysis. Default 5 |
clinicalData |
dataframe containing events and time to events. Default looks for clinical data in annotation slot of |
time |
column name contining time in |
Status |
column name containing status of patients in |
verbose |
Default TRUE |
plot |
Default FALSE If TRUE, generate KM plots of the genesets combinations. |
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) survGroup(maf = laml, top = 20, geneSetSize = 1, time = "days_to_last_followup", Status = "Overall_Survival_Status", plot = FALSE)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools") laml <- read.maf(maf = laml.maf, clinicalData = laml.clin) survGroup(maf = laml, top = 20, geneSetSize = 1, time = "days_to_last_followup", Status = "Overall_Survival_Status", plot = FALSE)
Prints available TCGA cohorts
tcgaAvailable(repo = c("github", "gitee"))
tcgaAvailable(repo = c("github", "gitee"))
repo |
can be "github" (default) or "gitee". If 'github' fails to fetch, switch to 'gitee' |
tcgaAvailable()
tcgaAvailable()
Compares mutation load in input MAF against all of 33 TCGA cohorts derived from MC3 project.
tcgaCompare( maf, capture_size = NULL, tcga_capture_size = 35.8, cohortName = NULL, tcga_cohorts = NULL, primarySite = FALSE, col = c("gray70", "black"), bg_col = c("#EDF8B1", "#2C7FB8"), medianCol = "red", decreasing = FALSE, logscale = TRUE, rm_hyper = FALSE, rm_zero = TRUE, cohortFontSize = 0.8, axisFontSize = 0.8 )
tcgaCompare( maf, capture_size = NULL, tcga_capture_size = 35.8, cohortName = NULL, tcga_cohorts = NULL, primarySite = FALSE, col = c("gray70", "black"), bg_col = c("#EDF8B1", "#2C7FB8"), medianCol = "red", decreasing = FALSE, logscale = TRUE, rm_hyper = FALSE, rm_zero = TRUE, cohortFontSize = 0.8, axisFontSize = 0.8 )
maf |
|
capture_size |
capture size for input MAF in MBs. Default NULL. If provided plot will be scaled to mutations per mb. TCGA capture size is assumed to be 35.8 mb. |
tcga_capture_size |
capture size for TCGA cohort in MB. Default 35.8. Do NOT change. See details for more information. |
cohortName |
name for the input MAF cohort. Default "Input" |
tcga_cohorts |
restrict tcga data to these cohorts. |
primarySite |
If TRUE uses primary site of cancer as labels instead of TCGA project IDs. Default FALSE. |
col |
color vector for length 2 TCGA cohorts and input MAF cohort. Default gray70 and black. |
bg_col |
background color. Default'#EDF8B1', '#2C7FB8' |
medianCol |
color for median line. Default red. |
decreasing |
Default FALSE. Cohorts are arranged in increasing mutation burden. |
logscale |
Default TRUE |
rm_hyper |
Remove hyper mutated samples (outliers)? Default FALSE |
rm_zero |
Remove samples with zero mutations? Default TRUE |
cohortFontSize |
Default 0.8 |
axisFontSize |
Default 0.8 |
Tumor mutation burden for TCGA cohorts is obtained from TCGA MC3 study. For consistency TMB is estimated by restricting variants within Agilent Sureselect capture kit of size 35.8 MB.
