
Package: iSEEtree (via r-universe)
September 12, 2024

Version 0.99.6

Title Interactive visualisation for microbiome data

Description iSEEtree is an extension of iSEE for the
TreeSummarizedExperiment. It leverages the functionality from
the miaViz package for microbiome data visualisation to create
panels that are specific for TreeSummarizedExperiment objects.
Not surprisingly, it also depends on the generic panels from
iSEE.

biocViews Microbiome, Software, Visualization, GUI, ShinyApps

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.3.0), iSEE

Imports grDevices, methods, miaViz, S4Vectors, shiny, mia,
shinyWidgets, SingleCellExperiment, SummarizedExperiment,
TreeSummarizedExperiment, utils

Suggests BiocStyle, knitr, RefManageR, remotes, rmarkdown, scater,
testthat (>= 3.0.0), vegan

URL https://github.com/microbiome/iSEEtree

BugReports https://github.com/microbiome/iSEEtree/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/iSEEtree

RemoteRef HEAD

RemoteSha bd90d0dbaa5ea83075293ca9c260ceb38f2c8dbc

1

https://github.com/microbiome/iSEEtree
https://github.com/microbiome/iSEEtree/issues

2 AbundanceDensityPlot

Contents
AbundanceDensityPlot . 2
AbundancePlot . 3
iSEE . 4
RDAPlot . 7
RowTreePlot . 8

Index 10

AbundanceDensityPlot Abundance density plot

Description

Density abundance profile of single features in a TreeSummarizedExperiment. The panel imple-
ments plotAbundanceDensity to generate the plot.

Value

The AbundanceDensityPlot(...) constructor creates an instance of an AbundanceDensityPlot
class, where any slot and its value can be passed to ... as a named argument.

Slot overview

The following slots control the thresholds used in the visualization:

• layout, a string specifying abundance layout (jitter, density or points).

• assay.type, a string specifying the assay to visualize.

• n, a number indicating the number of top taxa to visualize.

• flipped, a logical specifying if the axis should be switched.

• order_descending, a string specifying the descending order.

In addition, this class inherits all slots from its parent Panel class.

Author(s)

Giulio Benedetti

Examples

Import TreeSE
library(mia)
data("Tengeler2020", package = "mia")
tse <- Tengeler2020

Add relabundance assay
tse <- transformAssay(tse, method = "relabundance")

AbundancePlot 3

Store panel into object
panel <- AbundanceDensityPlot()
View some adjustable parameters
head(slotNames(panel))

Launch iSEE with custom initial panel
if (interactive()) {

iSEE(tse, initial = c(panel))
}

AbundancePlot Abundance plot

Description

Composite abundance profile of all features in a TreeSummarizedExperiment object. The panel
implements plotAbundance to generate the plot.

Value

The AbundancePlot(...) constructor creates an instance of an AbundancePlot class, where any
slot and its value can be passed to ... as a named argument.

Slot overview

The following slots control the thresholds used in the visualization:

• rank, a string specifying the taxonomic rank to visualize.

• use_relative, a logical indicating if the relative values should be calculated.

• add_legend, a logical indicating if the color legend should appear.

In addition, this class inherits all slots from its parent Panel class.

Author(s)

Giulio Benedetti

Examples

Import TreeSE
library(mia)
data("Tengeler2020", package = "mia")
tse <- Tengeler2020

Store panel into object
panel <- AbundancePlot()
View some adjustable parameters
head(slotNames(panel))

4 iSEE

Launch iSEE with custom initial panel
if (interactive()) {

iSEE(tse, initial = c(panel))
}

iSEE iSEE layout for TreeSE

Description

Panel configuration tuned to the specific properties of TreeSummarizedExperiment.

Usage

iSEE(
se,
initial = NULL,
extra = NULL,
colormap = ExperimentColorMap(),
landingPage = createLandingPage(),
tour = NULL,
appTitle = NULL,
runLocal = TRUE,
voice = FALSE,
bugs = FALSE,
saveState = NULL,
...

)

Arguments

se A SummarizedExperiment object, ideally with named assays. If missing, an app
is launched with a landing page generated by the landingPage argument.

initial A list of Panel objects specifying the initial state of the app. The order of panels
determines the sequence in which they are laid out in the interface. Defaults to
one instance of each panel class available from iSEE.

extra A list of additional Panel objects that might be added after the app has started.
Defaults to one instance of each panel class available from iSEE.

colormap An ExperimentColorMap object that defines custom colormaps to apply to indi-
vidual assays, colData and rowData covariates.

landingPage A function that renders a landing page when iSEE is started without any speci-
fied se. Ignored if se is supplied.

tour A data.frame with the content of the interactive tour to be displayed after starting
up the app. Ignored if se is not supplied.

iSEE 5

appTitle A string indicating the title to be displayed in the app. If not provided, the app
displays the version info of iSEE.

runLocal A logical indicating whether the app is to be run locally or remotely on a server,
which determines how documentation will be accessed.

voice A logical indicating whether the voice recognition should be enabled.
bugs Set to TRUE to enable the bugs Easter egg. Alternatively, a named numeric vector

control the respective number of each bug type (e.g., c(bugs=3L, spiders=1L)).
saveState A function that accepts a single argument containing the current application state

and saves it to some appropriate location.
... Further arguments to pass to shinyApp.

