Title: | Bayesian Piecewise Constant Regression for DNA copy number estimation |
---|---|
Description: | It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes. |
Authors: | P.M.V. Rancoita <[email protected]>, with contributions from M. Hutter <[email protected]> |
Maintainer: | P.M.V. Rancoita <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.61.0 |
Built: | 2024-12-04 06:00:53 UTC |
Source: | https://github.com/bioc/mBPCR |
Function to retrieve base positions of the centromere of a specific chromosome.
centromere(chr, hg='hg18')
centromere(chr, hg='hg18')
chr |
chromosome of which you want to retrieve the centromere base positions. |
hg |
genome build used for retrieving the centromere base positions of the selected chromosome. Current available options are: |
The function returns the start and end base positions of the centromere of the selected chromosome, by using the specified genome build. The function is based on the annotation provided in the package GWASTools
.
#centromere base positions of chromosome 1 in genome build hg18 centromere(1, hg='hg18')
#centromere base positions of chromosome 1 in genome build hg18 centromere(1, hg='hg18')
Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a
smoothing curve using either the Bayesian Regression Curve with (BRC with
) or the Bayesian Regression Curve Averaging over k (BRCAk). It is also possible
to choose the estimator of the variance of the levels
rhoSquare
(i.e. either or
) and by default
is used.
computeMBPCR(y, kMax=50, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL)
computeMBPCR(y, kMax=50, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL)
y |
array containing the log2ratio of the copy number data |
kMax |
maximum number of segments |
nu |
mean of the segment levels. If |
rhoSquare |
variance of the segment levels. If |
sigmaSquare |
variance of the noise. If |
typeEstRho |
choice of the estimator of |
regr |
choice of the computation of the regression curve. If |
By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using . It is
also possible to use
as estimator of
rhoSquare
, by setting typeEstRho=0
, or to directly set the value of the parameter.
The function gives also the possibility to estimate the profile with a Bayesian regression curve: if regr="BRC"
the Bayesian Regression Curve with is computed (BRC with
), if
regr="BRCAk"
the Bayesian
Regression Curve Averaging over k is computed (BRCAk).
A list containing:
estK |
the estimated number of segments |
estBoundaries |
the estimated boundaries |
estPC |
the estimated profile with mBPCR |
regrCurve |
the estimated bayesian regression curve. It is returned only if |
nu |
|
rhoSquare |
|
sigmaSquare |
|
postProbT |
for each probe, the posterior probablity to be a breakpoint |
Rancoita, P. M. V., Hutter, M., Bertoni, F., Kwee, I. (2009). Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR
estProfileWithMBPCR
, plotEstProfile
, writeEstProfile
, estGlobParam
##import the 250K NSP data of chromosome 11 of cell line JEKO-1 data(jekoChr11Array250Knsp) ##first example ## we select a part of chromosome 11 y <- jekoChr11Array250Knsp$log2ratio[6400:6900] p <- jekoChr11Array250Knsp$PhysicalPosition[6400:6900] ##we estimate the profile using the global parameters estimated on the whole genome ##the profile is estimated with mBPCR and with the Bayesian Regression Curve results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRC") plot(p, y) points(p, results$estPC, type='l', col='red') points(p, results$regrCurve,type='l', col='green') ###second example ### we select a part of chromosome 11 #y <- jekoChr11Array250Knsp$log2ratio[10600:11600] #p <- jekoChr11Array250Knsp$PhysicalPosition[10600:11600] ###we estimate the profile using the global parameters estimated on the whole genome ###the profile is estimated with mBPCR and with the Bayesian Regression Curve Ak #results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRCAk") #plot(p,y) #points(p, results$estPC, type='l', col='red') #points(p, results$regrCurve, type='l', col='green')
##import the 250K NSP data of chromosome 11 of cell line JEKO-1 data(jekoChr11Array250Knsp) ##first example ## we select a part of chromosome 11 y <- jekoChr11Array250Knsp$log2ratio[6400:6900] p <- jekoChr11Array250Knsp$PhysicalPosition[6400:6900] ##we estimate the profile using the global parameters estimated on the whole genome ##the profile is estimated with mBPCR and with the Bayesian Regression Curve results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRC") plot(p, y) points(p, results$estPC, type='l', col='red') points(p, results$regrCurve,type='l', col='green') ###second example ### we select a part of chromosome 11 #y <- jekoChr11Array250Knsp$log2ratio[10600:11600] #p <- jekoChr11Array250Knsp$PhysicalPosition[10600:11600] ###we estimate the profile using the global parameters estimated on the whole genome ###the profile is estimated with mBPCR and with the Bayesian Regression Curve Ak #results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRCAk") #plot(p,y) #points(p, results$estPC, type='l', col='red') #points(p, results$regrCurve, type='l', col='green')
Function to estimate the global parameters of copy number data: the mean and the variance of the segment levels (called nu
and rhoSquare
, respectively), the variance of the noise (sigmaSquare
). It is possible
to choose the estimator of rhoSquare
(i.e. either or
) and by default
is used.
