Functional Analysis of DNAm Array Data

KnowYourCG (KYCG) is a supervised learning framework designed for the functional analysis of DNA methylation data. Unlike existing tools that focus on genes or genomic intervals, KnowYourCG directly targets CpG dinucleotides, featuring automated supervised screenings of diverse biological and technical influences, including sequence motifs, transcription factor binding, histone modifications, replication timing, cell-type-specific methylation, and trait associations. KnowYourCG addresses the challenges of data sparsity in various methylation datasets, including low-pass Nanopore sequencing, single-cell DNA methylomes, 5-hydroxymethylation profiles, spatial DNA methylation maps, and array-based datasets for epigenome-wide association studies and epigenetic clocks.

The input to KYCG is a CpG set (query). The CpG sets can represent differential methylation, results from an epigenome-wide association studies, or any sets that may be derived from analysis. If array experiment, the preferred format of the query sets is a character vector of cg-numbers, following the standard Infinium array naming nomenclature.

QUICK START

The following commands prepare the use of knowYourCG. Several database sets are retrieved and caching is performed to enable faster access in future enrichment testing. More information on viewing and accessing available database sets is discussed later on.

library(knowYourCG)
library(sesameData)
sesameDataCache(data_titles=c("genomeInfo.hg38","genomeInfo.mm10",
                  "KYCG.MM285.tissueSignature.20211211",
                  "MM285.tissueSignature","MM285.address",
                  "probeIDSignature","KYCG.MM285.designGroup.20210210",
                  "KYCG.MM285.chromHMM.20210210",
                  "KYCG.MM285.TFBSconsensus.20220116",
                  "KYCG.MM285.HMconsensus.20220116",
                  "KYCG.MM285.chromosome.mm10.20210630"
                  ))

The following example uses a query of CpGs methylated in mouse primordial germ cells (design group PGCMeth). First get the CG list using the following code.

query <- getDBs("MM285.designGroup")[["PGCMeth"]]
head(query)
## [1] "cg36615889_TC11" "cg36646136_BC21" "cg36647910_BC11" "cg36857173_TC21"
## [5] "cg36877289_BC21" "cg36899653_BC21"

Now test the enrichment. By default, KYCG will select all the categorical groups available but we can specify a subset of databases.

dbs <- c("KYCG.MM285.chromHMM.20210210",
         "KYCG.HM450.TFBSconsensus.20211013",
         "KYCG.MM285.HMconsensus.20220116",
         "KYCG.MM285.tissueSignature.20211211",
         "KYCG.MM285.chromosome.mm10.20210630",
         "KYCG.MM285.designGroup.20210210")
results_pgc <- testEnrichment(query,databases = dbs,platform="MM285")
head(results_pgc)
##        estimate       p.value log10.p.value     test     nU  nQ    nD overlap
## 123 1024.000000  0.000000e+00   -1529.07602 Log2(OR) 296070 474   474     474
## 54     7.622407  0.000000e+00    -528.31906 Log2(OR) 296070 474 10603     415
## 6      5.943042 5.091536e-244    -243.29315 Log2(OR) 296070 474  3575     197
## 48     3.942719 1.890431e-113    -112.72344 Log2(OR) 296070 474  9641     160
## 37     1.809729  2.626803e-13     -12.58057 Log2(OR) 296070 474 10089      52
## 9      1.794176  1.324557e-06      -5.87793 Log2(OR) 296070 474  4113      22
##      cf_Jaccard     cf_MCC cf_overlap   cf_NPMI cf_SorensenDice           FDR
## 123 1.000000000 1.00000000  1.0000000 1.0000000     1.000000000  0.000000e+00
## 54  0.038923279 0.18095636  0.8755274 0.4865289     0.074930035  0.000000e+00
## 6   0.051142264 0.14795184  0.4156118 0.4837397     0.097307977 2.342107e-242
## 48  0.016072325 0.06880970  0.3375527 0.3108444     0.031636184 6.521987e-112
## 37  0.004947198 0.01669266  0.1097046 0.1352113     0.009845688  7.249978e-12
## 9   0.004819277 0.01112670  0.0464135 0.1268791     0.009592326  3.046480e-05
##                               group   dbname n_min
## 123 KYCG.MM285.designGroup.20210210  PGCMeth    NA
## 54  KYCG.MM285.HMconsensus.20220116  H3K9me3    14
## 6      KYCG.MM285.chromHMM.20210210      Het    NA
## 48  KYCG.MM285.HMconsensus.20220116 H3K79me3     2
## 37  KYCG.MM285.HMconsensus.20220116 H3K36me3    30
## 9      KYCG.MM285.chromHMM.20210210   Quies3    NA

As expected, the PGCMeth group itself appears on the top of the list. But one can also find histone H3K9me3, chromHMM Het and transcription factor Trim28 binding enriched in this CG group.