data.table with median mutations per cohort
TCGA MC3 file was obtained from https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc. See TCGAmutations R package for more details. Further downstream script to estimate TMB for each sample can be found in ‘inst/scripts/estimate_tcga_tmb.R’
Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines Kyle Ellrott, Matthew H. Bailey, Gordon Saksena, et. al. Cell Syst. 2018 Mar 28; 6(3): 271–281.e7. https://doi.org/10.1016/j.cels.2018.03.002
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) tcgaCompare(maf = laml, cohortName = "AML")
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) tcgaCompare(maf = laml, cohortName = "AML")
A small function which uses known cancer driver genes and their associatd pathways from TCGA cohorts. See reference for details
tcgaDriverBP(m, genes = NULL, top = 20, fontSize = 0.7)
tcgaDriverBP(m, genes = NULL, top = 20, fontSize = 0.7)
m |
an |
genes |
genes to compare. Default 'NULL'. |
top |
Top number of genes to use. Mutually exclusive with 'genes' argument. Default 20 |
fontSize |
Default 0.7 |
Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations . Cell. 2018;173(2):371–385.e18. doi:10.1016/j.cell.2018.02.060
Loads the user mentioned TCGA cohorts
tcgaLoad( study = NULL, source = c("MC3", "Firehose"), repo = c("github", "gitee") )
tcgaLoad( study = NULL, source = c("MC3", "Firehose"), repo = c("github", "gitee") )
study |
Study names to load. Use |
source |
Source for MAF files. Can be |
repo |
one of "github" (default) and "gitee". |
The function loads curated and pre-compiled MAF objects from TCGA cohorts. TCGA data are obtained from two sources namely, Broad Firehose repository, and MC3 project.
An object of class MAF.
Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines Kyle Ellrott, Matthew H. Bailey, Gordon Saksena, et. al. Cell Syst. 2018 Mar 28; 6(3): 271–281.e7.
# Loads TCGA LAML cohort (default from MC3 project) tcgaLoad(study = "LAML") # Loads TCGA LAML cohort (from Borad Firehose) tcgaLoad(study = "LAML", source = "Firehose")
# Loads TCGA LAML cohort (default from MC3 project) tcgaLoad(study = "LAML") # Loads TCGA LAML cohort (from Borad Firehose) tcgaLoad(study = "LAML", source = "Firehose")
takes output generated by read.maf and classifies Single Nucleotide Variants into Transitions and Transversions.
titv(maf, useSyn = FALSE, plot = TRUE, file = NULL)
titv(maf, useSyn = FALSE, plot = TRUE, file = NULL)
maf |
|
useSyn |
Logical. Whether to include synonymous variants in analysis. Defaults to FALSE. |
plot |
plots a titv fractions. default TRUE. |
file |
basename for output file name. If given writes summaries to output file. Default NULL. |
list of data.frame
s with Transitions and Transversions summary.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.titv = titv(maf = laml, useSyn = TRUE)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.titv = titv(maf = laml, useSyn = TRUE)
Estimates Tumor Mutation Burden in terms of per megabases
tmb( maf, captureRegions = NULL, captureSize = 50, logScale = TRUE, ignoreCNV = TRUE, plotType = "classic", pointcol = "#2c3e50", verbose = TRUE )
tmb( maf, captureRegions = NULL, captureSize = 50, logScale = TRUE, ignoreCNV = TRUE, plotType = "classic", pointcol = "#2c3e50", verbose = TRUE )
maf |
maf |
captureRegions |
capture regions. Default NULL. If provided sub-sets variants within the capture regions for TMB estimation. Can be a data.frame or a tsv with first three columns containing chromosome, start and end position. |
captureSize |
capture size for input MAF in MBs. Default 50MB. Mutually exclusive with |
logScale |
Default TRUE. For plotting purpose only. |
ignoreCNV |
Default TRUE. Ignores all the variants annotated as 'CNV' in the 'Variant_Type' column of MAF |
plotType |
Can be "classic" or "boxplot". Set to 'NA' for no plot. |
pointcol |
Default #2c3e50 |
verbose |
Default TRUE |
data.table with TMB for every sample
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) tmb(maf = laml)
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) tmb(maf = laml)
Extract single 5' and 3' bases flanking the mutated site for de-novo signature analysis. Also estimates APOBEC enrichment scores.