estGlobParam(y, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1)
estGlobParam(y, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1)
y |
array containing the log2ratio of the copy number data |
nu |
mean of the segment levels. If |
rhoSquare |
variance of the segment levels. If |
sigmaSquare |
variance of the noise. If |
typeEstRho |
choice of the estimator of |
A list containing:
nu |
|
rhoSquare |
|
sigmaSquare |
Rancoita, P. M. V., Hutter, M., Bertoni, F., Kwee, I. (2009). Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR
##import the 10K data of cell line REC data(rec10k) ##estimation of all the global parameters (the variance of the segment is ##estimated with \eqn{\hat{\rho}^2_1}) estGlobParam(rec10k$log2ratio)
##import the 10K data of cell line REC data(rec10k) ##estimation of all the global parameters (the variance of the segment is ##estimated with \eqn{\hat{\rho}^2_1}) estGlobParam(rec10k$log2ratio)
Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a
smoothing curve, using either the Bayesian Regression Curve with (BRC with
) or the Bayesian Regression Curve Averaging over k (BRCAk). It is also possible
to choose the estimator of the variance of the levels
rhoSquare
(i.e. either or
) and by default
is used.
estProfileWithMBPCR(snpName, chr, position, logratio, chrToBeAnalyzed, maxProbeNumber, rhoSquare=NULL, kMax=50, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL, hg='hg18')
estProfileWithMBPCR(snpName, chr, position, logratio, chrToBeAnalyzed, maxProbeNumber, rhoSquare=NULL, kMax=50, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL, hg='hg18')
snpName |
array containing the name of each probe |
chr |
array containing the name of the chromosome to which each of the probes belongs. The possible values of the elements of |
position |
array containing the physical position of each probe |
logratio |
array containing the log2ratio of the raw copy number data |
chrToBeAnalyzed |
array containing the name of the chromosomes that the user wants to analyze. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'. |
maxProbeNumber |
maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation
needs the computation of an array of length |
rhoSquare |
variance of the segment levels. If |
kMax |
maximum number of segments |
nu |
mean of the segment levels. If |
sigmaSquare |
variance of the noise. If |
typeEstRho |
choice of the estimator of |
regr |
choice of the computation of the regression curve. If |
hg |
genome build used for retrieving the base positions of the centromeres in case the chromosomes need to be divided into two parts for the estimation (see explanation of |
By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using . It is
also possible to use
as estimator of
rhoSquare
, by setting typeEstRho=0
, or to directly set the value of the parameter.
The function gives also the possibility to estimate the profile with a Bayesian regression curve: if regr="BRC"
the Bayesian Regression Curve with is computed (BRC with
), if
regr="BRCAk"
the Bayesian
Regression Curve Averaging over k is computed (BRCAk).
