Title: | Integrative clustering of multi-type genomic data |
---|---|
Description: | Integrative clustering of multiple genomic data using a joint latent variable model. |
Authors: | Qianxing Mo, Ronglai Shen |
Maintainer: | Qianxing Mo <[email protected]>, Ronglai Shen <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.43.1 |
Built: | 2025-01-22 02:55:08 UTC |
Source: | https://github.com/bioc/iClusterPlus |
This is a subset of the breast cancer data from Pollack et al. (2002).
data(breast.chr17)
data(breast.chr17)
A list object containing two data matrices: DNA and mRNA. They consist chromosome 17 data in 41 samples (4 cell lines and 37 primary tumors).
This data can be downloaded at http://www.pnas.org/content/99/20/12963/suppl/DC1
Pollack, J.R. et al. (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl Acad. Sci. USA, 99, 12963-12968.
This function is used to reduce copy number regions.
CNregions(seg, epsilon=0.005, adaptive=FALSE, rmCNV=FALSE, cnv=NULL, frac.overlap=0.5, rmSmallseg=TRUE, nProbes=15)
CNregions(seg, epsilon=0.005, adaptive=FALSE, rmCNV=FALSE, cnv=NULL, frac.overlap=0.5, rmSmallseg=TRUE, nProbes=15)
seg |
DNAcopy CBS segmentation output. |
epsilon |
the maximum Euclidean distance between adjacent probes tolerated for denying a nonredundant region. epsilon=0 is equivalent to taking the union of all unique break points across the n samples. |
adaptive |
Vector of length-m lasso penalty terms. |
rmCNV |
If TRUE, remove germline CNV. |
cnv |
A data frame containing germline CNV data. |
frac.overlap |
A parameter needed to be explain. |
rmSmallseg |
If TRUE, remove small segment. |
nProbes |
The segment length threshold below which the segment will be removed if rmSmallseq = TRUE. |
A matrix with reduced copy number regions.
Ronglai Shen [email protected]
Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA.
breast.chr17
,plotiCluster
, compute.pod
,iCluster
,iClusterPlus
#data(gbm) #library(GenomicRanges) #library(cluster) #reducedM=CNregions(seg,epsilon=0,adaptive=FALSE,rmCNV=TRUE,cnv=NULL, # frac.overlap=0.5, rmSmallseg=TRUE,nProbes=5)
#data(gbm) #library(GenomicRanges) #library(cluster) #reducedM=CNregions(seg,epsilon=0,adaptive=FALSE,rmCNV=TRUE,cnv=NULL, # frac.overlap=0.5, rmSmallseg=TRUE,nProbes=5)
A function to compute the proportion of deviation from perfect block diagonal matrix.
compute.pod(fit)
compute.pod(fit)
fit |
A iCluster object |
pod |
proportion of deviation from perfect block diagonal matrix |
Ronglai Shen [email protected]
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
iCluster
,iCluster2
, plotiCluster
# library(iCluster) # data(breast.chr17) # fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2)) # plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) # compute.pod(fit)
# library(iCluster) # data(breast.chr17) # fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2)) # plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) # compute.pod(fit)
genomic coordinates for the copy number data in gbm
data(coord)
data(coord)
A data matrix consists of chr number, start and end position for the genes included in the gbm copy number data.
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
This is a subset of the glioblastoma dataset from the cancer genome atlas (TCGA) GBM study (2009) used in Shen et al. (2012).
data(gbm)
data(gbm)
A list object containing three data matrices: copy number, methylation and mRNA expression in 84 samples.
gbm.seg |
GBM copy number segmentation results genereated by DNAcopy package. |
gbm.exp |
GBM gene expression data. |
gbm.mut |
GBM mutation data. |
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
good lattice points using the uniform design (Fang and Wang 1995)
data(glp)
data(glp)
A list object containing sampling design for s=2-5 where s is the number of tuning parameters.
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
Fang K, Wang Y (1994) Number theoretic methods in statistics. London, UK: Chapman abd Hall.
