--- title: "jazzPanda example" date: "`r format(Sys.time(), '%d %b %Y')`" vignette: > %\VignetteIndexEntry{jazzPanda example} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} output: rmarkdown::html_vignette html_document: fig_caption: yes fig_retina: FALSE keep_md: FALSE editor_options: chunk_output_type: console --- ```{r setup, include=FALSE} knitr::opts_chunk$set( echo = TRUE, message = FALSE, warning = FALSE ) ``` # Introduction Spatial transcriptomics allows the spatial profiling of complex tissue architectures. The spatial arrangement and interactions between cells can aid in understanding of complex functions and regulatory mechanisms in various tissue micro environments. Commercially available image-based spatial technologies such as Xenium, CosMX, and MERSCOPSE take advantage of fluorescence-based microscopy to quantify transcripts and focus on a pre-designed panel of genes. \n One crucial step in the analysis of spatial transcriptomics data is cell type annotation. There are a number of ways to perform cell type annotation, and marker analysis is one of them. Marker gene analysis to identify genes highly expressed in each cluster compared to the remaining clusters. The identified marker genes are used to annotate clusters with cell types. Computationally tools originally developed for single cell data are used for spatial transcriptomics studies. However, those methods ignore the spatial information for the cells and gene. There is limited literature on developing marker gene detection methods that account for the spatial distribution of gene expression. jazzPanda provides two novel approaches to detect marker genes with transformed spatial information. Our first approach is based on correlation and the second linear modelling approach can account for technical noise and work for studies with multiple samples. \n # jazzPanda framework We assume a marker gene will show a significant linear relationship with the target cluster over the tissue space. This suggests that the transcript detection of a marker gene will show similar patterns with the cells from the cluster over tissue space. Given the cluster label of every cell, there are two steps to obtain marker genes for every cluster. We first compute spatial vectors from the spatial coordinates of the genes and the clusters. After that, we can measure the linear relationship between the genes and clusters based on spatial vectors. We develop two approaches for detecting genes that show strong linear relationship with the cluster. - **Step 1:** *Create spatial vectors for every gene and every cluster* `get_vectors()` can be used to convert the transcript detection and the cell centroids to spatial vectors. You can specify the tile shape and length based on you dataset. The hex bins will generally take longer than the square/rectangle bins to compute. In practice, we find that we can choose the length tiles such that the average cell per tile ($\frac{\texttt{\#}\text{ cells per cluster} }{\texttt{\#}\text{ tiles}}$) is close to one for each cluster. \n - **Step 2:** *Detect marker genes* - Correlation approach: `compute_permp()` This approach can detect marker genes for one sample study. We calculate a correlation coefficient between every pair of gene and cluster vector. We perform permutation testing to assess the statistical significance of the calculated correlation and followed by multiple testing adjustment to control the false discovery rate. We keep the genes with significant adjusted p-value and large correlation as marker genes. In practice, we recommend to calculate a correlation threshold value for every cluster based on the data distribution. During our analysis, we use 75\% quantile value of all correlations to the given cluster as the cutoff and manage to keep meaningful marker genes. - Linear modelling approach: `lasso_markers()` In this approach, we treat the gene vector as the response variable and the cluster vectors as the explanatory variables. We select the important cluster vectors by lasso regularization first, and fit a linear model to find the cluster that show minimum p-value and largest model coefficient. This approach can account for multi-sample studies and the technical background noise (such as the non-specific binding). We recommend to set a model coefficient cutoff value based on your data. A large cutoff value will result in fewer marker genes whereas a small cutoff value will detect more marker genes. We find a cutoff value at 0.1 or 0.2 work well for our analysis. Marker genes with less than 0.1 model coefficient are generally weak markers. Two data frames will be returned from this approach: 1. We record the most significant cluster for each gene by calling the `get_top_mg()` function. This table provides unique marker genes for every cluster. Genes whose top cluster shows a model coefficient smaller than the specified cutoff value will not be labeled as marker genes. 