See function writeEstProfile
, to have the results in nicer tables or to write them on files.
A list containing:
estPC |
an array containing the estimated profile with mBPCR |
estBoundaries |
the list of estimated breakpoints for each of the analyzed chomosomes |
postProbT |
the list of the posterior probablity to be a breakpoint for each estimated breakpoint of the analyzed chomosomes |
regrCurve |
an array containing the estimated bayesian regression curve |
estPC
and regrCurve
have the same length of logratio
, hence their components,
corresponding to the not analyzed chromosomes, are equal to NA
.
Rancoita, P. M. V., Hutter, M., Bertoni, F., Kwee, I. (2009). Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR
plotEstProfile
, writeEstProfile
, computeMBPCR
##import the 10K data of cell line REC data(rec10k) ##estimation of the profile of chromosome 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000) ##plot the estimated profile of chromosome 5 y <- rec10k$log2ratio[rec10k$Chromosome == 5] p <- rec10k$PhysicalPosition[rec10k$Chromosome == 5] plot(p, y) points(p, results$estPC[rec10k$Chromosome == 5], type='l', col='red') ###for the estimation of the profile of all chromosomes #results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, #rec10k$log2ratio, chrToBeAnalyzed=c(1:22,'X'), maxProbeNumber=2000)
##import the 10K data of cell line REC data(rec10k) ##estimation of the profile of chromosome 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000) ##plot the estimated profile of chromosome 5 y <- rec10k$log2ratio[rec10k$Chromosome == 5] p <- rec10k$PhysicalPosition[rec10k$Chromosome == 5] plot(p, y) points(p, results$estPC[rec10k$Chromosome == 5], type='l', col='red') ###for the estimation of the profile of all chromosomes #results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, #rec10k$log2ratio, chrToBeAnalyzed=c(1:22,'X'), maxProbeNumber=2000)
Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a
smoothing curve, using either the Bayesian Regression Curve with (BRC with
) or the Bayesian Regression Curve Averaging over k (BRCAk). It is also possible
to choose the estimator of the variance of the levels
rhoSquare
(i.e. either or
) and by default
is used.
estProfileWithMBPCRforOligoSnpSet(sampleData, sampleToBeAnalyzed, chrToBeAnalyzed, maxProbeNumber, ifLogRatio=1, rhoSquare=NULL, kMax=50, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL, hg='hg18')
estProfileWithMBPCRforOligoSnpSet(sampleData, sampleToBeAnalyzed, chrToBeAnalyzed, maxProbeNumber, ifLogRatio=1, rhoSquare=NULL, kMax=50, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL, hg='hg18')
sampleData |
object of type oligoSnpSet. The following fields must not be empty: |
sampleToBeAnalyzed |
vector containing the number of the columns corresponding to the samples the user wants to analyze. |
chrToBeAnalyzed |
array containing the name of the chromosomes that the user wants to analyze. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'. |
maxProbeNumber |
maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation
needs the computation of an array of length |
ifLogRatio |
denotes whether the original log2 data were centered at zero (i.e. they were in log2ratio scale) or not. By default, they are considered as derived by log2ratio data ( |
rhoSquare |
variance of the segment levels. If |
kMax |
maximum number of segments |
nu |
mean of the segment levels. If |
sigmaSquare |
variance of the noise. If |
typeEstRho |
choice of the estimator of |
regr |
choice of the computation of the regression curve. If |
hg |
genome build used for retrieving the base positions of the centromeres in case the chromosomes need to be divided into two parts for the estimation (see explanation of |
By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using . It is
also possible to use
as estimator of
rhoSquare
, by setting typeEstRho=0
, or to directly set the value of the parameter.
The function gives also the possibility to estimate the profile with a Bayesian regression curve: if regr="BRC"
the Bayesian Regression Curve with is computed (BRC with
), if
regr="BRCAk"
the Bayesian
Regression Curve Averaging over k is computed (BRCAk).
