--- title: "Pseudobulk cell size rescaling example" author: - Sean K. Maden date: "`r format(Sys.time(), '%d %B, %Y')`" bibliography: bibliography.bib package: lute output: BiocStyle::html_document: code_folding: show toc: no tocfloat: no BiocStyle::pdf_document: toc: no toc_depth: 0 vignette: > %\VignetteIndexEntry{Pseudobulk cell size rescaling example} %\usepackage[UTF-8]{inputenc} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} --- ```{r setup, include=FALSE} libv <- c("lute", "ggplot2") sapply(libv, library, character.only = TRUE) knitr::opts_chunk$set(echo = TRUE) ``` This vignette shows an example pseudobulk experiment testing cell size scale factors using a small example dataset of single-nucleus RNA-seq data (snRNA-seq) from human cortex (@darmanis_survey_2015). Predictions are made using `lute`, and results plots are generated using `ggplot2`. # Experiment setup ## Load example data In this example, we source a real snRNA-seq dataset of human brain, including cortex and hippocampus published in darmanis_survey_2015. The full data along with other real single-cell RNA-seq datasets may be accessed from the `scRNAseq` package. Load a stored subset of the example dataset with the following. ```{r} path <- system.file("extdata", "scRNAseq/darmanis_example.rda", package="lute") data <- get(load(path)) ``` The loaded dataset is of type `SingleCellExperiment`, which is handled by the `lute()` function (see `?lute` for details). Before calling the framework function, it needs to be processed to (1) define cell types and samples of interest (2) subset on cell type markers, and (3) define pseudobulks for each available sample. For this experiment, we will consider two principal cell types for brain, neuron and glial cells (a.k.a. "K2"). ## Define cell types of interest First, identify nuclei labeled from only these types and remove the rest. Then define a new label `"k2"` using the valid remaining nuclei. ```{r} sampleIdVariable <- "experiment_sample_name" oldTypes <- "cell.type"; newTypes <- "k2" # remove non-k2 types filterK2 <- data[[oldTypes]] %in% c("neurons", "oligodendrocytes", "astrocytes", "OPC", "microglia") data <- data[,filterK2] # define new k2 variable data[[newTypes]] <- ifelse(data[[oldTypes]]=="neurons", "neuron", "glial") data[[newTypes]] <- factor(data[[newTypes]]) ``` ## Filter samples Next, define the samples of interest for the experiment. We will select samples having at least 20 nuclei. ```{r} minNuclei <- 20 nucleiPerSample <- table(data[[sampleIdVariable]]) sampleIdVector <- unique(data[[sampleIdVariable]]) sampleIdVector <- sampleIdVector[nucleiPerSample >= minNuclei] sampleIdVector # view ``` Next, save samples having non-zero amounts of neuron and glial cells. ```{r} sampleIdVector <- unlist(lapply(sampleIdVector, function(sampleId){ numTypes <- length( unique( data[,data[[sampleIdVariable]]==sampleId][[newTypes]])) if(numTypes==2){sampleId} })) sampleIdVector ``` View the summaries by sample id, then save these as the true cell type proportions. These will be used later to assess the predictions. ```{r} proportionsList <- lapply(sampleIdVector, function(sampleId){ prop.table(table(data[,data$experiment_sample_name==sampleId]$k2)) }) dfProportions <- do.call(rbind, proportionsList) rownames(dfProportions) <- sampleIdVector colnames(dfProportions) <- paste0(colnames(dfProportions), ".true") dfProportions <- as.data.frame(dfProportions) knitr::kable(dfProportions) # view ``` ## Make pseudobulks with cell size scale factors Define the cell size scale factors and use these to make the pseudobulks. For demonstration we set these to have large difference (i.e. neuron/glial > 3). While we set these manually, the cell scale factors could also be defined from library sizes or by referencing the `cellScaleFactors` package ([link](https://github.com/metamaden/cellScaleFactors/tree/main)). ```{r} cellScalesVector <- c("glial" = 3, "neuron" = 10) ``` Next make the pseudobulk datasets. ```{r} assayName <- "counts" pseudobulkList <- lapply(sampleIdVector, function(sampleId){ dataIteration <- data[,data[[sampleIdVariable]]==sampleId] ypb_from_sce( singleCellExperiment = dataIteration, assayName = assayName, cellTypeVariable = newTypes, cellScaleFactors = cellScalesVector) }) dfPseudobulk <- do.call(cbind, pseudobulkList) dfPseudobulk <- as.data.frame(dfPseudobulk) colnames(dfPseudobulk) <- sampleIdVector knitr::kable(head(dfPseudobulk)) ``` # Get predictions ## Predictions with scaling Predict the neuron proportions using non-negative least squares (NNLS), the default deconvolution algorithm used by `lute()`. First, get the scaled proportions by setting the argument `cellScaleFactors = cellScalesVector`. ```{r} scaledResult <- lute( singleCellExperiment = data, bulkExpression = as.matrix(dfPseudobulk), cellScaleFactors = cellScalesVector, typemarkerAlgorithm = NULL, cellTypeVariable = newTypes, assayName = assayName) proportions.scaled <- scaledResult[[1]]@predictionsTable knitr::kable(proportions.scaled) # view ``` ## Predictions without scaling Next, get the unscaled result without setting `s`. ```{r} unscaledResult <- lute( singleCellExperiment = data, bulkExpression = as.matrix(dfPseudobulk), typemarkerAlgorithm = NULL, cellTypeVariable = newTypes, assayName = assayName) proportionsUnscaled <- unscaledResult[[1]]@predictionsTable knitr::kable(proportionsUnscaled) # view ``` Note proportions didn't change for samples which had all glial or all neuron (`AB_S8` and `AB_S3`). # Plot differences ## Get the plot data tables We will show the outcome of performing the cell scale factor adjustments using scatterplots and boxplots. Begin by appending the neuron proportion predictions from scaling treatments (scaled and unscaled) to the true proportions table `dfProportions`. ```{r} dfProportions$neuron.unscaled <- proportionsUnscaled$neuron dfProportions$neuron.scaled <- proportions.scaled$neuron knitr::kable(dfProportions) # view ``` Calculate bias as the difference between true and predicted neuron proportions. Then calculate the error as the absolute of the bias thus defined. ```{r} # get bias dfProportions$bias.neuron.unscaled <- dfProportions$neuron.true-dfProportions$neuron.unscaled dfProportions$bias.neuron.scaled <- dfProportions$neuron.true-dfProportions$neuron.scaled # get error dfProportions$error.neuron.unscaled <- abs(dfProportions$bias.neuron.unscaled) dfProportions$error.neuron.scaled <- abs(dfProportions$bias.neuron.scaled) ``` Make the tall version of `dfProportions` in order to generate a plot with facets on the scale treatment (either "scaled" or "unscaled"). ```{r} dfPlotTall <- rbind( data.frame(true = dfProportions$neuron.true, predicted = dfProportions$neuron.scaled, error = dfProportions$error.neuron.scaled, sampleId = rownames(dfProportions), type = rep("scaled", nrow(dfProportions))), data.frame(true = dfProportions$neuron.true, predicted = dfProportions$neuron.unscaled, error = dfProportions$error.neuron.unscaled, sampleId = rownames(dfProportions), type = rep("unscaled", nrow(dfProportions))) ) dfPlotTall <- as.data.frame(dfPlotTall) ``` ## Make scatterplots of true versus predicted neuron proportions Show sample results scatterplots of true (x-axis) by predicted (y-axis) neuron proportions. Also include a reference line (slope = 1, yintercept = 0) showing where agreement is absolute between proportions. Also shows RMSE in plot titles. ```{r} dfPlotTallNew <- dfPlotTall rmseScaled <- rmse( dfPlotTallNew[dfPlotTallNew$type=="scaled",]$true, dfPlotTall[dfPlotTall$type=="scaled",]$predicted, "mean") rmseUnscaled <- rmse( dfPlotTallNew[dfPlotTallNew$type=="unscaled",]$true, dfPlotTallNew[dfPlotTallNew$type=="unscaled",]$predicted, "mean") dfPlotTallNew$type <- ifelse(grepl("un.*", dfPlotTallNew$type), paste0(dfPlotTallNew$type, " (RMSE = ", round(rmseScaled, 3), ")"), paste0(dfPlotTallNew$type, " (RMSE = ", round(rmseUnscaled, 3), ")")) textSize <- 15 ggplot(dfPlotTallNew, aes(x = true, y = predicted)) + geom_point(size = 4, alpha = 0.5) + geom_abline(slope = 1, intercept = 0) + xlim(0, 1) + ylim(0, 1) + facet_wrap(~type) + theme_bw() + xlab("True") + ylab("Predicted") + theme(text = element_text(size = textSize), axis.text.x = element_text(angle = 45, hjust = 1)) ``` ## Make boxplots with jittered points for neuron errors Show jitters and boxplots by sample, depicting the neuron error (y-axis) by scale treatment (x-axis). The sample IDs are depicted by the point colors. ```{r} ggplot(dfPlotTall, aes(x = type, y = error, color = sampleId)) + geom_jitter(alpha = 0.5, size = 4) + theme_bw() + geom_boxplot(alpha = 0, color = "cyan") + theme(text = element_text(size = textSize), axis.text.x = element_text(angle = 45, hjust = 1)) + xlab("Type") + ylab("Error (Neuron)") ``` This process could be readily repeated for the remaining cell types, or just glial cells in this case. # Conclusions This vignette showed how to conduct a basic pseudobulk experiment using cell size scale factors and an example snRNAseq dataset from human brain @darmanis_survey_2015. Some key details include sourcing and snRNA-seq data, defining a new cell type variable, setting the scale factors, making predictions, and performing comparative analyses of the prediction results. Further details about the importance of cell size scale factors are discussed in @maden_challenges_2023, and examples of their utilizations may be found in @monaco_rna-seq_2019, @racle_epic_2020, and @sosina_strategies_2021. # Session info ```{r} sessionInfo() ``` # Works cited