Title: | lisaClust: Clustering of Local Indicators of Spatial Association |
---|---|
Description: | lisaClust provides a series of functions to identify and visualise regions of tissue where spatial associations between cell-types is similar. This package can be used to provide a high-level summary of cell-type colocalization in multiplexed imaging data that has been segmented at a single-cell resolution. |
Authors: | Ellis Patrick [aut, cre], Nicolas Canete [aut], Nicholas Robertson [ctb], Alex Qin [ctb], Shreya [email protected] Rao [ctb] |
Maintainer: | Ellis Patrick <[email protected]> |
License: | GPL (>=2) |
Version: | 1.15.6 |
Built: | 2025-01-19 03:37:56 UTC |
Source: | https://github.com/bioc/lisaClust |
The hatchingPlot() function is used to create hatching patterns for representating spatial regions and cell-types.
The hatching geom is used to create hatching patterns for representation of spatial regions.
hatchingPlot( cells, useImages = NULL, region = "region", imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), window = "concave", line.spacing = 21, hatching.colour = 1, nbp = 50, window.length = NULL ) geom_hatching( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, line.spacing = 21, hatching.colour = 1, window = "concave", window.length = NULL, nbp = 250, line.width = 1, ... )
hatchingPlot( cells, useImages = NULL, region = "region", imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), window = "concave", line.spacing = 21, hatching.colour = 1, nbp = 50, window.length = NULL ) geom_hatching( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, line.spacing = 21, hatching.colour = 1, window = "concave", window.length = NULL, nbp = 250, line.width = 1, ... )
cells |
A data.frame or SingleCellExperiment. |
useImages |
A vector of images to plot. |
region |
The region column to plot. |
imageID |
The imageIDs column if using data.frame or SingleCellExperiment. |
cellType |
The cellType column if using data.frame or SingleCellExperiment. |
spatialCoords |
The spatial coordinates columns if using data.frame or SingleCellExperiment. |
window |
Should the window around the regions be 'square', 'convex' or 'concave'. |
line.spacing |
A integer indicating the spacing between hatching lines. |
hatching.colour |
A colour for the hatching. |
nbp |
An integer tuning the granularity of the grid used when defining regions |
window.length |
A tuning parameter for controlling the level of concavity when estimating concave windows. |
mapping |
Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping. |
data |
The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot(). A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)). |
stat |
The statistical transformation to use on the data for this layer as a string. |
position |
adjustment, either as a string, or the result of a call to a position adjustment function. |
na.rm |
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed. |
show.legend |
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display. |
inherit.aes |
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders(). |
line.width |
A numeric controlling the width of the hatching lines |
... |
Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat. |
A ggplot object
A ggplot geom
## Generate toy data set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- SingleCellExperiment::SingleCellExperiment(colData = cells) ## Generate regions cells <- lisaClust(cells, k = 2) ## Plot regions hatchingPlot(cells) ## Generate toy data set.seed(51773) library(ggplot2) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) ## Generate regions cells <- lisaClust(cells, k = 2) # Plot the regions with geom_hatching() ggplot( cells, aes(x = x, y = y, colour = cellType, region = region) ) + geom_point() + facet_wrap(~imageID) + geom_hatching()
## Generate toy data set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- SingleCellExperiment::SingleCellExperiment(colData = cells) ## Generate regions cells <- lisaClust(cells, k = 2) ## Plot regions hatchingPlot(cells) ## Generate toy data set.seed(51773) library(ggplot2) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) ## Generate regions cells <- lisaClust(cells, k = 2) # Plot the regions with geom_hatching() ggplot( cells, aes(x = x, y = y, colour = cellType, region = region) ) + geom_point() + facet_wrap(~imageID) + geom_hatching()
Calculate the inhomogenous local K function.