A list containing:
estPC |
an oligoSnpSet equal to sampleData apart from the field |
regrCurve |
an oligoSnpSet equal to sampleData apart from the field |
The matrices assayData(estPC)$copyNumber
and assayData(regrCurve)$copyNumber
have the same dimension of assayData(sampleData)$copyNumber
, hence their elements,
corresponding to the not analyzed chromosomes and samples, are equal to NA
.
Rancoita, P. M. V., Hutter, M., Bertoni, F., Kwee, I. (2009). Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR
estProfileWithMBPCR
, computeMBPCR
###import an example of oligoSnpSet data #data(oligoSetExample, package="oligoClasses") ##estimation of chromosome 2 in sample 1 #r <-estProfileWithMBPCRforOligoSnpSet(oligoSet, sampleToBeAnalyzed=1, chrToBeAnalyzed=2, #maxProbeNumber=1000, ifLogRatio=0, rhoSquare=0.0889637) ##plot of the estimated chromosome #library(SNPchip) #cc <- r$estPC #cc1 <- cc[chromosome(cc) == "2",1] #par(las=1) #plot(position(cc1), copyNumber(cc1)/100, ylim=c(-0.23, 0.1), ylab="copy number", #xlab="base position")
###import an example of oligoSnpSet data #data(oligoSetExample, package="oligoClasses") ##estimation of chromosome 2 in sample 1 #r <-estProfileWithMBPCRforOligoSnpSet(oligoSet, sampleToBeAnalyzed=1, chrToBeAnalyzed=2, #maxProbeNumber=1000, ifLogRatio=0, rhoSquare=0.0889637) ##plot of the estimated chromosome #library(SNPchip) #cc <- r$estPC #cc1 <- cc[chromosome(cc) == "2",1] #par(las=1) #plot(position(cc1), copyNumber(cc1)/100, ylim=c(-0.23, 0.1), ylab="copy number", #xlab="base position")
Function to import the raw copy number data from a tab delimited file.
importCNData(path, NRowSkip, ifLogRatio=1)
importCNData(path, NRowSkip, ifLogRatio=1)
path |
path of the tab delimited file containing the copy number data. The file must contain a table, where in the first column there are the names of the probes (snpName), in the second one, the chromosome to which each probe belongs (the possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'), in the third one, the phisical positions of the probes and in the forth one, the copy number data. |
NRowSkip |
number of row to skip in the file, before the table. The names of the columns are to be skipped. |
ifLogRatio |
denotes if the data are either the log2ratio of raw copy number data or raw copy number data. By default, they are considered as log2ratio data, otherwise ( |
A list containing:
snpName |
an array containing the names of the probes |
chr |
an array containing the name of the chromosome to which each probe belongs |
position |
an array containing the physical position of each probe |
logratio |
an array containing the log2ratio of the raw copy number data |
###import the 10K data of cell line REC path <- system.file("extdata", "rec10k.txt", package = "mBPCR") rec10k <- importCNData(path, NRowSkip=1) plot(rec10k$position[rec10k$chr == 3], rec10k$logratio[rec10k$chr == 3])
###import the 10K data of cell line REC path <- system.file("extdata", "rec10k.txt", package = "mBPCR") rec10k <- importCNData(path, NRowSkip=1) plot(rec10k$position[rec10k$chr == 3], rec10k$logratio[rec10k$chr == 3])
Affymetrix GeneChip Mapping 250K NSP Array data of JEKO-1 cell line.
data(jekoChr11Array250Knsp)
data(jekoChr11Array250Knsp)
A data frame containing four variables: first is SNP name ('SNPname'), second is probe chromosome ('Chromosome'), third is probe position ('PhysicalPosition') and fourth is probe raw log2ratio ('log2ratio').