2. We record all the significant cluster for each gene by using the function `get_full_mg()`. This table can be used to investigate shared marker genes for different clusters. # Example The dataset used in this vignette is a selected subset from two replicates of Xenium human breast cancer tissue Sample 1. We select 20 genes for package illustration. This subset was extracted from the raw dataset as described in the R script located at `system.file("script","generate_vignette_data.R", package="jazzPanda")`. \n This subset data is used for package illustration purpose only. The resulting marker genes may not be strong markers for annotating clusters. Please see the full analysis for this dataset for marker genes. ```{r} library(jazzPanda) library(SpatialExperiment) library(ggplot2) library(grid) library(data.table) library(dplyr) library(glmnet) library(caret) library(corrplot) library(igraph) library(ggraph) library(ggrepel) library(gridExtra) library(utils) library(spatstat) library(tidyr) library(ggpubr) ``` ```{r} # ggplot style defined_theme <- theme(strip.text = element_text(size = rel(1)), strip.background = element_rect(fill = NA, colour = "black"), axis.line=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), legend.position="none", panel.background=element_blank(), panel.border=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank()) ``` ## Load data ```{r load subset of rep1} data(rep1_sub, rep1_clusters, rep1_neg) rep1_clusters$cluster<-factor(rep1_clusters$cluster, levels=paste("c",1:8, sep="")) # record the transcript coordinates for rep1 rep1_transcripts <-BumpyMatrix::unsplitAsDataFrame(molecules(rep1_sub)) rep1_transcripts <- as.data.frame(rep1_transcripts) colnames(rep1_transcripts) <- c("feature_name","cell_id","x","y") # record the negative control transcript coordinates for rep1 rep1_nc_data <- BumpyMatrix::unsplitAsDataFrame(molecules(rep1_neg)) rep1_nc_data <- as.data.frame(rep1_nc_data) colnames(rep1_nc_data) <- c("feature_name","cell_id","x","y","category") # record all real genes in the data all_real_genes <- unique(as.character(rep1_transcripts$feature_name)) all_celltypes <- unique(rep1_clusters[,c("anno","cluster")]) ``` ## Visualise the clusters over the tissue space We can plot the cells coordinates for each cluster of Replicate 1 subset ```{r rep clusters vis, fig.height=5, fig.width=6,warning=FALSE} p1<-ggplot(data = rep1_clusters, aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0), size=0.1)+ scale_y_reverse()+ theme_classic()+ facet_wrap(~sample)+ scale_color_manual(values = c("#FC8D62","#66C2A5" ,"#8DA0CB","#E78AC3", "#A6D854","skyblue","purple3","#E5C498"))+ guides(color=guide_legend(title="cluster", nrow = 2, override.aes=list(alpha=1, size=2)))+ theme(axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), panel.spacing = grid::unit(0.5, "lines"), axis.title.x=element_blank(), axis.title.y=element_blank(), legend.position="none", strip.text = element_text(size = rel(1)))+ xlab("")+ ylab("") p2<-ggplot(data = rep1_clusters, aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0), size=0.1)+ facet_wrap(~cluster, nrow = 2)+ scale_y_reverse()+ theme_classic()+ scale_color_manual(values = c("#FC8D62","#66C2A5" ,"#8DA0CB","#E78AC3", "#A6D854","skyblue","purple3","#E5C498"))+ guides(color=guide_legend(title="cluster", nrow = 1, override.aes=list(alpha=1, size=4)))+ theme(axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.spacing = grid::unit(0.5, "lines"), legend.text = element_text(size=10), legend.position="none", legend.title = element_text(size=10), strip.text = element_text(size = rel(1)))+ xlab("")+ ylab("") spacer <- patchwork::plot_spacer() layout_design <- (p1 / spacer) | p2 layout_design <- layout_design + patchwork::plot_layout(widths = c(1, 4), heights = c(1, 1)) print(layout_design) ``` ## Spatial vectors We can visualize the spatial vectors for clusters and genes as follows. As an example for creating spatial vectors for genes, we plot the transcript detections for the gene EPCAM over tissue space, along with the square and hex binning result. Similarly, we plot the cell coordinates in cluster c1, as well as the square and hex bin values over the space as an example. We can see that with the square and hex bins capture the key patterns of the original coordinates. Hex bins can capture more details than square bins. ### Example of gene vectors ```{r plot spatial genes, fig.width=6, fig.height=4} w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep1_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep1_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep1_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep1_clusters$y)))) # plot transcript detection coordinates selected_genes <- rep1_transcripts$feature_name == "EPCAM" loc_mt <- as.data.frame(rep1_transcripts[selected_genes, c("x","y","feature_name")]%>%distinct()) colnames(loc_mt)<-c("x","y","feature_name") layout(matrix(c(1, 2, 3), 1, 3, byrow = TRUE)) par(mar=c(5,3,6,3)) plot(loc_mt$x, loc_mt$y, main = "", xlab = "", ylab = "", pch = 20, col = "maroon4", cex = 0.1,xaxt='n', yaxt='n') title(main = "EPCAM transcript detection", line = 3) box() # plot square binning curr<-loc_mt[loc_mt[,"feature_name"]=="EPCAM",c("x","y")] %>% distinct() curr_ppp <- ppp(curr$x,curr$y,w_x, w_y) vec_quadrat <- quadratcount(curr_ppp, 10,10) vec_its <- intensity(vec_quadrat, image=TRUE) par(mar=c(0.01,1, 1, 2)) plot(vec_its, main = "") title(main = "square binning", line = -2) # plot hex binning w <- owin(xrange=w_x, yrange=w_y) H <- hextess(W=w, 20) bin_length <- length(H$tiles) curr<-loc_mt[loc_mt[,"feature_name"]=="EPCAM",c("x","y")] %>% distinct() curr_ppp <- ppp(curr$x,curr$y,w_x, w_y) vec_quadrat <- quadratcount(curr_ppp, tess=H) vec_its <- intensity(vec_quadrat, image=TRUE) par(mar=c(0.1,1, 1, 2)) plot(vec_its, main = "") title(main = "hex binning", line = -2) ``` ### Example of cluster vectors ```{r plot spatial clusters, fig.width=6, fig.height=4} w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep1_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep1_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep1_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep1_clusters$y)))) # plot cell coordinates loc_mt <- as.data.frame(rep1_clusters[rep1_clusters$cluster=="c1", c("x","y","cluster")]) colnames(loc_mt)=c("x","y","cluster") layout(matrix(c(1, 2, 3), 1, 3, byrow = TRUE)) par(mar=c(5,3,6,3)) plot(loc_mt$x, loc_mt$y, main = "", xlab = "", ylab = "", pch = 20, col = "maroon4", cex = 0.1,xaxt='n', yaxt='n') title(main = "cell