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assigment based on joint inference across data types
iCluster(datasets, k, lambda, scalar=FALSE, max.iter=50,epsilon=1e-3)
iCluster(datasets, k, lambda, scalar=FALSE, max.iter=50,epsilon=1e-3)
datasets |
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features. |
k |
Number of subtypes. |
lambda |
Vector of length-m lasso penalty terms. |
scalar |
If TRUE, assumes scalar covariance matrix Psi. Default is FALSE. |
max.iter |
Maximum iteration for the EM algorithm. |
epsilon |
EM algorithm convegence criterion. |
A list with the following elements.
meanZ |
Relaxed cluster indicator matrix. |
beta |
Coefficient matrix. |
clusters |
Cluster assigment. |
conv.rate |
Convergence history. |
Ronglai Shen [email protected]
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
breast.chr17
,plotiCluster
, compute.pod
data(breast.chr17) fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2)) plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) compute.pod(fit) #library(gplots) #library(lattice) #col.scheme = alist() #col.scheme[[1]] = bluered(256) #col.scheme[[2]] = greenred(256) #cn.image=breast.chr17[[2]] #cn.image[cn.image>1.5]=1.5 #cn.image[cn.image< -1.5]= -1.5 #exp.image=breast.chr17[[1]] #exp.image[exp.image>3]=3 #exp.image[exp.image< -3]=3 #plotHeatmap(fit, datasets=list(cn.image,exp.image), type=c("gaussian","gaussian"), # row.order=c(FALSE,FALSE), width=5, col.scheme=col.scheme)
data(breast.chr17) fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2)) plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) compute.pod(fit) #library(gplots) #library(lattice) #col.scheme = alist() #col.scheme[[1]] = bluered(256) #col.scheme[[2]] = greenred(256) #cn.image=breast.chr17[[2]] #cn.image[cn.image>1.5]=1.5 #cn.image[cn.image< -1.5]= -1.5 #exp.image=breast.chr17[[1]] #exp.image[exp.image>3]=3 #exp.image[exp.image< -3]=3 #plotHeatmap(fit, datasets=list(cn.image,exp.image), type=c("gaussian","gaussian"), # row.order=c(FALSE,FALSE), width=5, col.scheme=col.scheme)
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assigment based on joint inference across data types
iCluster2(x, K, lambda, method=c("lasso","enet","flasso","glasso","gflasso"), chr=NULL, maxiter=50, eps=1e-4, eps2=1e-8)
iCluster2(x, K, lambda, method=c("lasso","enet","flasso","glasso","gflasso"), chr=NULL, maxiter=50, eps=1e-4, eps2=1e-8)
x |
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features. |
K |
Number of subtypes. |
lambda |
A list with m elements; each element is a vector with one or two elements depending on the methods used. |
method |
Method used for clustering and variable selection. |
chr |
Chromosome labels |
maxiter |
Maximum iteration for the EM algorithm. |
eps |
EM algorithm convegence criterion 1. |
eps2 |
EM algorithm convegence criterion 2. |
A list with the following elements.
cluster |
Cluster assigment. |
centers |
cluster centers. |
Phivec |
parameter phi; a vector. |
beta |
parameter B; a matrix. |
meanZ |
meanZ |
EZZt |
EZZt |
dif |
difference |
iter |
iteration |
Qianxing Mo [email protected],Ronglai Shen,Sijian Wang
Ronglai Shen, Sijian Wang, Qianxing Mo. (2013). Sparse Integrative Clustering of Multiple Omics Data Sets. Annals of Applied Statistics. 7(1):269-294
plotiCluster
, compute.pod
, iClusterPlus
## clustering n1 = 20 n2 = 20 n3 = 20 n = n1+n2+n3 p = 5 q = 100 x = NULL x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[1]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[2]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[3]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[4]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[5]] = cbind(xa,xb) method = c('lasso', 'enet', 'flasso', 'glasso', 'gflasso') lambda=alist() lambda[[1]] = 30 lambda[[2]] = c(20,1) lambda[[3]] = c(20,20) lambda[[4]] = 30 lambda[[5]] = c(30,20) chr=c(rep(1,10),rep(2,(p+q)-10)) date() fit2 = iCluster2(x, K=3, lambda, method=method, chr=chr, maxiter=20,eps=1e-4, eps2=1e-8) date() par(mfrow=c(5,1),mar=c(4,4,1,1)) for(i in 1:5){ barplot(fit2$beta[[i]][,1]) } #library(gplots) #library(lattice) #plotHeatmap(fit2, datasets=x, type=rep("gaussian",length(x)), #row.order=c(TRUE,TRUE,FALSE,TRUE,FALSE), #sparse=rep(FALSE,length(x)), scale=rep("row",5), width=5, #col.scheme=rep(list(bluered(256)),length(x)))
## clustering n1 = 20 n2 = 20 n3 = 20 n = n1+n2+n3 p = 5 q = 100 x = NULL x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[1]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[2]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[3]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[4]] = cbind(xa,xb) x1a = matrix(rnorm(n1*p), ncol=p) x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p) x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p) xa = rbind(x1a,x2a,x3a) xb = matrix(rnorm(n*q), ncol=q) x[[5]] = cbind(xa,xb) method = c('lasso', 'enet', 'flasso', 'glasso', 'gflasso') lambda=alist() lambda[[1]] = 30 lambda[[2]] = c(20,1) lambda[[3]] = c(20,20) lambda[[4]] = 30 lambda[[5]] = c(30,20) chr=c(rep(1,10),rep(2,(p+q)-10)) date() fit2 = iCluster2(x, K=3, lambda, method=method, chr=chr, maxiter=20,eps=1e-4, eps2=1e-8) date() par(mfrow=c(5,1),mar=c(4,4,1,1)) for(i in 1:5){ barplot(fit2$beta[[i]][,1]) } #library(gplots) #library(lattice) #plotHeatmap(fit2, datasets=x, type=rep("gaussian",length(x)), #row.order=c(TRUE,TRUE,FALSE,TRUE,FALSE), #sparse=rep(FALSE,length(x)), scale=rep("row",5), width=5, #col.scheme=rep(list(bluered(256)),length(x)))
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iClusterBayes fits a Bayesian latent variable model that generates an integrated cluster assignment based on joint inference across data types and identifies genomic features that contribute to the clusters.
iClusterBayes(dt1,dt2=NULL,dt3=NULL,dt4=NULL,dt5=NULL,dt6=NULL, type = c("gaussian","binomial","poisson"),K=2,n.burnin=1000,n.draw=1200, prior.gamma=rep(0.1,6),sdev=0.5,beta.var.scale=1,thin=1,pp.cutoff=0.5)
iClusterBayes(dt1,dt2=NULL,dt3=NULL,dt4=NULL,dt5=NULL,dt6=NULL, type = c("gaussian","binomial","poisson"),K=2,n.burnin=1000,n.draw=1200, prior.gamma=rep(0.1,6),sdev=0.5,beta.var.scale=1,thin=1,pp.cutoff=0.5)
dt1 |
Data set 1 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt2 |
Data set 2 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt3 |
Data set 3 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt4 |
Data set 4 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt5 |
Data set 5 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt6 |
Data set 6 - a matrix with rows and columns representing samples and genomic features, respectively. |
type |
Data type corresponding to dt1-6, which can be gaussian, binomial, or poisson. |
K |
The number of eigen features. Given K, the number of cluster is K+1. |
n.burnin |
Number of MCMC burnin. |
n.draw |
Number of MCMC draw. |
prior.gamma |
Prior probability for the indicator variable gamma of each data set. |
sdev |
Standard deviation of random walk proposal for the latent variable. |
beta.var.scale |
A positive value to control the scale of covariance matrix of the proposed beta. |
thin |
A parameter to thin the MCMC chain in order to reduce autocorrelation. Discard all but every 'thin'th sampling values. When thin=1, all sampling values are kept. |
pp.cutoff |
Posterior probability cutoff for the indicator variable gamma. The BIC and deviance ratio will be calculated by setting parameter beta to zero when the posterior probability of gamma <= cutoff. |
A list with the following elements.
alpha |
Intercept parameter. |
beta |
Information parameter. |
beta.pp |
Posterior probability of beta. The higher the beta.pp, the more likely the beta should be included in the model. |
gamma.ar |
Acceptance ratio for the parameter gamma. |
beta.ar |
Acceptance ratio for the parameter beta. |
Z.ar |
Acceptance ratio for the latent variable. |
clusters |
Cluster assignment. |
centers |
Cluster center. |
meanZ |
The latent variable. |
BIC |
Bayesian information criterion. |
dev.ratio |
see dev.ratio defined in glmnet package. |
Qianxing Mo [email protected]
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. (2018). A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19(1):71-86.