KNOWLEDGEBASES

The curated target features are called the knowledgebase sets. We have curated a variety of knowledgebases that represent different categorical and continuous methylation features such as CpGs associated with chromatin states, technical artifacts, gene association and gene expression correlation, transcription factor binding sites, tissue specific methylation, CpG density, etc.

Array knowledgebases are available as listed in the following tables.

Array Link
MSA https://github.com/zhou-lab/KYCG_knowledgebase_MSA
Human (EPICv2) https://github.com/zhou-lab/KYCG_knowledgebase_EPICv2
Human (EPIC) https://github.com/zhou-lab/KYCG_knowledgebase_EPIC
Human (HM450) https://github.com/zhou-lab/KYCG_knowledgebase_HM450

Curated CpG knowledgebases

The success of enrichment testing depends on the availability of biologically-relevant databases. To reflect the biological meaning of databases and facilitate selective testing, we have organized our database sets into different groups. Each group contains one or multiple databases. Here is how to find the names of pre-built database groups:

listDBGroups("MM285")
## # A tibble: 11 × 3
##    Title                               Description                         type 
##    <chr>                               <chr>                               <chr>
##  1 KYCG.MM285.chromHMM.20210210        chromHMM consensus from mouseENCODE cate…
##  2 KYCG.MM285.chromosome.mm10.20210630 CpG position by mm10 chromosomes f… cate…
##  3 KYCG.MM285.designGroup.20210210     MM285 probe design categories       cate…
##  4 KYCG.MM285.HMconsensus.20220116     CpGs associated with consensus his… cate…
##  5 KYCG.MM285.Mask.20220123            MM285 probe masking 20220123_MM285… cate…
##  6 KYCG.MM285.metagene.20220126        metagene coordinates with respect … cate…
##  7 KYCG.MM285.probeType.20210630       Probe type database sets (rs, cg, … cate…
##  8 KYCG.MM285.seqContext.20210630      Sequence context groups, e.g., CpG… cate…
##  9 KYCG.MM285.seqContextN.20210630     KYCG numerical database holding Se… nume…
## 10 KYCG.MM285.TFBSconsensus.20220116   CpGs associated with consensus TFB… cate…
## 11 KYCG.MM285.tissueSignature.20211211 MM285 probes associated with tissu… cate…

The listDBGroups() function returns a data frame containing information of these databases. The Title column is the accession key one needs for the testEnrichment function. With the accessions, one can either directly use them in the testEnrichment function or explicitly call the getDBs() function to retrieve databases themselves. Caching these databases on the local machine is important, for two reasons: it limits the number of requests sent to the Bioconductor server, and secondly it limits the amount of time the user needs to wait when re-downloading database sets. For this reason, one should run sesameDataCache() before loading in any database sets. This will take some time to download all of the database sets but this only needs to be done once per installation. During the analysis the database sets can be identified using these accessions. knowYourCG also does some guessing when a unique substring is given. For example, the string “MM285.designGroup” retrieves the “KYCG.MM285.designGroup.20210210” database. Let’s look at the database group which we had used as the query (query and database are reciprocal) in our first example:

dbs <- getDBs("MM285.design")
## Selected the following database groups:
## 1. KYCG.MM285.designGroup.20210210

In total, 32 datasets have been loaded for this group. We can get the “PGCMeth” as an element of the list:

str(dbs[["PGCMeth"]])
##  chr [1:474] "cg36615889_TC11" "cg36646136_BC21" "cg36647910_BC11" ...
##  - attr(*, "group")= chr "KYCG.MM285.designGroup.20210210"
##  - attr(*, "dbname")= chr "PGCMeth"

On subsequent runs of the getDBs() function, the database loading can be faster thanks to the sesameData in-memory caching, if the corresponding database has been loaded.

ENRICHMENT TESTING

The main work horse function for testing enrichment of a categorical query against categorical databases is the testEnrichment function. This function will perform Fisher’s exact testing of the query against each database set (one-tailed by default, but two-tailed optionally) and reports overlap and enrichment statistics.