coordinates in cluster c1", line = 3) box() # plot square binning curr<-loc_mt[loc_mt[,"cluster"]=="c1", c("x","y")]%>%distinct() curr_ppp <- ppp(curr$x,curr$y,w_x, w_y) vec_quadrat <- quadratcount(curr_ppp, 10,10) vec_its <- intensity(vec_quadrat, image=TRUE) par(mar=c(0.1,1, 1, 2)) plot(vec_its, main = "") title(main = "square binning", line = -2) # plot hex binning w <- owin(xrange=w_x, yrange=w_y) H <- hextess(W=w, 20) bin_length <- length(H$tiles) curr<-loc_mt[loc_mt[,"cluster"]=="c1",c("x","y")] %>%distinct() curr_ppp <- ppp(curr$x,curr$y,w_x, w_y) vec_quadrat <- quadratcount(curr_ppp, tess=H) vec_its <- intensity(vec_quadrat, image=TRUE) par(mar=c(0.1,1, 1, 2)) plot(vec_its, main = "") title(main = "hex binning", line = -2) ``` The function `get_vectors()` can be used to create spatial vectors for all the genes and clusters. These spatial vectors may take the form of squares, rectangles, or hexagons specified by the `bin_type` parameter. ### Create spatial vectors for all genes and clusters ```{r create rep1 all vectors} seed_number<- 589 w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep1_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep1_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep1_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep1_clusters$y)))) grid_length <- 10 # get spatial vectors rep1_sq10_vectors <- get_vectors(x= rep1_sub, sample_names = "rep1", cluster_info = rep1_clusters, bin_type="square", bin_param=c(grid_length,grid_length), test_genes = all_real_genes , w_x=w_x, w_y=w_y) ``` The constructed spatial vectors can be used to quantify cluster-cluster and gene-gene correlation. #### Cluster-Cluster correlation ```{r fig.width=6, fig.height=6} exp_ord <- paste("c", 1:8, sep="") rep1_sq10_vectors$cluster_mt <- rep1_sq10_vectors$cluster_mt[,exp_ord] cor_cluster_mt <- cor(rep1_sq10_vectors$cluster_mt, rep1_sq10_vectors$cluster_mt, method = "pearson") # Calculate pairwise correlations cor_gene_mt <- cor(rep1_sq10_vectors$gene_mt, rep1_sq10_vectors$gene_mt, method = "pearson") col <- grDevices::colorRampPalette(c("#4477AA", "#77AADD", "#FFFFFF","#EE9988", "#BB4444")) corrplot::corrplot(cor_cluster_mt, method="color", col=col(200), diag=TRUE, addCoef.col = "black",type="upper", tl.col="black", tl.srt=45, mar=c(0,0,5,0),sig.level = 0.05, insig = "blank", title = "cluster-cluster correlation (square bin = 40x40)" ) ``` #### Gene-Cluster correlation ```{r gene_cluster_corr, warning=FALSE, message=FALSE,fig.width=6,fig.height=6} cor_genecluster_mt <- cor(x=rep1_sq10_vectors$gene_mt, y=rep1_sq10_vectors$cluster_mt, method = "pearson") gg_correlation <- as.data.frame(cbind(apply(cor_gene_mt, MARGIN=1, FUN = mean, na.rm=TRUE), apply(cor_genecluster_mt, MARGIN=1, FUN = mean, na.rm=TRUE))) colnames(gg_correlation) <- c("mean_correlation","mean_cluster") gg_correlation$gene<-row.names(gg_correlation) plot(ggplot(data = gg_correlation, aes(x= mean_correlation, y=mean_cluster))+ geom_point()+ geom_text_repel(aes(label=gg_correlation$gene), size=1.8, hjust=1)+ theme_bw()+ theme(legend.title=element_blank(), axis.text.y = element_text(size=20), axis.text.x = element_text(size=20), axis.title.x=element_text(size=20), axis.title.y=element_text(size=20), panel.spacing = grid::unit(0.5, "lines"), legend.position="none", legend.text=element_blank())+ xlab("Average gene-gene correlation")+ ylab("Average gene-cluster correlation")) ``` We can also construct a gene network based on the spatial vector for the genes. #### Gene network ```{r gene_graph,warning=FALSE, message=FALSE, fig.width=6, fig.height=6} vector_graph<- igraph::graph_from_adjacency_matrix(cor_gene_mt, mode = "undirected", weighted = TRUE, diag = FALSE) vector_graph<-igraph::simplify(igraph::delete_edges(vector_graph, E(vector_graph)[abs(E(vector_graph)$weight) <= 0.7])) layout<-igraph::layout_with_kk(vector_graph) # Plot the graph ggraph::ggraph(vector_graph, layout = layout) + geom_edge_link(aes(edge_alpha = weight), show.legend = FALSE) + geom_node_point(color = "lightblue", size = 5) + geom_node_text(aes(label = name), vjust = 1, hjust = 1,size=2,color="orange", repel = TRUE) ``` ### Create spatial vectors for diverse data types The main function `lasso_markers()` requires spatial vectors for each cluster and gene. These vectors can be conveniently generated using the `get_vectors()` function. Currently, the get_vectors() function supports inputs of type `list`, `SingleCellExperiment`, `SpatialExperiment`, or `SpatialFeatureExperiment`. The following sections will illustrate how to create spatial vectors for genes and clusters given different data objects you have. #### From a list A named list can be effectively utilized to store the transcript detection data for each sample. Specifically, we will create a named list where each name corresponds to a different sample within your data. Each element of this list is a dataframe containing columns: "feature_name" (gene name), "x" (x-coordinate), and "y" (y-coordinate). It is crucial that the list names match the sample identifiers in the cluster_info. This approach is highly recommended when difficulties arise in defining a SpatialExperiment object for your data. ```{r} seed_number<- 589 w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep1_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep1_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep1_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep1_clusters$y)))) grid_length <- 10 # get spatial vectors rep1_sq10_vectors_lst <- get_vectors(x= list("rep1" = rep1_transcripts), sample_names = "rep1", cluster_info = rep1_clusters, bin_type="square", bin_param=c(grid_length,grid_length), test_genes = all_real_genes , w_x=w_x, w_y=w_y) # the created spatial vectors