Poretti, G. Rancoita, P.M.V. Kwee, I. Bertoni, F., unpublished
Function to compute the logarithm of a sum of small numbers, avoiding overflow.
logAdd(x)
logAdd(x)
x |
array or matrix containing the logarithm of the terms of the sum. If |
If x
is an array, the function returns , otherwise it returns an array containing the results by column.
x <- log(c(0.0001, 0.0003, 0.000006)) y <- logAdd(x) ##verification that the computation is correct z <- sum(c(0.0001, 0.0003, 0.000006)) z exp(y)
x <- log(c(0.0001, 0.0003, 0.000006)) y <- logAdd(x) ##verification that the computation is correct z <- sum(c(0.0001, 0.0003, 0.000006)) z exp(y)
Function to plot the estimated profiles of copy number data.
plotEstProfile(sampleName='', chr, position, logratio, chrToBePlotted, estPC, maxProbeNumber, legendPosition='bottomleft', regrCurve=NULL, regr=NULL, hg='hg18')
plotEstProfile(sampleName='', chr, position, logratio, chrToBePlotted, estPC, maxProbeNumber, legendPosition='bottomleft', regrCurve=NULL, regr=NULL, hg='hg18')
sampleName |
name of the sample, if the user wants to put it in the title of the graph |
chr |
array containing the name of the chromosome to which each probe belongs. The possible values of the elements of |
position |
array containing the physical position of each probe |
logratio |
array containing the log2ratio of the raw copy number data |
chrToBePlotted |
array containing the name of the estimated chromosomes, that the user wants to plot. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'. |
estPC |
array containing the estimated copy number profile as a piecewise constant function. If |
maxProbeNumber |
maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation
needs the computation of an array of length |
legendPosition |
string containing the position of the legend in the plot. The possible values are the same used in the function |
regrCurve |
array containing the estimated regression curve. If |
regr |
choice of the computation of the regression curve. If |
hg |
genome build used for retrieving the base positions of the centromeres in case the chromosomes need to be divided into two parts for the estimation (see explanation of |
The function plots the estimated profiles of the chromosomes of chrToBePlotted
, separately.
##import the 10K data of cell line REC data(rec10k) ##estimation of chromosomes 3 and 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=c(3,5), maxProbeNumber=2000) ##plot the corresponding estimated profiles plotEstProfile(sampleName='rec10k', rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBePlotted=c(3,5), results$estPC, maxProbeNumber=2000)
##import the 10K data of cell line REC data(rec10k) ##estimation of chromosomes 3 and 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=c(3,5), maxProbeNumber=2000) ##plot the corresponding estimated profiles plotEstProfile(sampleName='rec10k', rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBePlotted=c(3,5), results$estPC, maxProbeNumber=2000)
Affymetrix GeneChip Mapping 10K Array data of REC-1 cell line taken from the reference below.
data(rec10k)
data(rec10k)
A data frame containing five variables: first is SNP name ('SNPname'), second is probe chromosome ('Chromosome'), third is probe position ('PhysicalPosition'), fourth is probe raw log2ratio ('log2ratio') and fifth are is probe genotype ('call').
Rinaldi et al. (2006), Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma, British Journal of Haematology, 132, 303-316
Function to write nicely the results of the copy number profile estimation. The function either writes the tables directly on a tab delimited file or returns the corresponding tables.