inhomLocalK( data, Rs = c(20, 50, 100, 200), sigma = 10000, window = "convex", window.length = NULL, minLambda = 0.05, lisaFunc = "K" )
inhomLocalK( data, Rs = c(20, 50, 100, 200), sigma = 10000, window = "convex", window.length = NULL, minLambda = 0.05, lisaFunc = "K" )
data |
The data. |
Rs |
A vector of the radii that the measures of association should be calculated. |
sigma |
A numeric variable used for scaling when filting inhomogeneous L-curves. |
window |
Should the window around the regions be 'square', 'convex' or 'concave'. |
window.length |
A tuning parameter for controlling the level of concavity. |
minLambda |
Minimum value for density for scaling when fitting inhomogeneous L-curves. |
lisaFunc |
Either "K" or "L" curve. |
A matrix of LISA curves
library(spicyR) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cells$x <- cells$AreaShape_Center_X cells$y <- cells$AreaShape_Center_Y cells$cellType <- as.factor(sample( c("big", "medium", "small"), length(cells$AreaShape_Center_Y), replace = TRUE )) cells$cellID <- as.factor(cells$ObjectNumber) inhom <- inhomLocalK(cells[1:100, ])
library(spicyR) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cells$x <- cells$AreaShape_Center_X cells$y <- cells$AreaShape_Center_Y cells$cellType <- as.factor(sample( c("big", "medium", "small"), length(cells$AreaShape_Center_Y), replace = TRUE )) cells$cellID <- as.factor(cells$ObjectNumber) inhom <- inhomLocalK(cells[1:100, ])
Generate local indicators of spatial association
lisa( cells, Rs = NULL, imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), cores = 1, window = "convex", window.length = NULL, whichParallel = "imageID", sigma = NULL, lisaFunc = "K", minLambda = 0.05, BPPARAM = BiocParallel::SerialParam() )
lisa( cells, Rs = NULL, imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), cores = 1, window = "convex", window.length = NULL, whichParallel = "imageID", sigma = NULL, lisaFunc = "K", minLambda = 0.05, BPPARAM = BiocParallel::SerialParam() )
cells |
A SingleCellExperiment, SpatialExperiment or data frame that contains at least the variables x and y, giving the coordinates of each cell, imageID and cellType. |
Rs |
A vector of the radii that the measures of association should be calculated. |
imageID |
The column which contains image identifiers. |
cellType |
The column which contains the cell types. |
spatialCoords |
The columns which contain the x and y spatial coordinates. |
cores |
Number of cores to use for parallel processing, or a BiocParallel MulticoreParam or SerialParam object. |
window |
Should the window around the regions be 'square', 'convex' or 'concave'. |
window.length |
A tuning parameter for controlling the level of concavity when estimating concave windows. |
whichParallel |
Should the function use parallization on the imageID or the cellType. |
sigma |
A numeric variable used for scaling when filting inhomogeneous L-curves. |
lisaFunc |
Either "K" or "L" curve. |
minLambda |
Minimum value for density for scaling when fitting inhomogeneous L-curves. |
BPPARAM |
{DEPRECATED} A BiocParallel MulticoreParam or SerialParam object. |
A matrix of LISA curves
library(spicyR) library(SingleCellExperiment) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cellExp <- SingleCellExperiment( assay = list(intensities = t(cells[, grepl(names(cells), pattern = "Intensity_")])), colData = cells[, !grepl(names(cells), pattern = "Intensity_")] ) # Cluster cell types markers <- t(assay(cellExp, "intensities")) kM <- kmeans(markers, 8) colData(cellExp)$cluster <- paste("cluster", kM$cluster, sep = "") # Generate LISA lisaCurves <- lisa( cellExp, spatialCoords = c("Location_Center_X", "Location_Center_Y"), cellType = "cluster", imageID = "ImageNumber" ) # Cluster the LISA curves kM <- kmeans(lisaCurves, 2)
library(spicyR) library(SingleCellExperiment) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cellExp <- SingleCellExperiment( assay = list(intensities = t(cells[, grepl(names(cells), pattern = "Intensity_")])), colData = cells[, !grepl(names(cells), pattern = "Intensity_")] ) # Cluster cell types markers <- t(assay(cellExp, "intensities")) kM <- kmeans(markers, 8) colData(cellExp)$cluster <- paste("cluster", kM$cluster, sep = "") # Generate LISA lisaCurves <- lisa( cellExp, spatialCoords = c("Location_Center_X", "Location_Center_Y"), cellType = "cluster", imageID = "ImageNumber" ) # Cluster the LISA curves kM <- kmeans(lisaCurves, 2)
Use k-means clustering to cluster local indicators of spatial association. For other clustering use lisa.