tune.iClusterBayes
,plotHMBayes
,iClusterPlus
,tune.iClusterPlus
,plotHeatmap
# see iManual.pdf
# see iManual.pdf
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iClusterPlus fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types
iClusterPlus(dt1,dt2=NULL,dt3=NULL,dt4=NULL, type=c("gaussian","binomial","poisson","multinomial"), K=2,alpha=c(1,1,1,1),lambda=c(0.03,0.03,0.03,0.03), n.burnin=100,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)
iClusterPlus(dt1,dt2=NULL,dt3=NULL,dt4=NULL, type=c("gaussian","binomial","poisson","multinomial"), K=2,alpha=c(1,1,1,1),lambda=c(0.03,0.03,0.03,0.03), n.burnin=100,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)
dt1 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt2 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt3 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt4 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
type |
Data type, which can be gaussian, binomial, poisson, multinomial. |
K |
The number of eigen features. Given K, the number of cluster is K+1. |
alpha |
Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1. |
lambda |
Vector of lasso penalty terms. |
n.burnin |
Number of MCMC burnin. |
n.draw |
Number of MCMC draw. |
maxiter |
Maximum iteration for the EM algorithm. |
sdev |
standard deviation of random walk proposal. |
eps |
Algorithm convergence criterion. |
A list with the following elements.
alpha |
Intercept parameter. |
beta |
Information parameter. |
clusters |
Cluster assignment. |
centers |
Cluster center. |
meanZ |
Latent variable. |
BIC |
Bayesian information criterion. |
dev.ratio |
see dev.ratio defined in glmnet package. |
dif |
absolute difference for the parameters in the last and next-to-last iterations. |
Qianxing Mo [email protected],Ronglai Shen, Sijian Wang
Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA. 110(11):4245-50.
plotiCluster
,iCluster
, compute.pod
# see iManual.pdf
# see iManual.pdf
A function to generate heatmap panels sorted by integrated cluster assignment.
plotHeatmap(fit,datasets,type=c("gaussian","binomial","poisson","multinomial"), sample.order=NULL,row.order=NULL,sparse=NULL,threshold=rep(0.25,length(datasets)), width=5,scale=rep("none",length(datasets)),col.scheme=rep(list(bluered(256)), length(datasets)), chr=NULL, plot.chr=NULL, cap=NULL)
plotHeatmap(fit,datasets,type=c("gaussian","binomial","poisson","multinomial"), sample.order=NULL,row.order=NULL,sparse=NULL,threshold=rep(0.25,length(datasets)), width=5,scale=rep("none",length(datasets)),col.scheme=rep(list(bluered(256)), length(datasets)), chr=NULL, plot.chr=NULL, cap=NULL)
fit |
A iCluster object. |
datasets |
A list object of data matrices. |
type |
Types of data in the datasets. |
sample.order |
User supplied cluster assignment. |
row.order |
A vector of logical values each specificy whether the genomic features in the corresponding data matrix should be reordered by similarity. Default is TRUE. |
sparse |
A vector of logical values each specificy whether to plot the top cluster-discriminant features. Default is FALSE. |
threshold |
When sparse is TRUE, a vector of threshold values to include the genomic features for which the absolute value of the associated coefficient estimates fall in the top quantile. threshold=c(0.25,0.25) takes the top quartile most discriminant features in data type 1 and data type 2 for plot. |
width |
Width of the figure in inches |
scale |
A vector of logical values each specify whether data should be scaled. Default is FALSE. |
col.scheme |
Color scheme. Can use bluered(n) in gplots R package. |
chr |
A vector of chromosome number. |
plot.chr |
A vector of logical values each specificy whether to annotate chromosome number on the left of the panel. Typically used for copy number data type. Default is FALSE. |
cap |
Image color option |
The samples are ordered by the cluster assignment using the R code: order(fit$clusters). For each data set, the features are ordered by hierarchical clustering of the features using the complete method and 1-correlation coeffient as the distance.
no value returned.