Choice of universe set: Universe set is the set of all probes for a given platform. It can either be passed in as an argument called universeSet or the platform name can be passed with argument platform. If neither of these are supplied, the universe set will be inferred from the probes in the query.

library(SummarizedExperiment)

## prepare a query
df <- rowData(sesameDataGet('MM285.tissueSignature'))
query <- df$Probe_ID[df$branch == "fetal_brain" & df$type == "Hypo"]

results <- testEnrichment(query, "TFBS", platform="MM285")
results %>% dplyr::filter(overlap>10) %>% head
##   estimate      p.value log10.p.value     test     nU  nQ    nD overlap
## 1 3.058586 4.813228e-18    -17.317564 Log2(OR) 296070 200  6645      32
## 2 3.245138 5.187778e-18    -17.285019 Log2(OR) 296070 200  5228      29
## 3 2.959109 1.916663e-14    -13.717454 Log2(OR) 296070 200  5604      26
## 4 2.244055 3.357158e-12    -11.474028 Log2(OR) 296070 200 12296      34
## 5 2.536127 3.448999e-10     -9.462307 Log2(OR) 296070 200  6195      22
## 6 1.876932 1.114057e-04     -3.953092 Log2(OR) 296070 200  5509      13
##    cf_Jaccard      cf_MCC cf_overlap   cf_NPMI cf_SorensenDice          FDR
## 1 0.004696903 0.024144761      0.160 0.2150698     0.009349890 1.110185e-15
## 2 0.005371365 0.025138207      0.145 0.2280937     0.010685335 1.110185e-15
## 3 0.004499827 0.021191758      0.130 0.2063000     0.008959338 2.734439e-12
## 4 0.002728294 0.016741332      0.170 0.1553535     0.005441741 3.592159e-10
## 5 0.003452063 0.016180543      0.110 0.1745582     0.006880375 2.952344e-08
## 6 0.002282303 0.008925972      0.065 0.1246681     0.004554213 7.946942e-03
##   n_min                             group  dbname
## 1     1 KYCG.MM285.TFBSconsensus.20220116    LHX3
## 2     1 KYCG.MM285.TFBSconsensus.20220116  POU3F1
## 3     8 KYCG.MM285.TFBSconsensus.20220116    ISL1
## 4     2 KYCG.MM285.TFBSconsensus.20220116 ONECUT2
## 5     1 KYCG.MM285.TFBSconsensus.20220116    SOX3
## 6     1 KYCG.MM285.TFBSconsensus.20220116  NKX2-1
## prepare another query
query <- df$Probe_ID[df$branch == "fetal_liver" & df$type == "Hypo"]
results <- testEnrichment(query, "TFBS", platform="MM285")
results %>% dplyr::filter(overlap>10) %>%
    dplyr::select(dbname, estimate, test, FDR) %>% head
##   dbname estimate     test          FDR
## 1   TAL1 4.253039 Log2(OR) 8.749398e-42
## 2  GATA1 3.738643 Log2(OR) 9.060254e-30
## 3  SMAD1 3.162168 Log2(OR) 2.924401e-26
## 4   LDB1 2.084605 Log2(OR) 4.586066e-06
## 5    MYB 1.497470 Log2(OR) 8.785247e-04
## 6  GATA2 1.433997 Log2(OR) 7.724124e-03

The output of each test contains multiple variables including: the estimate (fold enrichment), p-value, overlap statistics, type of test, as well as the name of the database set and the database group. By default, the results are sorted by -log10 of the of p-value and the fold enrichment.

The nQ and nD columns identify the length of the query set and the database set, respectively. Often, it’s important to examine the extent of overlap between the two sets, so that metric is reported as well in the overlap column.

A query set represents probes of interest. It may either be in the form of a character vector where the values correspond to probe IDs or a named numeric vector where the names correspond to probe IDs. The query and database definition is rather arbitrary. One can regard a database as a query and turn a query into a database, like in our first example. In real world scenario, query can come from differential methylation testing, unsupervised clustering, correlation with a phenotypic trait, and many others. For example, we could consider CpGs that show tissue-specific methylation as the query. We are getting the B-cell-specific hypomethylation.

df <- rowData(sesameDataGet('MM285.tissueSignature'))
query <- df$Probe_ID[df$branch == "B_cell"]
head(query)
## [1] "cg32668003_TC11" "cg45118317_TC11" "cg37563895_TC11" "cg46105105_BC11"
## [5] "cg47206675_TC21" "cg38855216_TC21"

This query set represents hypomethylated probes in Mouse B-cells from the MM285 platform. This specific query set has 168 probes.