lisaClust( cells, k = 2, Rs = NULL, imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), regionName = "region", cores = 1, window = "convex", window.length = NULL, whichParallel = "imimageID", sigma = NULL, lisaFunc = "K", minLambda = 0.05, BPPARAM = BiocParallel::SerialParam() )
lisaClust( cells, k = 2, Rs = NULL, imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), regionName = "region", cores = 1, window = "convex", window.length = NULL, whichParallel = "imimageID", sigma = NULL, lisaFunc = "K", minLambda = 0.05, BPPARAM = BiocParallel::SerialParam() )
cells |
A SingleCellExperiment, SpatialExperiment or data frame that contains at least the variables x and y, giving the coordinates of each cell, imageID and cellType. |
k |
The number of regions to cluster. |
Rs |
A vector of the radii that the measures of association should be calculated. |
imageID |
The column which contains image identifiers. |
cellType |
The column which contains the cell types. |
spatialCoords |
The columns which contain the x and y spatial coordinates. |
regionName |
The output column for the lisaClust regions. |
cores |
Number of cores to use for parallel processing, or a BiocParallel MulticoreParam or SerialParam object. |
window |
Should the window around the regions be 'square', 'convex' or 'concave'. |
window.length |
A tuning parameter for controlling the level of concavity when estimating concave windows. |
whichParallel |
Should the function use parallization on the imageID or the cellType. |
sigma |
A numeric variable used for scaling when filting inhomogeneous L-curves. |
lisaFunc |
Either "K" or "L" curve. |
minLambda |
Minimum value for density for scaling when fitting inhomogeneous L-curves. |
BPPARAM |
{DEPRECATED} A BiocParalell MulticoreParam or SerialParam object. |
A matrix of LISA curves
library(spicyR) library(SingleCellExperiment) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cellExp <- SingleCellExperiment( assay = list(intensities = t(cells[, grepl(names(cells), pattern = "Intensity_")])), colData = cells[, !grepl(names(cells), pattern = "Intensity_")] ) # Cluster cell types markers <- t(assay(cellExp, "intensities")) kM <- kmeans(markers, 8) colData(cellExp)$cluster <- paste("cluster", kM$cluster, sep = "") # Generate LISA cellExp <- lisaClust(cellExp, k = 2, imageID = "ImageNumber", cellType = "cluster", spatialCoords = c("Location_Center_X", "Location_Center_Y") )
library(spicyR) library(SingleCellExperiment) # Read in data isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR") cells <- read.table(isletFile, header = TRUE) cellExp <- SingleCellExperiment( assay = list(intensities = t(cells[, grepl(names(cells), pattern = "Intensity_")])), colData = cells[, !grepl(names(cells), pattern = "Intensity_")] ) # Cluster cell types markers <- t(assay(cellExp, "intensities")) kM <- kmeans(markers, 8) colData(cellExp)$cluster <- paste("cluster", kM$cluster, sep = "") # Generate LISA cellExp <- lisaClust(cellExp, k = 2, imageID = "ImageNumber", cellType = "cluster", spatialCoords = c("Location_Center_X", "Location_Center_Y") )
Plot heatmap of cell type enrichment for lisaClust regions
regionMap( cells, type = "bubble", cellType = "cellType", region = "region", limit = c(0.33, 3), ... )
regionMap( cells, type = "bubble", cellType = "cellType", region = "region", limit = c(0.33, 3), ... )
cells |
SingleCellExperiment, SpatialExperiment or data.frame |
type |
Make a "bubble" or "heatmap" plot. |
cellType |
The column storing the cell types |
region |
The column storing the regions |
limit |
limits to the lower and upper relative frequencies |
... |
Any arguments to be passed to the pheatmap package |
A bubble plot or heatmap
set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- lisaClust(cells, k = 2) regionMap(cells)
set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- lisaClust(cells, k = 2) regionMap(cells)
Region scale constructor.
scale_region(aesthetics = "region", ..., guide = "legend") scale_region_manual(..., values)
scale_region(aesthetics = "region", ..., guide = "legend") scale_region_manual(..., values)
aesthetics |
The names of the aesthetics that this scale works with |
... |
Arguments passed on to discrete_scale |
guide |
A function used to create a guide or its name. See guides() for more info. |
values |
a set of aesthetic values to map data values to. If this is a named vector, then the values will be matched based on the names. If unnamed, values will be matched in order (usually alphabetical) with the limits of the scale. Any data values that don't match will be given na.value. |
a ggplot guide
library(spicyR) ## Generate toy data set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- SingleCellExperiment::SingleCellExperiment(colData = cells) ## Generate regions cells <- lisaClust(cells, k = 2) # Plot the regions with hatchingPlot() hatchingPlot(cells) + scale_region_manual( values = c(1, 4), labels = c("Region A", "Region B"), name = "Regions" )
library(spicyR) ## Generate toy data set.seed(51773) x <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200) + 3, runif(200) + 2, runif(200) + 1, runif(200) ), 4) * 100 y <- round(c( runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3, runif(200), runif(200) + 1, runif(200) + 2, runif(200) + 3 ), 4) * 100 cellType <- factor(paste("c", rep(rep(c(1:2), rep(200, 2)), 4), sep = "")) imageID <- rep(c("s1", "s2"), c(800, 800)) cells <- data.frame(x, y, cellType, imageID) cells <- SingleCellExperiment::SingleCellExperiment(colData = cells) ## Generate regions cells <- lisaClust(cells, k = 2) # Plot the regions with hatchingPlot() hatchingPlot(cells) + scale_region_manual( values = c(1, 4), labels = c("Region A", "Region B"), name = "Regions" )