Details

Configuring the initial state of the app is as easy as passing a list of Panel objects to initial. Each
element represents one panel and is typicall constructed with a command like ReducedDimensionPlot().
Panels are filled from left to right in a row-wise manner depending on the available width. Each
panel can be easily customized by modifying the parameters in each object.

The extra argument should specify Panel classes that might not be shown during initialization but
can be added interactively by the user after the app has started. The first instance of each new class
in extra will be used as a template when the user adds a new panel of that class. Note that initial
will automatically be appended to extra to form the final set of available panels, so it is not strictly
necessary to re-specify instances of those initial panels in extra. (unless we want the parameters
of newly created panels to be different from those at initialization).

Value

The iSEE method for the TreeSE container returns a default set of panels typically relevant for
microbiome data. This configuration can be modified by defining a different set of initial panels.
By default, the interface includes the following panels:

• RowDataTable()

• ColumnDataTable()

• RowTreePlot()

• AbundancePlot()

• AbundanceDensityPlot()

• ReducedDimensionPlot()

• ComplexHeatmapPlot()

Setting up a tour

The tour argument allows users to specify a custom tour to walk their audience through various
panels. This is useful for describing different aspects of the dataset and highlighting interesting
points in an interactive manner.

We use the format expected by the rintrojs package - see https://github.com/carlganz/
rintrojs#usage for more information. There should be two columns, element and intro, with
the former describing the element to highlight and the latter providing some descriptive text. The
defaultTour also provides the default tour that is used in the Examples below.

https://github.com/carlganz/rintrojs#usage
https://github.com/carlganz/rintrojs#usage

6 iSEE

Creating a landing page

If se is not supplied, a landing page is generated that allows users to upload their own RDS file to
initialize the app. By default, the maximum request size for file uploads defaults to 5MB (https:
//shiny.rstudio.com/reference/shiny/0.14/shiny-options.html). To raise the limit (e.g.,
50MB), run options(shiny.maxRequestSize=50*1024^2).

The landingPage argument can be used to alter the landing page, see createLandingPage for
more details. This is useful for creating front-ends that can retrieve SummarizedExperiments from
a database on demand for interactive visualization.

Saving application state

If users want to record the application state, they can download an RDS file containing a list with
the entries:

• memory, a list of Panel objects containing the current state of the application. This can be
directly re-used as the initial argument in a subsequent iSEE call.

• se, the SummarizedExperiment object of interest. This is optional and may not be present in
the list, depending on the user specifications.

• colormap, the ExperimentColorMap object being used. This is optional and may not be
present in the list, depending on the user specifications.

We can also provide a custom function in saveState that accepts a single argument containing this
list. This is most useful when iSEE is deployed in an enterprise environment where sessions can
be saved in a persistent location; combined with a suitable landingPage specification, this allows
users to easily reload sessions of interest. The idea is very similar to Shiny bookmarks but is more
customizable and can be used in conjunction with URL-based bookmarking.

Examples

Import TreeSE
library(mia)
data("GlobalPatterns", package = "mia")
tse <- GlobalPatterns

Agglomerate TreeSE by Genus
tse_genus <- agglomerateByRank(tse,

rank = "Genus",
onRankOnly = TRUE)

Add relabundance assay
tse_genus <- transformAssay(tse_genus, method = "relabundance")

Launch iSEE with custom initial panels
if (interactive()) {

iSEE(tse_genus, initial = c(RowTreePlot(), AbundancePlot(), AbundanceDensityPlot()))
}

https://shiny.rstudio.com/reference/shiny/0.14/shiny-options.html
https://shiny.rstudio.com/reference/shiny/0.14/shiny-options.html

RDAPlot 7

RDAPlot RDA plot

Description

CCA/RDA plot for the rows of a TreeSummarizedExperiment object. The reduced dimension can
be produced with runRDA and gets stored in the reducedDim slot of the experiment object. The
panel implements plotRDA to generate the plot.

Value

The RDAPlot(...) constructor creates an instance of a RDAPlot class, where any slot and its value
can be passed to ... as a named argument.