writeEstProfile(path='', sampleName='', snpName, chr, position, logratio, chrToBeWritten, estPC, estBoundaries=NULL, postProbT=NULL, regrCurve=NULL, regr=NULL)
writeEstProfile(path='', sampleName='', snpName, chr, position, logratio, chrToBeWritten, estPC, estBoundaries=NULL, postProbT=NULL, regrCurve=NULL, regr=NULL)
path |
path of the folder where the user wants to write the results of the estimation (it must end with '\' in windows, or '//' in linux). If |
sampleName |
name of the sample. If the name of the sample if provided, it is used to named the files. |
snpName |
array containing the name of each probe |
chr |
array containing the name of the chromosome to which each probe belongs. The possible values of the elements of |
position |
array containing the physical position of each probe |
logratio |
array containing the log2ratio of the raw copy number data |
chrToBeWritten |
array containing the name of the estimated chromosomes, of which the user wants to write the results. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'. |
estPC |
array containing the estimated copy number profile as a piecewise constant function |
estBoundaries |
list containing the vectors of the estimated breakpoints, for each of the chromosomes mentioned in |
postProbT |
list containing the vectors of the posterior probabilities to be a breakpoint of the estimated breakpoints, for each of the chromosomes mentioned in |
regrCurve |
array containing the estimated regression curve. If |
regr |
choice of the computation of the regression curve. If |
The function writes or returns at maximum three tables:
-one containing the estimated profile with mBPCR (the columns are: 'SNPname', 'chromosome', 'position', 'rawLog2ratio', 'mBPCRestimate')
-one containing a summary about the estimated profile with mBPCR (the columns are: 'SNPname(start)', 'SNPname(end)', 'chromosome', 'position(start)', 'position(end)', 'nProbes', 'mBPCRestimate' and, eventually, 'breakpointPostProb'). This table is not created if estBoundaries=NULL
.
-one containing the estimated profile with a regression curve (the columns are: 'SNPname', 'chromosome', 'position', 'rawLog2ratio' and the name of the regression curve used). This table is not created if regrCurve=NULL
.
##import the 10K data of cell line REC data(rec10k) ##estimation of chromosome 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000) ##write the estimated profile of chromosome 5 in a file in the working directory writeEstProfile(path='', sampleName='rec10k', rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, results$estPC, results$estBoundaries, results$postProbT) #### the same result can be obtained in the following way, by using the function computeMBPCR #### for the estimation ##estimation of the global parameters #param <- estGlobParam(rec10k$log2ratio) ##estimation of chromosome 5 #results <- computeMBPCR(rec10k$log2ratio[rec10k$Chromosome == 5], nu=param$nu, #rhoSquare=param$rhoSquare, sigmaSquare=param$sigmaSquare) ##write the estimated profile of chromosome 5 in a file in the working directory #estPC <- array(dim=length(rec10k$SNPname)) #estBoundaries <- list(dim=1) #postProbT <- list(dim=1) #estPC[rec10k$Chromosome == 5] <- results$estPC #estBoundaries[[1]] <- results$estBoundaries #postProbT[[1]] <- c(results$postProbT[results$estBoundaries[-results$estK]],1) #writeEstProfile(path='', sampleName='rec10k', rec10k$SNPname, rec10k$Chromosome, #rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, estPC, estBoundaries, postProbT)
##import the 10K data of cell line REC data(rec10k) ##estimation of chromosome 5 results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000) ##write the estimated profile of chromosome 5 in a file in the working directory writeEstProfile(path='', sampleName='rec10k', rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, results$estPC, results$estBoundaries, results$postProbT) #### the same result can be obtained in the following way, by using the function computeMBPCR #### for the estimation ##estimation of the global parameters #param <- estGlobParam(rec10k$log2ratio) ##estimation of chromosome 5 #results <- computeMBPCR(rec10k$log2ratio[rec10k$Chromosome == 5], nu=param$nu, #rhoSquare=param$rhoSquare, sigmaSquare=param$sigmaSquare) ##write the estimated profile of chromosome 5 in a file in the working directory #estPC <- array(dim=length(rec10k$SNPname)) #estBoundaries <- list(dim=1) #postProbT <- list(dim=1) #estPC[rec10k$Chromosome == 5] <- results$estPC #estBoundaries[[1]] <- results$estBoundaries #postProbT[[1]] <- c(results$postProbT[results$estBoundaries[-results$estK]],1) #writeEstProfile(path='', sampleName='rec10k', rec10k$SNPname, rec10k$Chromosome, #rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, estPC, estBoundaries, postProbT)