GENOMIC PROXIMITY

Sometimes it may be of interest whether a query set of probes share close genomic proximity. Co-localization may suggest co-regulation or co-occupancy in the same regulatory element. KYCG can test for genomic proximity using the testProbeProximity()function. Poisson statistics for the expected # of co-localized hits from the given query size (lambda) and the actual co-localized CpG pairs along with the p value are returned:

df <- rowData(sesameDataGet('MM285.tissueSignature'))
probes <- df$Probe_ID[df$branch == "fetal_liver" & df$type == "Hypo"]
res <- testProbeProximity(probeIDs=probes)
head(res)
## $Stats
##    nQ Hits Lambda       P.val
## 1 194    4   0.03 1.97502e-10
## 
## $Clusters
##   seqnames     start       end distance
## 1     chr1 165770666 165770667       11
## 2     chr1 165770677 165770678   377829
## 3     chr5  75601915  75601916       29
## 4     chr5  75601944  75601945 73617660
## 5     chr9 110235046 110235047       26
## 6     chr9 110235072 110235073       NA
## 7    chr11  32245638  32245639       95
## 8    chr11  32245733  32245734 63088309

SESSION INFO

sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Etc/UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] gprofiler2_0.2.3            SummarizedExperiment_1.37.0
##  [3] Biobase_2.67.0              GenomicRanges_1.59.1       
##  [5] GenomeInfoDb_1.43.2         IRanges_2.41.2             
##  [7] S4Vectors_0.45.2            MatrixGenerics_1.19.0      
##  [9] matrixStats_1.4.1           sesameData_1.24.0          
## [11] ExperimentHub_2.15.0        AnnotationHub_3.15.0       
## [13] BiocFileCache_2.15.0        dbplyr_2.5.0               
## [15] BiocGenerics_0.53.3         generics_0.1.3             
## [17] knowYourCG_1.3.15          
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.1        viridisLite_0.4.2       dplyr_1.1.4            
##  [4] blob_1.2.4              bitops_1.0-9            filelock_1.0.3         
##  [7] Biostrings_2.75.3       RCurl_1.98-1.16         lazyeval_0.2.2         
## [10] fastmap_1.2.0           digest_0.6.37           mime_0.12              
## [13] lifecycle_1.0.4         KEGGREST_1.47.0         RSQLite_2.3.9          
## [16] magrittr_2.0.3          compiler_4.4.2          rlang_1.1.4            
## [19] sass_0.4.9              tools_4.4.2             utf8_1.2.4             
## [22] yaml_2.3.10             data.table_1.16.4       knitr_1.49             
## [25] htmlwidgets_1.6.4       S4Arrays_1.7.1          bit_4.5.0.1            
## [28] curl_6.0.1              DelayedArray_0.33.3     plyr_1.8.9             
## [31] RColorBrewer_1.1-3      abind_1.4-8             withr_3.0.2            
## [34] purrr_1.0.2             sys_3.4.3               grid_4.4.2             
## [37] wheatmap_0.2.0          colorspace_2.1-1        ggplot2_3.5.1          
## [40] scales_1.3.0            cli_3.6.3               rmarkdown_2.29         
## [43] crayon_1.5.3            httr_1.4.7              reshape2_1.4.4         
## [46] tzdb_0.4.0              DBI_1.2.3               cachem_1.1.0           
## [49] stringr_1.5.1           AnnotationDbi_1.69.0    BiocManager_1.30.25    
## [52] XVector_0.47.1          vctrs_0.6.5             Matrix_1.7-1           
## [55] jsonlite_1.8.9          hms_1.1.3               bit64_4.5.2            
## [58] ggrepel_0.9.6           maketools_1.3.1         plotly_4.10.4          
## [61] tidyr_1.3.1             jquerylib_0.1.4         glue_1.8.0             
## [64] stringi_1.8.4           gtable_0.3.6            BiocVersion_3.21.1     
## [67] UCSC.utils_1.3.0        munsell_0.5.1           tibble_3.2.1           
## [70] pillar_1.10.0           rappdirs_0.3.3          htmltools_0.5.8.1      
## [73] GenomeInfoDbData_1.2.13 R6_2.5.1                lattice_0.22-6         
## [76] evaluate_1.0.1          readr_2.1.5             png_0.1-8              
## [79] memoise_2.0.1           bslib_0.8.0             Rcpp_1.0.13-1          
## [82] SparseArray_1.7.2       xfun_0.49               buildtools_1.0.0       
## [85] pkgconfig_2.0.3