Slot overview

The following slots control the thresholds used in the visualization:

• add.ellipse, a string specifying ellipse layout (filled, coloured or absent).

• colour_by, a string specifying the parameter to color by.

• add.vectors, a logical indicating if vectors should appear in the plot.

• vec.text, a logical indicating if text should be encased in a box.

• confidence.level, a numeric between 0 and 1 to adjust confidence level.

• ellipse.alpha, a numeric between 0 and 1 t o adjust ellipse opacity.

• ellipse.linewidth, a numeric specifying the size of ellipses.

• ellipse.linetype, a numeric specifying the style of ellipses.

• vec.size, a numeric specifying the size of vectors.

• vec.colour, a string specifying the colour of vectors.

• vec.linetype, a numeric specifying the style of vector lines.

• arrow.size, a numeric specifying the size of arrows.

• label.colour, a string specifying the colour of text and labels.

• label.size, a numeric specifying the size of text and labels.

• add.significance, a logical indicating if variance and p-value should appear in the labels.

• add.expl.var, a logical indicating if variance should appear on the coordinate axes.

In addition, this class inherits all slots from its parent Panel class.

Author(s)

Giulio Benedetti

8 RowTreePlot

Examples

Import TreeSE
library(mia)
data("enterotype", package = "mia")
tse <- enterotype

Run RDA and store results into TreeSE
tse <- runRDA(tse,

formula = assay ~ ClinicalStatus + Gender + Age,
FUN = vegan::vegdist,
distance = "bray",
na.action = na.exclude)

Store panel into object
panel <- RDAPlot()
View some adjustable parameters
head(slotNames(panel))

Launch iSEE with custom initial panel
if (interactive()) {

iSEE(tse, initial = c(panel))
}

RowTreePlot Row tree plot

Description

Hierarchical tree for the rows of a TreeSummarizedExperiment object. The tree can be produced
with addTaxonomyTree and gets stored in the rowTree slot of the experiment object. The panel
implements plotRowTree to generate the plot.

Value

The RowTreePlot(...) constructor creates an instance of a RowTreePlot class, where any slot and
its value can be passed to ... as a named argument.

Slot overview

The following slots control the thresholds used in the visualization:

• layout, a string specifying tree layout

• add_legend, a logical indicating if color legend should appear.

• edge_colour_by, a string specifying parameter to color lines by when colour_parameters
= "Edge".

• edge_size_by, a string specifying parameter to size lines by when size_parameters = "Edge".

RowTreePlot 9

• tip_colour_by, a string specifying parameter to color tips by when colour_parameters =
"Tip".

• tip_size_by, a string specifying parameter to size tips by when size_parameters = "Tip".

• tip_shape_by, a string specifying parameter to shape tips by when shape_parameters =
"Tip".

• node_colour_by, a string specifying parameter to color nodes by when colour_parameters
= "Node".

• node_size_by, a string specifying parameter to size nodes by when size_parameters =
"Node".

• node_shape_by, a string specifying parameter to shape nodes by when shape_parameters =
"Node".

• order_tree, a logical indicating if tree is ordered by alphabetic order of taxonomic levels.

In addition, this class inherits all slots from its parent Panel class.

Author(s)

Giulio Benedetti

Examples

Import TreeSE
library(mia)
data("Tengeler2020", package = "mia")
tse <- Tengeler2020

Store panel into object
panel <- RowTreePlot()
View some adjustable parameters
head(slotNames(panel))

Launch iSEE with custom initial panel
if (interactive()) {

iSEE(tse, initial = c(panel))
}

Index

AbundanceDensityPlot, 2
AbundanceDensityPlot-class

(AbundanceDensityPlot), 2
AbundancePlot, 3
AbundancePlot-class (AbundancePlot), 3
addTaxonomyTree, 8

createLandingPage, 6

defaultTour, 5

ExperimentColorMap, 4, 6

iSEE, 4, 5, 6
iSEE,TreeSummarizedExperiment-method

(iSEE), 4

Panel, 2–7, 9
plotAbundance, 3
plotAbundanceDensity, 2
plotRDA, 7
plotRowTree, 8

RDAPlot, 7
RDAPlot-class (RDAPlot), 7
reducedDim, 7
ReducedDimensionPlot, 5
rowTree, 8
RowTreePlot, 8
RowTreePlot-class (RowTreePlot), 8
runRDA, 7

shinyApp, 5
SummarizedExperiment, 4, 6

TreeSummarizedExperiment, 2–4, 7, 8

10

	AbundanceDensityPlot
	AbundancePlot
	iSEE
	RDAPlot
	RowTreePlot
	Index