Ronglai Shen [email protected]
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
# see iManual.pdf
# see iManual.pdf
A function to generate heatmap panels sorted by integrated cluster assignment.
plotHMBayes(fit, datasets, type = c("gaussian", "binomial", "poisson"), sample.order = NULL, row.order = NULL, sparse = NULL, threshold = rep(0.5,length(datasets)), width = 5, scale = rep("none",length(datasets)), col.scheme = rep(list(bluered(256)),length(datasets)), chr=NULL, plot.chr=NULL, cap=NULL)
plotHMBayes(fit, datasets, type = c("gaussian", "binomial", "poisson"), sample.order = NULL, row.order = NULL, sparse = NULL, threshold = rep(0.5,length(datasets)), width = 5, scale = rep("none",length(datasets)), col.scheme = rep(list(bluered(256)),length(datasets)), chr=NULL, plot.chr=NULL, cap=NULL)
fit |
A iClusterBayes object. |
datasets |
A list object of data matrices. |
type |
Types of data in the datasets. |
sample.order |
User supplied cluster assignment. |
row.order |
A vector of logical values each specify whether the genomic features in the corresponding data matrix should be reordered by similarity. Default is TRUE. |
sparse |
A vector of logical values each specify whether to plot the top cluster-discriminant features. Default is FALSE. |
threshold |
When sparse is TRUE, a vector of threshold values to include the genomic features on the heatmap. Each data set should have a threshold. For each data set, a feature with posterior probability greater than the threshold will be included. Default value is 0.5 for each data set. |
width |
Width of the figure in inches |
scale |
A vector of logical values each specify whether data should be scaled. Default is FALSE. |
col.scheme |
Color scheme. Can use bluered(n) in gplots R package. |
chr |
A vector of chromosome number. |
plot.chr |
A vector of logical values each specify whether to annotate chromosome number on the left of the panel. Typically used for copy number data type. Default is FALSE. |
cap |
Image color option |
The samples are ordered by the cluster assignment by the R code: order(fit$clusters). For each data set, the features are ordered by hierarchical clustering of the features using the complete method and 1-correlation coefficient as the distance.
no value returned.
Ronglai Shen [email protected],Qianxing Mo [email protected]
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. (2018). A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19(1):71-86.
# see iManual.pdf
# see iManual.pdf
A function to generate cluster separability matrix plot.
plotiCluster(fit,label=NULL)
plotiCluster(fit,label=NULL)
fit |
A iCluster object |
label |
Sample labels |
no value returned.
Ronglai Shen [email protected]
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
# library(iCluster) # data(breast.chr17) # fit=iCluster(datasets=breast.chr17, k=4, lambda=c(0.2,0.2)) # plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) # compute.pod(fit)
# library(iCluster) # data(breast.chr17) # fit=iCluster(datasets=breast.chr17, k=4, lambda=c(0.2,0.2)) # plotiCluster(fit=fit, label=rownames(breast.chr17[[2]])) # compute.pod(fit)
A function to generate reproducibility index plot.
plotRI(cv.fit)
plotRI(cv.fit)
cv.fit |
A tune.iCluster2 object |
no value returned.
Ronglai Shen [email protected]
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
#data(simu.datasets) #cv.fit=alist() #for(k in 2:5){ # cat(paste("K=",k,sep=""),'\n') # cv.fit[[k]]=tune.iCluster2(datasets=simu.datasets, k,nrep=2, n.lambda=8) #} ##Reproducibility index (RI) plot #plotRI(cv.fit)
#data(simu.datasets) #cv.fit=alist() #for(k in 2:5){ # cat(paste("K=",k,sep=""),'\n') # cv.fit[[k]]=tune.iCluster2(datasets=simu.datasets, k,nrep=2, n.lambda=8) #} ##Reproducibility index (RI) plot #plotRI(cv.fit)
The simulation and analyis are described in iClusterPlus/inst/unitTests/test_iClusterPlus.R.
data(simuResult)
data(simuResult)
list
A list of objects returned by the iClusterPlus function.