will be the same as from other input structure table(rep1_sq10_vectors$gene_mt[,"DST"]==rep1_sq10_vectors_lst$gene_mt[,"DST"]) # spatial vector for every cluster head(rep1_sq10_vectors_lst$cluster_mt) # spatial vector for every gene head(rep1_sq10_vectors_lst$gene_mt) ``` #### From a SpatialExperiment object If the transcript coordinates are available, you can use either transcript coordinates or the count matrix to define spatial vectors for genes. The defined example_vectors_cm/example_vectors_tr can be passed to `lasso_markers` to identify marker genes. ```{r, eval=TRUE} library(SpatialFeatureExperiment) library(SingleCellExperiment) library(TENxXeniumData) library(ExperimentHub) library(scran) library(scater) eh <- ExperimentHub() q <- query(eh, "TENxXenium") spe_example <- q[["EH8547"]] colData(spe_example)$cell_id <- colnames(spe_example) set.seed(123) # use a subset data subset_cells <- sample(colnames(spe_example), size = 100, replace = FALSE) spe_sub <- spe_example[, colnames(spe_example) %in% subset_cells] # ----------------------------------------------------------------------------- # calculate logcounts and store in object spe_sub <- logNormCounts(spe_sub) rm(spe_example) # compute PCA set.seed(123) spe_sub <- runPCA(spe_sub, subset_row = row.names(spe_sub)) # example Non-spatial clustering (for illustration purpose only) set.seed(123) k <- 10 g <- buildSNNGraph(spe_sub, k = k, use.dimred = "PCA") g_walk <- igraph::cluster_walktrap(g) clusters <- paste("c",g_walk$membership,sep="") scran_clusters <- as.data.frame(cbind(cluster = clusters, cell_id = colnames(spe_sub))) # ----------------------------------------------------------------------------- # combine cluster labels and the coordinates # make sure the cluster information contains column names: # cluster, x, y, sample and cell_id clusters_info <- as.data.frame(spatialCoords(spe_sub)) colnames(clusters_info) <- c("x","y") clusters_info$cell_id <- row.names(clusters_info) clusters_info$sample <- spe_sub$sample_id clusters_info <- merge(clusters_info, scran_clusters, by="cell_id") w_x <- c(floor(min(clusters_info$x)), ceiling(max(clusters_info$x))) w_y <- c(floor(min(clusters_info$y)), ceiling(max(clusters_info$y))) # ----------------------------------------------------------------------------- # build spatial vectors from count matrix and cluster coordinates example_vectors_cm <- get_vectors(x= spe_sub, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:5], use_cm=TRUE, w_x=w_x, w_y=w_y) # spatial vector for every cluster head(example_vectors_cm$cluster_mt) # spatial vector for every gene head(example_vectors_cm$gene_mt) # ----------------------------------------------------------------------------- # build spatial vectors from transcript coordinates and cluster coordinates example_vectors_tr <- get_vectors(x= spe_sub, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:5], use_cm=FALSE, w_x=w_x, w_y=w_y) # spatial vector for every cluster # example_vectors_tr$cluster_mt # spatial vector for every gene # example_vectors_tr$gene_mt ``` #### From a SpatialFeatureExperiment object ```{r, eval=FALSE} sfe_example <-SpatialFeatureExperiment( list(counts = spe_sub@assays@data$counts), colData = spe_sub@colData, spatialCoords = spatialCoords(spe_sub), spatialCoordsNames = c("x_centroid", "y_centroid")) # ----------------------------------------------------------------------------- # build spatial vectors from count matrix and cluster coordinates # make sure the cluster information contains column names: # cluster, x, y, sample and cell_id example_vectors_cm <- get_vectors(x= sfe_example, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:3], w_x=w_x, w_y=w_y, use_cm = TRUE) # spatial vector for every cluster head(example_vectors_cm$cluster_mt) # spatial vector for every gene head(example_vectors_cm$gene_mt) # ----------------------------------------------------------------------------- # build spatial vectors from transcript coordinates and cluster coordinates example_vectors_tr <- get_vectors(x= sfe_example, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:3], w_x=w_x, w_y=w_y, use_cm = FALSE) # spatial vector for every cluster # example_vectors_tr$cluster_mt # spatial vector for every gene # example_vectors_tr$gene_mt ``` #### From a SingleCellExperiment object If the input is a SingleCellExperiment object, the spatial vectors for the genes can only be computed using the count matrix and the cell coordinates The defined example_vectors_cm can be passed to `lasso_markers` to identify marker genes. \\ If transcript coordinate information is available, you can alternatively create a SpatialExperiment object and compute the spatial vectors using the transcript coordinates. ```{r, eval=FALSE} sce_example <- SingleCellExperiment(list(sample01 = cm)) # ----------------------------------------------------------------------------- # build spatial vectors from count matrix and cluster coordinates # make sure the cluster information contains column names: # cluster, x, y, sample and cell_id example_vectors_cm <- get_vectors(x= sce_example, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:3], w_x=w_x, w_y=w_y, use_cm=TRUE) # spatial vector for every cluster head(example_vectors_cm$cluster_mt) # spatial vector for every gene head(example_vectors_cm$gene_mt) # ----------------------------------------------------------------------------- # If the transcript coordinate information is available # make sure the transcript information contains column names: # feature_name, x, y spe <- SpatialExperiment( assays = list(molecules = molecules(sfe_example)), sample_id ="sample01") # build spatial vectors from transcript coordinates and cluster coordinates example_vectors_tr <- get_vectors(x= spe, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(5,5), test_genes = row.names(spe_sub)[1:3], w_x=w_x, w_y=w_y) # spatial vector for every cluster # example_vectors_tr$cluster_mt # spatial vector for every gene # example_vectors_tr$gene_mt ``` #### From a Seurat object If you have a Seurat object, the spatial vectors for the genes can only be computed using the count matrix and the cell coordinates The defined example_vectors_cm can be passed to `lasso_markers` to identify marker genes. \\ If transcript coordinate information is available, you can alternatively create a SpatialExperiment object and compute the spatial vectors using the transcript coordinates. ```{r eval=FALSE} library(Seurat) # suppose cm is the count matrix seu_obj <- Seurat::CreateSeuratObject(counts = cm) sce <- SingleCellExperiment(list(sample01 =seu_obj@assays$RNA$counts )) # we will use the previously defined cluster_info for illustration here # make sure the clusters information contains column names: # cluster, x, y and sample clusters_info = clusters_info w_x <- c(floor(min(clusters_info$x)), ceiling(max(clusters_info$x))) w_y <- c(floor(min(clusters_info$y)), ceiling(max(clusters_info$y))) # ----------------------------------------------------------------------------- # build spatial vectors from count matrix and cluster coordinates # make sure the cluster information contains column names: # cluster, x, y, sample and cell_id example_vectors_cm <- get_vectors(x= sce, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(10,10), test_genes = test_genes, w_x=w_x, w_y=w_y, use_cm=TRUE) # spatial vector for every cluster example_vectors_cm$cluster_mt # spatial vector for every gene example_vectors_cm$gene_mt # ----------------------------------------------------------------------------- # If the transcript coordinate information is available # make sure the transcript information contains column names: # feature_name, x, y spe <- SpatialExperiment( assays = list( molecules = molecules(sfe_example)), sample_id ="sample01" ) # build spatial vectors from transcript coordinates and cluster coordinates example_vectors_tr <- get_vectors(x= spe, sample_names = "sample01", cluster_info = clusters_info, bin_type="square", bin_param=c(10,10), test_genes = test_genes, w_x=w_x, w_y=w_y) # spatial vector for every cluster example_vectors_tr$cluster_mt # spatial vector for every gene example_vectors_tr$gene_mt ``` ## Linear relationship between markers and clusters We assume that the relationship between a marker gene vector its cluster spatial vector is linear. \n Here are several genes and their annotation from the panel. \n | | | |---------|----------------------------| | Gene | Annotation | | ERBB2 | Breast cancer cells | | IL7R | T cells | | MZB1 | B cells | | AQP1 | Endothelial | | LUM | Fibroblasts | ```{r linear vector to vector plot, fig.height=2, fig.width=7} genes_lst <- c("ERBB2","AQP1","LUM","IL7R","MZB1") for (i_cluster in c("c1","c8","c3","c6","c7")){ cluster_vector<-rep1_sq10_vectors$cluster_mt[,i_cluster] data_vis<-as.data.frame(cbind("cluster", cluster_vector, rep1_sq10_vectors$gene_mt[, genes_lst])) colnames(data_vis)<-c("cluster","cluster_vector",genes_lst) data_vis<-reshape2::melt(data_vis,variable.name = "genes", value.name = "gene_vector", id= c("cluster","cluster_vector" )) data_vis$cluster_vector<-as.numeric(data_vis$cluster_vector) data_vis$genes<-factor(data_vis$genes) data_vis$gene_vector<-as.numeric(data_vis$gene_vector) plot(ggplot(data = data_vis, aes(x= cluster_vector, y=gene_vector))+ geom_point(size=0.1)+ facet_wrap(~genes,scales = "free_y", ncol=10)+ theme_bw()+ theme(legend.title=element_blank(), axis.text.y = element_text(size=6), axis.text.x = element_text(size=6,angle=0), axis.title.x=element_text(size=10), axis.title.y=element_text(size=10), panel.spacing = grid::unit(0.5, "lines"), legend.position="none", legend.text=element_blank(), strip.text = element_text(size = rel(1)))+ xlab(paste(i_cluster," - cluster vector", sep=""))+ ylab("gene vector")) } ``` ## Scenario 1: one sample A straightforward approach to identifying genes that exhibit a linear correlation with cluster vectors involves computing the Pearson correlation for each gene with every cluster. To assess the statistical significance of these correlations, the `compute_permp()` function can be used to perform permutation testing, generating a p-value for every pair of gene cluster and cluster vector. ### Correlation-based method to detect marker genes ```{r rep1 permutation} w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep1_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep1_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep1_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep1_clusters$y)))) set.seed(seed_number) perm_p <- compute_permp(x=rep1_sub, cluster_info=rep1_clusters, perm.size=1000, bin_type="square", bin_param=c(10,10), test_genes= all_real_genes, correlation_method = "pearson", n_cores=1, correction_method="BH", w_x=w_x , w_y=w_y) # observed correlation for every pair of gene and cluster vector obs_corr <- get_cor(perm_p) head(obs_corr) # permutation adjusted p-value for every pair of gene and cluster vector perm_res <- get_perm_adjp(perm_p) head(perm_res) ``` #### Visualise top marker genes detected by correlation approach Genes with a significant adjusted p-value are considered as marker genes for the corresponding cluster. We can rank the marker genes by the observed correlationand plot the transcript detection coordinates for the top three marker genes for every cluster. ```{r rep1 permutation vis, fig.width=6, fig.height=3} res_df_1000<-as.data.frame(perm_p$perm.pval.adj) res_df_1000$gene<-row.names(res_df_1000) cluster_names <- unique(as.character(rep1_clusters$cluster)) for (cl in cluster_names){ perm_sig <- res_df_1000[res_df_1000[,cl]<0.05,] # define a cutoff value based on 75% quantile obs_cutoff <- quantile(obs_corr[, cl], 0.75) perm_cl<-intersect(row.names(perm_res[perm_res[,cl]<0.05,]), row.names(obs_corr[obs_corr[, cl]>obs_cutoff,])) inters<-perm_cl rounded_val<-signif(as.numeric(obs_corr[inters,cl]), digits = 3) inters_df<- as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value<- as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df<-inters_df[1:min(nrow(inters_df),2),] inters_df$text<- paste(inters_df$gene,inters_df$value,sep=": ") curr_genes <- rep1_transcripts$feature_name %in% inters_df$gene data_vis <- rep1_transcripts[curr_genes, c("x","y","feature_name")] data_vis$text <- inters_df[match(data_vis$feature_name,inters_df$gene), "text"] data_vis$text <- factor(data_vis$text, levels=inters_df$text) p1<-ggplot(data = data_vis, aes(x = x, y = y))+ geom_point(size=0.01,color="maroon4")+ facet_wrap(~text,ncol=10, scales="free")+ scale_y_reverse()+ guides(fill = guide_colorbar(height= grid::unit(5, "cm")))+ defined_theme cl_pt<-ggplot(data = rep1_clusters[rep1_clusters$cluster==cl, ], aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0), size=0.2)+ facet_wrap(~cluster)+ scale_y_reverse()+ theme_classic()+ scale_color_manual(values = "black")+ defined_theme lyt <- cl_pt | p1 layout_design <- lyt + patchwork::plot_layout(widths = c(1,3)) print(layout_design) } ``` #### Visualise cluster vector and the top marker genes at spatial vector level To check the linear relationship between the cluster vector and the marker gene vectors, we can plot the cluster vector on x-axis, and the marker gene vector on y-axis. The figure below shows the relationship between the cluster vector and the top marker gene vectors detected by correlation approach. ```{r vvplot_corr, fig.width=8, fig.height=6} cluster_names <- paste("c", 1:8, sep="") plot_lst<-list() for (cl in cluster_names){ perm_sig<- res_df_1000[res_df_1000[,cl]<0.05,] curr_cell_type <- all_celltypes[all_celltypes$cluster==cl,"anno"] obs_cutoff <- quantile(obs_corr[, cl], 0.75) perm_cl<-intersect(row.names(perm_res[perm_res[,cl]<0.05,]), row.names(obs_corr[obs_corr[, cl]>obs_cutoff,])) inters<-perm_cl rounded_val<-signif(as.numeric(obs_corr[inters,cl]), digits = 3) inters_df <- as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value<- as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df$text<- paste(inters_df$gene,inters_df$value,sep=": ") mk_gene<- inters_df[1:min(2, nrow(inters_df)),"gene"] if (length(mk_gene > 0)){ dff <- as.data.frame(cbind(rep1_sq10_vectors$cluster_mt[,cl], rep1_sq10_vectors$gene_mt[,mk_gene])) colnames(dff) <- c("cluster", mk_gene) dff$vector_id <- c(1:(grid_length * grid_length)) long_df <- dff %>% pivot_longer(cols = -c(cluster, vector_id), names_to = "gene", values_to = "vector_count") long_df$gene <- factor(long_df$gene, levels=mk_gene) p<-ggplot(long_df, aes(x = cluster, y = vector_count )) + geom_point( size=0.01) + facet_wrap(~gene, scales = "free_y", nrow=1) + labs(x = paste("cluster vector ", curr_cell_type, sep=""), y = "marker gene vectors") + theme_minimal()+ guides(color=guide_legend(nrow = 1, override.aes=list(alpha=1, size=2)))+ theme(panel.grid = element_blank(),legend.position = "none", strip.text = element_text(size = rel(1)), axis.line=element_blank(), legend.title = element_blank(), legend.key.size = grid::unit(0.5, "cm"), legend.text = element_text(size=10), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_text(size = 10), panel.border =element_rect(colour = "black", fill=NA, linewidth=0.5) ) plot_lst[[cl]] = p } } combined_plot <- ggarrange(plotlist = plot_lst, ncol = 2, nrow = 4, common.legend = FALSE, legend = "none") combined_plot ``` The other method to identify linearly correlated genes for each cluster is to construct a linear model for each gene. We can use the `lasso_markers` function to get the most relevant cluster label for every gene. ### Linear modeling approach to detect marker genes We can create spatial vectors for negative control genes and include them as background noise "clusters". ```{r rep1 lasso_markers with background} probe_nm <- unique(rep1_nc_data[rep1_nc_data$category=="probe","feature_name"]) codeword_nm <- unique(rep1_nc_data[rep1_nc_data$category=="codeword", "feature_name"]) rep1_nc_vectors <- create_genesets(x=rep1_neg,sample_names="rep1", name_lst=list(probe=probe_nm, codeword=codeword_nm), bin_type="square", bin_param=c(10, 10), w_x=w_x, w_y=w_y, cluster_info = NULL) set.seed(seed_number) rep1_lasso_with_nc <- lasso_markers(gene_mt=rep1_sq10_vectors$gene_mt, cluster_mt = rep1_sq10_vectors$cluster_mt, sample_names=c("rep1"), keep_positive=TRUE, background=rep1_nc_vectors) rep1_top_df_nc <- get_top_mg(rep1_lasso_with_nc, coef_cutoff=0.2) # the top result table head(rep1_top_df_nc) # the full result table rep1_full_df <- get_full_mg(rep1_lasso_with_nc) head(rep1_full_df) ``` #### Visualise top marker genes detected by linear modelling approach We can rank the marker genes by its linear model coefficient to the cluster ans plot the transcript detection coordinates for the top three marker genes for every cluster. ```{r lasso-rep1 vis, fig.width=6, fig.height=3} cluster_names <- paste("c", 1:8, sep="") for (cl in setdiff(cluster_names,"NoSig")){ inters<-rep1_top_df_nc[rep1_top_df_nc$top_cluster==cl,"gene"] rounded_val<-signif(as.numeric(rep1_top_df_nc[inters,"glm_coef"]), digits = 3) inters_df <- as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value <- as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df$text<- paste(inters_df$gene,inters_df$value,sep=": ") if (length(inters > 0)){ inters_df<-inters_df[1:min(2, nrow(inters_df)),] inters <-inters_df$gene