Title: | A SummarizedExperiment for Ivy-GAP data |
---|---|
Description: | Define a SummarizedExperiment and exploratory app for Ivy-GAP glioblastoma image, expression, and clinical data. |
Authors: | Vince Carey |
Maintainer: | VJ Carey <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.29.0 |
Built: | 2024-12-29 07:25:47 UTC |
Source: | https://github.com/bioc/ivygapSE |
render design overview
render anatomic nomenclature
designOverview() nomenclat()
designOverview() nomenclat()
a rastergrob grob
designOverview()
designOverview()
simple plot of expression values by structure/expression-based selection in IvyGAP
exprByType(sym, ...)
exprByType(sym, ...)
sym |
a gene symbol found among 'rownames(ivySE)' |
... |
passed to plot, exclusive of ylab, xlab, axes |
invisibly returns a list with two elements: exprs, the vector of expression values, and types, the vector of structure types
exprByType("MYC")
exprByType("MYC")
provide access to a limma analysis of RNA-seq profiles for reference histology samples
getRefLimma()
getRefLimma()
an instance of MArrayLM-class
representing regularized gene-wise ANOVAs
Uses download.file
to acquire RDS of the output
of eBayes
from a public S3 bucket. The limma model
was fit using duplicateCorrelation
to address multiplicity
of contributions per donor. Comparisons are to samples labeled CT-reference
(cellular tumor, reference contributions),
with coefficients 2-5 corresponding to CT-mvp (microvascular proliferation),
CT-pan (pseudopalisading cells around necrosis), IT (infiltrating tumor),
and LE (leading edge), respectively.
requireNamespace("limma") ebout = getRefLimma() # is result of eBayes colnames(ebout$coef) limma::topTable(ebout,2)
requireNamespace("limma") ebout = getRefLimma() # is result of eBayes colnames(ebout$coef) limma::topTable(ebout,2)
simple app to explore image property quantifications in relation to survival and expression
ivyGlimpse()
ivyGlimpse()
Side effect of starting the app only.
if (interactive()) print(ivyGlimpse())
if (interactive()) print(ivyGlimpse())
ivySE: SummarizedExperiment for IvyGAP expression data and metadata
ivySE
ivySE
SummarizedExperiment instance
Archive: gene_expression_matrix_2014-11-25.zip
Length Date Time Name
——— ———- —– —-
50585 03-31-2015 13:27 columns-samples.csv
86153820 10-31-2014 14:04 fpkm_table.csv
2015 11-24-2014 18:06 README.txt
1689619 10-31-2014 13:55 rows-genes.csv
——— ——-
87896039 4 files
Expression data retrieved from http://glioblastoma.alleninstitute.org/api/v2/well_known_file_download/305873915
processed from glioblastoma.alleninstitute.org; see Note.
## Not run: # how it was made ivyFpkm = read.csv("fpkm_table.csv", stringsAsFactors=FALSE, check.names=FALSE) g = read.csv("rows-genes.csv", stringsAsFactors=FALSE) library(SummarizedExperiment) imat = data.matrix(ivyFpkm[,-1]) ivySE = SummarizedExperiment(SimpleList(fpkm=imat)) rowData(ivySE) = g rownames(ivySE) = g$gene_symbol col = read.csv("columns-samples.csv", stringsAsFactors=FALSE) rownames(col) = col$rna_well_id stopifnot(all.equal(as.character(col$rna_well_id), as.character(colnames(imat)))) colData(ivySE) = DataFrame(col) colnames(ivySE) = colnames(imat) metadata(ivySE) = list(README=readLines("README.txt")) metadata(ivySE)$URL = "http://glioblastoma.alleninstitute.org/static/download.html" # metadata(ivySE)$builder = readLines("build.R") de = read.csv("tumor_details.csv", stringsAsFactors=FALSE) metadata(ivySE)$tumorDetails = de subbl = read.csv("sub_block_details.csv", stringsAsFactors=FALSE) metadata(ivySE)$subBlockDetails = subbl bamtab = read.csv("bam.csv", stringsAsFactors=FALSE) rownames(bamtab) = as.character(bamtab$rna_well) bamtab[colnames(ivySE),] -> bamtreo all.equal(rownames(bamtreo), colnames(ivySE)) colData(ivySE) = cbind(colData(ivySE), bamtreo) ## End(Not run) data(ivySE) names(metadata(ivySE))
## Not run: # how it was made ivyFpkm = read.csv("fpkm_table.csv", stringsAsFactors=FALSE, check.names=FALSE) g = read.csv("rows-genes.csv", stringsAsFactors=FALSE) library(SummarizedExperiment) imat = data.matrix(ivyFpkm[,-1]) ivySE = SummarizedExperiment(SimpleList(fpkm=imat)) rowData(ivySE) = g rownames(ivySE) = g$gene_symbol col = read.csv("columns-samples.csv", stringsAsFactors=FALSE) rownames(col) = col$rna_well_id stopifnot(all.equal(as.character(col$rna_well_id), as.character(colnames(imat)))) colData(ivySE) = DataFrame(col) colnames(ivySE) = colnames(imat) metadata(ivySE) = list(README=readLines("README.txt")) metadata(ivySE)$URL = "http://glioblastoma.alleninstitute.org/static/download.html" # metadata(ivySE)$builder = readLines("build.R") de = read.csv("tumor_details.csv", stringsAsFactors=FALSE) metadata(ivySE)$tumorDetails = de subbl = read.csv("sub_block_details.csv", stringsAsFactors=FALSE) metadata(ivySE)$subBlockDetails = subbl bamtab = read.csv("bam.csv", stringsAsFactors=FALSE) rownames(bamtab) = as.character(bamtab$rna_well) bamtab[colnames(ivySE),] -> bamtreo all.equal(rownames(bamtreo), colnames(ivySE)) colData(ivySE) = cbind(colData(ivySE), bamtreo) ## End(Not run) data(ivySE) names(metadata(ivySE))
demonstration of gene set construction for ivyGlimpse app
makeGeneSets()
makeGeneSets()
list of gene sets with attributes facilitating
dropdown construction – attr(,"fullTitle") is a list of strings
associated with gene set elements (named list with vectors
of gene symbols constituting sets of interest)
List of 4
$ General: Ras-Raf-MEK-Erk/JNK signaling (26 genes)
: chr [1:26] "KRAS" "HRAS" "BRAF" "RAF1" ...
$ Glioblastoma: RTK/Ras/PI3K/AKT Signaling (17 genes)
: chr [1:17] "EGFR" "ERBB2" "PDGFRA" "MET" ...
$ General: PI3K-AKT-mTOR signaling (17 genes)
: chr [1:17] "PIK3CA" "PIK3R1" "PIK3R2" "PTEN" ...
$ Ovarian Cancer: Putative tumor-suppressor genes in epithelial ovarian cancer (16 genes)
: chr [1:16] "DIRAS3" "RASSF1" "DLEC1" "SPARC" ...
- attr(*, "fullTitle")=List of 4
..$ glioRTK : chr "Glioblastoma: RTK/Ras/PI3K/AKT Signaling (17 genes)"
..$ pi3k : chr "General: PI3K-AKT-mTOR signaling (17 genes)"
..$ ovtumsupp: chr "Ovarian Cancer: Putative tumor-suppressor genes in epithelial ovarian cancer (16 genes)"
..$ rasraf : chr "General: Ras-Raf-MEK-Erk/JNK signaling (26 genes)"
Should be replaced by selections from a general catalog.
str(makeGeneSets())
str(makeGeneSets())
helper functions for data access
tumorDetails(se) subBlockDetails(se) vocab()
tumorDetails(se) subBlockDetails(se) vocab()
se |
SummarizedExperiment instance, intended to work for ivySE in this package |
data.frames for tumorDetails, subBlockDetails and vocab
data(ivySE) dim(tumorDetails(ivySE))
data(ivySE) dim(tumorDetails(ivySE))