iClusterPlus/inst/unitTests/test_iClusterPlus.R
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types
tune.iCluster2(x, K, method=c("lasso","enet","flasso","glasso","gflasso"),base=200, chr=NULL,true.class=NULL,lambda=NULL,n.lambda=NULL,save.nonsparse=F,nrep=10,eps=1e-4)
tune.iCluster2(x, K, method=c("lasso","enet","flasso","glasso","gflasso"),base=200, chr=NULL,true.class=NULL,lambda=NULL,n.lambda=NULL,save.nonsparse=F,nrep=10,eps=1e-4)
x |
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features. |
K |
Number of subtypes. |
lambda |
User supplied matrix of lambda to tune. |
method |
Method used for clustering and variable selection. |
chr |
Chromosome labels |
n.lambda |
Number of lambda to sample using uniform design. |
nrep |
Fold of cross-validation. |
base |
Base. |
true.class |
True class label if available. |
save.nonsparse |
Logic argument whether to save the nonsparse fit. |
eps |
EM algorithm convergence criterion |
A list with the following elements.
best.fit |
Best fit. |
best.lambda |
Best lambda. |
ps |
Rand index |
ps.adjusted |
Adjusted Rand index. |
Qianxing Mo [email protected],Ronglai Shen,Sijian Wang
Ronglai Shen, Sijian Wang, Qianxing Mo. (2013). Sparse Integrative Clustering of Multiple Omics Data Sets. Annals of Applied Statistics. 7(1):269-294
In order to determining the appropriate number of clusters, tune.iClusterBayes calls iClusterBayes function and performs parallel computation for K=1,2,....
tune.iClusterBayes(cpus=6,dt1,dt2=NULL,dt3=NULL,dt4=NULL,dt5=NULL,dt6=NULL, type=c("gaussian","binomial","poisson"), K=1:6,n.burnin=1000,n.draw=1200,prior.gamma=rep(0.1,6), sdev=0.5,beta.var.scale=1,thin=1,pp.cutoff=0.5)
tune.iClusterBayes(cpus=6,dt1,dt2=NULL,dt3=NULL,dt4=NULL,dt5=NULL,dt6=NULL, type=c("gaussian","binomial","poisson"), K=1:6,n.burnin=1000,n.draw=1200,prior.gamma=rep(0.1,6), sdev=0.5,beta.var.scale=1,thin=1,pp.cutoff=0.5)
cpus |
Number of CPU used for parallel computation. If possible, let it be equal to the number of Ks. |
dt1 |
Data set 1 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt2 |
Data set 2 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt3 |
Data set 3 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt4 |
Data set 4 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt5 |
Data set 5 - a matrix with rows and columns representing samples and genomic features, respectively. |
dt6 |
Data set 6 - a matrix with rows and columns representing samples and genomic features, respectively. |
type |
Data type corresponding to dt1-6, which can be gaussian, binomial, poisson. |
K |
A vector. Each element is the number of eigen features. Given k, the number of cluster is k+1. |
n.burnin |
Number of MCMC burnin. |
n.draw |
Number of MCMC draw. |
prior.gamma |
Prior probability for the indicator variable gamma of each data set. |
sdev |
Standard deviation of random walk proposal for the latent variable. |
beta.var.scale |
A positive value to control the scale of covariance matrix of the proposed beta. |
thin |
A parameter to thin the MCMC chain in order to reduce autocorrelation. Discard all but every 'thin'th sampling values. When thin=1, all sampling values are kept. |
pp.cutoff |
Posterior probability cutoff for the indicator variable gamma. The BIC and deviance ratio will be calculated by setting parameter beta to zero when the posterior probability of gamma <= cutoff. |
A list named 'fit'. fit[[i]] is an object return by iClusterBayes, corresponding to the ith element in K. Each component of fit has the following elements.
alpha |
Intercept parameter. |
beta |
Information parameter. |
beta.pp |
Posterior probability of beta. The higher the beta.pp, the more likely the beta should be included in the model. |
gamma.ar |
Acceptance ratio for parameter gamma. |
beta.ar |
Acceptance ratio for parameter beta. |
Z.ar |
Acceptance ratio for the latent variable. |
clusters |
Cluster assignment. |
centers |
Cluster center. |
meanZ |
Latent variable. |
BIC |
Bayesian information criterion. |
dev.ratio |
See dev.ratio defined in glmnet package. |
Qianxing Mo [email protected]
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. (2018). A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19(1):71-86.