trinucleotideMatrix( maf, ref_genome = NULL, prefix = NULL, add = TRUE, ignoreChr = NULL, useSyn = TRUE, fn = NULL )
trinucleotideMatrix( maf, ref_genome = NULL, prefix = NULL, add = TRUE, ignoreChr = NULL, useSyn = TRUE, fn = NULL )
maf |
|
ref_genome |
BSgenome object or name of the installed BSgenome package. Example: BSgenome.Hsapiens.UCSC.hg19 Default NULL, tries to auto-detect from installed genomes. |
prefix |
Prefix to add or remove from contig names in MAF file. |
add |
If prefix is used, default is to add prefix to contig names in MAF file. If false prefix will be removed from contig names. |
ignoreChr |
Chromsomes to ignore from analysis. e.g. chrM |
useSyn |
Logical. Whether to include synonymous variants in analysis. Defaults to TRUE |
fn |
If given writes APOBEC results to an output file with basename fn. Default NULL. |
Extracts immediate 5' and 3' bases flanking the mutated site and classifies them into 96 substitution classes. Requires BSgenome data packages for sequence extraction.
APOBEC Enrichment: Enrichment score is calculated using the same method described by Roberts et al.
E = (n_tcw * background_c) / (n_C * background_tcw)
where, n_tcw = number of mutations within T[C>T]W and T[C>G]W context. (W -> A or T)
n_C = number of mutated C and G
background_C and background_tcw motifs are number of C and TCW motifs occuring around +/- 20bp of each mutation.
One-sided Fisher's Exact test is performed to determine the enrichment of APOBEC tcw mutations over background.
list of 2. A matrix of dimension nx96, where n is the number of samples in the MAF and a table describing APOBEC enrichment per sample.
Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human Cancers. Nature genetics. 2013;45(9):970-976. doi:10.1038/ng.2702.
extractSignatures
plotApobecDiff
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) ## End(Not run)
## Not run: laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'BSgenome.Hsapiens.UCSC.hg19', prefix = 'chr', add = TRUE, useSyn = TRUE) ## End(Not run)
Draw boxplot distibution of VAFs across two cohorts
vafCompare( m1, m2, genes = NULL, top = 5, vafCol1 = NULL, vafCol2 = NULL, m1Name = "M1", m2Name = "M2", cols = c("#2196F3", "#4CAF50"), sigvals = TRUE, nrows = NULL, ncols = NULL )
vafCompare( m1, m2, genes = NULL, top = 5, vafCol1 = NULL, vafCol2 = NULL, m1Name = "M1", m2Name = "M2", cols = c("#2196F3", "#4CAF50"), sigvals = TRUE, nrows = NULL, ncols = NULL )
m1 |
first |
m2 |
second |
genes |
specify genes for which plot has to be generated. Default NULL. |
top |
if |
vafCol1 |
manually specify column name for vafs in |
vafCol2 |
manually specify column name for vafs in |
m1Name |
optional name for first cohort |
m2Name |
optional name for second cohort |
cols |
vector of colors corresponding to |
sigvals |
Estimate and add significance stars. Default TRUE. |
nrows |
Number of rows in the layout. Default NULL - estimated automatically |
ncols |
Number of genes drawn per row. Default 4 |
Writes GISTIC summaries to output tab-delimited text files.
write.GisticSummary(gistic, basename = NULL)
write.GisticSummary(gistic, basename = NULL)
gistic |
an object of class |
basename |
basename for output file to be written. |
None. Writes output as tab delimited text files.
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) write.GisticSummary(gistic = laml.gistic, basename = 'laml')
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools") amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools") del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools") scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools") laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, gisticScoresFile = scores.gistic) write.GisticSummary(gistic = laml.gistic, basename = 'laml')
Writes maf summaries to output tab-delimited text files.
write.mafSummary(maf, basename = NULL, compress = FALSE)
write.mafSummary(maf, basename = NULL, compress = FALSE)
maf |
|
basename |
basename for output file to be written. |
compress |
If 'TRUE' files will be gz compressed. Default 'FALSE' |
Writes MAF and related summaries to output files.
None. Writes output as text files.
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) write.mafSummary(maf = laml, basename = 'laml')
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools") laml <- read.maf(maf = laml.maf) write.mafSummary(maf = laml, basename = 'laml')