iters_rep1<-rep1_transcripts$feature_name %in% inters vis_r1<-rep1_transcripts[iters_rep1, c("x","y","feature_name")] vis_r1$value<-inters_df[match(vis_r1$feature_name,inters_df$gene), "value"] #vis_r1=vis_r1[order(vis_r1$value,decreasing = TRUE),] vis_r1$text_label<- paste(vis_r1$feature_name, vis_r1$value,sep=": ") vis_r1$text_label<-factor(vis_r1$text_label, levels = inters_df$text) vis_r1$sample<-"rep1" p1<- ggplot(data = vis_r1, aes(x = x, y = y))+ geom_point(size=0.01,color="maroon4")+ facet_wrap(~text_label,ncol=10, scales="free")+ scale_y_reverse()+ guides(fill = guide_colorbar(height= grid::unit(5, "cm")))+ defined_theme cl_pt<-ggplot(data = rep1_clusters[rep1_clusters$cluster==cl, ], aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0), size=0.2)+ facet_wrap(~cluster)+ scale_y_reverse()+ theme_classic()+ scale_color_manual(values = "black")+ defined_theme lyt <- cl_pt | p1 layout_design <- lyt + patchwork::plot_layout(widths = c(1,3)) print(layout_design) }} ``` #### Visualise cluster vector and the top marker genes at spatial vector level We can plot the cluster vector on x-axis, and the marker gene vectors (detected by the linear modelling approach) on y-axis to validate the linear relationship assumption between the cluster vector and the marker gene vectors. ```{r vvplot_glm, fig.width=8, fig.height=6} cluster_names <- paste("c", 1:8, sep="") plot_lst=list() for (cl in cluster_names){ curr_cell_type<-all_celltypes[all_celltypes$cluster==cl,"anno"] inters<-rep1_top_df_nc[rep1_top_df_nc$top_cluster==cl,"gene"] if (length(inters > 0)){ rounded_val<-signif(as.numeric(rep1_top_df_nc[inters,"glm_coef"]), digits = 3) inters_df<-as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value<-as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df$text<-paste(inters_df$gene,inters_df$value,sep=": ") inters_df<-inters_df[1:min(2, nrow(inters_df)),] mk_gene<-inters_df$gene dff<- as.data.frame(cbind(rep1_sq10_vectors$cluster_mt[,cl], rep1_sq10_vectors$gene_mt[,mk_gene])) colnames(dff)<-c("cluster", mk_gene) dff$vector_id<-c(1:(grid_length * grid_length)) long_df <- dff %>% pivot_longer(cols = -c(cluster, vector_id), names_to = "gene", values_to = "vector_count") long_df$gene<-factor(long_df$gene, levels=mk_gene) p<-ggplot(long_df, aes(x = cluster, y = vector_count )) + geom_point( size=0.01) + facet_wrap(~gene, scales = "free_y", nrow=1) + labs(x = paste("cluster vector ", curr_cell_type, sep=""), y = "marker gene vectors") + theme_minimal()+ guides(color=guide_legend(nrow = 1, override.aes=list(alpha=1, size=2)))+ theme(panel.grid = element_blank(),legend.position = "none", strip.text = element_text(size = rel(1)), axis.line=element_blank(), legend.title = element_blank(), legend.key.size = grid::unit(0.5, "cm"), legend.text = element_text(size=10), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_text(size = 10), panel.border =element_rect(colour = "black", fill=NA, linewidth=0.5) ) plot_lst[[cl]] = p } } combined_plot <- ggarrange(plotlist = plot_lst, ncol = 2, nrow = 4, common.legend = FALSE, legend = "none") combined_plot ``` ## Scenario 2: multiple samples Load the replicate 2 from sample 1. ```{r load rep2 data} data(rep2_sub, rep2_clusters, rep2_neg) rep2_clusters$cluster<-factor(rep2_clusters$cluster, levels=paste("c",1:8, sep="")) rep1_clusters$cells<-paste(row.names(rep1_clusters),"_1",sep="") rep2_clusters$cells<-paste(row.names(rep2_clusters),"_2",sep="") rep_clusters<-rbind(rep1_clusters,rep2_clusters) rep_clusters$cluster<-factor(rep_clusters$cluster, levels=paste("c",1:8, sep="")) table(rep_clusters$sample, rep_clusters$cluster) # record the transcript coordinates for rep2 rep2_transcripts <-BumpyMatrix::unsplitAsDataFrame(molecules(rep2_sub)) rep2_transcripts <- as.data.frame(rep2_transcripts) colnames(rep2_transcripts) <- c("feature_name","cell_id","x","y") # record the negative control transcript coordinates for rep2 rep2_nc_data <-BumpyMatrix::unsplitAsDataFrame(molecules(rep2_neg)) rep2_nc_data <- as.data.frame(rep2_nc_data) colnames(rep2_nc_data) <- c("feature_name","cell_id","x","y","category") ``` #### Visualise the clusters We can plot the coordinates of cells for every cluster in every replicate ```{r tworep cluster vis, fig.height=4, fig.width=8, warning=FALSE} ggplot(data = rep_clusters, aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0),size=0.1)+ facet_grid(sample~cluster)+ scale_y_reverse()+ theme_classic()+ scale_color_manual(values = c("#FC8D62","#66C2A5" ,"#8DA0CB","#E78AC3", "#A6D854","skyblue","purple3","#E5C498"))+ guides(color=guide_legend(title="cluster", nrow = 1, override.aes=list(alpha=1, size=7)))+ theme( axis.line=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.background=element_blank(), panel.border=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank(), legend.text = element_text(size=10), legend.position="none", legend.title = element_text(size=10), strip.text = element_text(size = rel(1)))+ xlab("")+ ylab("") ``` When we have multiple replicates in the dataset, we can find marker genes by providing additional sample information as the input for the function `lasso_markers`. ### Linear modeling approach to detect marker genes ```{r tworep no background} w_x <- c(min(floor(min(rep1_transcripts$x)), floor(min(rep2_transcripts$x)), floor(min(rep_clusters$x))), max(ceiling(max(rep1_transcripts$x)), ceiling(max(rep2_transcripts$x)), ceiling(max(rep_clusters$x)))) w_y <- c(min(floor(min(rep1_transcripts$y)), floor(min(rep2_transcripts$y)), floor(min(rep_clusters$y))), max(ceiling(max(rep1_transcripts$y)), ceiling(max(rep2_transcripts$y)), ceiling(max(rep_clusters$y)))) grid_length<-10 twosample_spe<-cbind(rep1_sub, rep2_sub) # get spatial vectors two_rep_vectors<- get_vectors(x= twosample_spe, sample_names=c("rep1","rep2"), cluster_info = rep_clusters, bin_type="square", bin_param=c(grid_length, grid_length), test_genes = all_real_genes , w_x=w_x, w_y=w_y) twosample_neg_spe<-cbind(rep1_neg, rep2_neg) probe_nm<-unique(c(rep1_nc_data[rep1_nc_data$category=="probe", "feature_name"], rep2_nc_data[rep2_nc_data$category=="probe","feature_name"])) codeword_nm<-unique(c(rep1_nc_data[rep1_nc_data$category=="codeword", "feature_name"], rep2_nc_data[rep2_nc_data$category=="codeword","feature_name"])) two_rep_nc_vectors<-create_genesets(x=twosample_neg_spe, sample_names=c("rep1","rep2"), name_lst=list(probe=probe_nm, codeword=codeword_nm), bin_type="square", bin_param=c(10,10), w_x=w_x, w_y=w_y, cluster_info = NULL) set.seed(seed_number) two_rep_lasso_with_nc<-lasso_markers(gene_mt=two_rep_vectors$gene_mt, cluster_mt = two_rep_vectors$cluster_mt, sample_names=c("rep1","rep2"), keep_positive=TRUE, background=two_rep_nc_vectors,n_fold = 5) tworep_res<-get_top_mg(two_rep_lasso_with_nc, coef_cutoff=0.2) tworep_res$celltype<-rep_clusters[match(tworep_res$top_cluster, rep_clusters$cluster),"anno"] table(tworep_res$top_cluster) head(tworep_res) ``` #### Visualise the top marker genes for each cluster ```{r top3 marker gene, fig.height=6, fig.width=6} for (cl in all_celltypes$anno){ inters<-tworep_res[tworep_res$celltype==cl,"gene"] rounded_val<-signif(as.numeric(tworep_res[inters,"glm_coef"]), digits = 3) inters_df<-as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value<-as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df$text<-paste(inters_df$gene,inters_df$value,sep=": ") if (length(inters > 0)){ inters_df<-inters_df[1:min(2, nrow(inters_df)),] inters<-inters_df$gene iters_rep1<-rep1_transcripts$feature_name %in% inters vis_r1<-rep1_transcripts[iters_rep1, c("x","y","feature_name")] vis_r1$value<-inters_df[match(vis_r1$feature_name,inters_df$gene), "value"] vis_r1<-vis_r1[order(vis_r1$value,decreasing = TRUE),] vis_r1$text_label<- paste(vis_r1$feature_name, vis_r1$value,sep=": ") vis_r1$text_label<-factor(vis_r1$text_label) vis_r1$sample<-"rep1" iters_rep2<- rep2_transcripts$feature_name %in% inters vis_r2<-rep2_transcripts[iters_rep2, c("x","y","feature_name")] vis_r2$value<-inters_df[match(vis_r2$feature_name,inters_df$gene), "value"] vis_r2<-vis_r2[order(vis_r2$value, decreasing = TRUE),] vis_r2$text_label<-paste(vis_r2$feature_name, vis_r2$value,sep=": ") vis_r2$text_label<-factor(vis_r2$text_label) vis_r2$sample<-"rep2" p1<- ggplot(data = vis_r1, aes(x = x, y = y))+ geom_point(size=0.01,color="maroon4")+ facet_grid(sample~text_label, scales="free")+ scale_y_reverse()+ guides(fill = guide_colorbar(height= grid::unit(5, "cm")))+ defined_theme p2<- ggplot(data = vis_r2, aes(x = x, y = y))+ geom_point(size=0.01,color="maroon4")+ facet_grid(sample~text_label,scales="free")+ scale_y_reverse()+ guides(fill = guide_colorbar(height= grid::unit(5, "cm")))+ defined_theme cl_pt<-ggplot(data = rep_clusters[rep_clusters$anno==cl, ], aes(x = x, y = y, color=cluster))+ geom_point(position=position_jitterdodge(jitter.width=0, jitter.height=0), size=0.2)+ facet_grid(sample~cluster)+ scale_y_reverse()+ theme_classic()+ scale_color_manual(values = "black")+ defined_theme lyt <- cl_pt | (p1 / p2) # if (cl %in% c("c2","c5","c6","c7")){ # lyt <- cl_pt | ((p1 / p2) | patchwork::plot_spacer()) # } layout_design <- lyt + patchwork::plot_layout(widths = c(1,2)) print(layout_design) }} ``` #### Visualise cluster vector and the top marker genes at spatial vector level The figure below shows the relationship between the cluster vector and the top marker gene vectors detected by linear modelling approach by accounting for multiple samples and background noise ```{r vvplot_twosample, fig.width=8, fig.height=6} cluster_names<-paste("c", 1:8, sep="") plot_lst<-list() for (cl in cluster_names){ inters<-tworep_res[tworep_res$top_cluster==cl,"gene"] curr_cell_type<- all_celltypes[all_celltypes$cluster==cl,"anno"] rounded_val<-signif(as.numeric(tworep_res[inters,"glm_coef"]), digits = 3) inters_df<-as.data.frame(cbind(gene=inters, value=rounded_val)) inters_df$value<-as.numeric(inters_df$value) inters_df<-inters_df[order(inters_df$value, decreasing = TRUE),] inters_df$text<-paste(inters_df$gene,inters_df$value,sep=": ") mk_gene<-inters_df[1:min(2, nrow(inters_df)),"gene"] if (length(inters > 0)){ dff<-as.data.frame(cbind(two_rep_vectors$cluster_mt[,cl], two_rep_vectors$gene_mt[,mk_gene])) colnames(dff) <- c("cluster", mk_gene) total_tiles <- grid_length * grid_length dff$vector_id <- c(1:total_tiles) dff$sample<- "Replicate1" dff[(total_tiles+1):(total_tiles*2),"sample"] <- "Replicate2" dff$vector_id <- c(1:total_tiles, 1:total_tiles) long_df <- dff %>% pivot_longer(cols = -c(cluster, sample, vector_id), names_to = "gene", values_to = "vector_count") long_df$gene <- factor(long_df$gene, levels=mk_gene) p<-ggplot(long_df, aes(x = cluster, y = vector_count, color =sample)) + geom_point( size=0.01) + facet_wrap(~gene, scales = "free_y", nrow=1) + labs(x = paste("cluster vector ", curr_cell_type, sep=""), y = "marker gene vectors") + theme_minimal()+ guides(color=guide_legend(nrow = 1, override.aes=list(alpha=1, size=2)))+ theme(panel.grid = element_blank(),legend.position = "bottom", strip.text = element_text(size = rel(1)), axis.line=element_blank(), legend.title = element_blank(), legend.key.size = grid::unit(0.5, "cm"), legend.text = element_text(size=10), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_text(size = 10), panel.border =element_rect(colour = "black", fill=NA, linewidth=0.5) ) plot_lst[[cl]] <- p } } combined_plot <- ggarrange(plotlist = plot_lst, ncol = 2, nrow = 4, common.legend = TRUE, legend = "top") combined_plot ``` # Session Info ```{r session info} sessionInfo() ```