iClusterBayes
,plotHMBayes
,iClusterPlus
,tune.iClusterPlus
,plotHeatmap
### see the users' guide iManul.pdf
### see the users' guide iManul.pdf
Given multiple genomic data (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, tune.iClusterPlus uses a series of lambda values to fit a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data.
tune.iClusterPlus(cpus=8,dt1,dt2=NULL,dt3=NULL,dt4=NULL, type=c("gaussian","binomial","poisson","multinomial"), K=2,alpha=c(1,1,1,1),n.lambda=NULL,scale.lambda=c(1,1,1,1), n.burnin=200,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)
tune.iClusterPlus(cpus=8,dt1,dt2=NULL,dt3=NULL,dt4=NULL, type=c("gaussian","binomial","poisson","multinomial"), K=2,alpha=c(1,1,1,1),n.lambda=NULL,scale.lambda=c(1,1,1,1), n.burnin=200,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)
cpus |
Number of CPU used for parallel computation. |
dt1 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt2 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt3 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
dt4 |
A data matrix. The rows represent samples, and the columns represent genomic features. |
type |
data type, which can be "gaussian","binomial","poisson", and"multinomial". |
K |
The number of eigen features. Given K, the number of cluster is K+1. |
alpha |
Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1. |
n.lambda |
Number of lambda are tuned. |
scale.lambda |
A value between (0,1); the actual lambda values will be scale.lambda multiplying the lambda values of the uniform design. |
n.burnin |
Number of MCMC burnin. |
n.draw |
Number of MCMC draw. |
maxiter |
Maximum iteration for the EM algorithm. |
sdev |
standard deviation of random walk proposal. |
eps |
EM algorithm convergence criterion. |
A list with the two elements 'fit' and 'lambda', where fit itself is a list and lambda is a matrix. Each row of lambda is the lambda values used to fit iClusterPlus model. Each component of fit is an object return by iClusterPlus, one-to-one corresponding to the row of lambda. Each component of fit has the following objects.
alpha |
Intercept parameter for the genomic features. |
beta |
Information parameter for the genomic features. The rows and the columns represent the genomic features and the coefficients for the latent variable, respectively. |
clusters |
Cluster assignment. |
centers |
Cluster centers. |
meanZ |
Latent variable. |
Qianxing Mo [email protected], Ronglai Shen [email protected]
Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2012). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA 110(11):4245-50.
plotiCluster
,iClusterPlus
,iCluster2
,iCluster
, compute.pod
### see the users' guide iManul.pdf
### see the users' guide iManul.pdf
Some utility functions for processing the results produced by iClusterPlus methods.
getBIC(resultList) getDevR(resultList) getClusters(resultList) iManual(view=TRUE)
getBIC(resultList) getDevR(resultList) getClusters(resultList) iManual(view=TRUE)
resultList |
A list object as shown in the following example. |
view |
A logical value TRUE or FALSE |
getBIC |
produce a matrix containing the BIC value for each lambda and K; the rows correspond to the lambda (vector) and the columns correspond to the K latent variables. |
getDevR |
produce a matrix containing the deviance ratio for each lambda and K; the rows correspond to the lambda (vector) and the columns correspond to the K latent variables. |
getClusters |
produce a matrix containing the cluster assigments for the samples under each K; the rows correspond to the samples; the columns correspond to the K latent variables. |
iManual |
Open the iClusterPlus User's Guide. |
Qianxing Mo [email protected]
Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2012). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA (invited revision).
tune.iClusterPlus
, iClusterPlus
, iCluster2
### see the users' guide iManual.pdf #data(simuResult) #BIC = getBIC(simuResult) #devR = getDevR(simuResult) #clusters = getClusters(simuResult)
### see the users' guide iManual.pdf #data(simuResult) #BIC = getBIC(simuResult) #devR = getDevR(simuResult) #clusters = getClusters(simuResult)
Human genome variants of the NCBI 36 (hg18) assembly
data(variation.hg18.v10.nov.2010)
data(variation.hg18.v10.nov.2010)
data frame
variation.hg18.v10.nov.2010 |
Human genome variants of the NCBI 36 (hg18) assembly |
http://projects.tcag.ca/variation/tableview.asp?table=DGV_Content_Summary.txt