Title: | Analysis of pooled genetic screens |
---|---|
Description: | Package for the analysis of pooled genetic screens (e.g. CRISPR-KO). The analysis of such screens is based on the comparison of gRNA abundances before and after a cell proliferation phase. The gscreend packages takes gRNA counts as input and allows detection of genes whose knockout decreases or increases cell proliferation. |
Authors: | Katharina Imkeller [cre, aut], Wolfgang Huber [aut] |
Maintainer: | Katharina Imkeller <[email protected]> |
License: | GPL-3 |
Version: | 1.21.0 |
Built: | 2024-10-30 08:11:58 UTC |
Source: | https://github.com/bioc/gscreend |
Create PoolScreenExp Experiment
createPoolScreenExp(data)
createPoolScreenExp(data)
data |
Input data object containing gRNA level data (SummarizedExperiment) |
object PoolScreenExp object
raw_counts <- read.table( system.file('extdata', 'simulated_counts.txt', package = 'gscreend'), header=TRUE) counts_matrix <- cbind(raw_counts$library0, raw_counts$R0_0, raw_counts$R1_0) rowData <- data.frame(sgRNA_id = raw_counts$sgrna_id, gene = raw_counts$Gene) colData <- data.frame(samplename = c('library', 'R1', 'R2'), timepoint = c('T0', 'T1', 'T1')) library(SummarizedExperiment) se <- SummarizedExperiment(assays=list(counts=counts_matrix), rowData=rowData, colData=colData) # create a PoolScreenExp experiment pse <- createPoolScreenExp(se)
raw_counts <- read.table( system.file('extdata', 'simulated_counts.txt', package = 'gscreend'), header=TRUE) counts_matrix <- cbind(raw_counts$library0, raw_counts$R0_0, raw_counts$R1_0) rowData <- data.frame(sgRNA_id = raw_counts$sgrna_id, gene = raw_counts$Gene) colData <- data.frame(samplename = c('library', 'R1', 'R2'), timepoint = c('T0', 'T1', 'T1')) library(SummarizedExperiment) se <- SummarizedExperiment(assays=list(counts=counts_matrix), rowData=rowData, colData=colData) # create a PoolScreenExp experiment pse <- createPoolScreenExp(se)
GeneData: set and retrieve GeneData of PoolScreenExp
GeneData(x)
GeneData(x)
x |
PoolScreenExp object |
Gene slot of the object
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) GeneData(pse_an)
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) GeneData(pse_an)
Accessor function for the Gene slot of the PoolScreenExp class
## S4 method for signature 'PoolScreenExp' GeneData(x)
## S4 method for signature 'PoolScreenExp' GeneData(x)
x |
PoolScreenExp object |
Gene slot of the object
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) GeneData(pse_an)
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) GeneData(pse_an)
Plot model parameters from the fitting
plotModelParameters(object)
plotModelParameters(object)
object |
PoolScreenExp object |
plot
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) plotModelParameters(pse_an)
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) plotModelParameters(pse_an)
Plot replicate correlation
plotReplicateCorrelation(object, rep1 = "R1", rep2 = "R2")
plotReplicateCorrelation(object, rep1 = "R1", rep2 = "R2")
object |
PoolScreenExp object |
rep1 |
Name of replicate 1 |
rep2 |
Name of replicate 2 |
replicate_plot
# import a PoolScreenExp object that has been generated using RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) plotReplicateCorrelation(pse_an, rep1 = 'R1', rep2 = 'R2')
# import a PoolScreenExp object that has been generated using RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) plotReplicateCorrelation(pse_an, rep1 = 'R1', rep2 = 'R2')
The poolScreenExp
class is an S4 class used to store
sgRNA and gene related data as well as parameters necessary
for statistical model.
sgRNAData
A SummarizedExperiment containing the data related to sgRNAs.
FittingIntervals
A vector defining the limits of the intervals used for fitting of null model.
LFCModelParameters
A vector of parameters estimated when fitting the null model.
GeneData
SummarizedExperiment containing the data related to genes.
FittingOptions
A named list with options for fitting: IntervalFraction - fraction of sgRNAs used in every fitting interval (default 0.1), alphaCutoff - alpha cutoff for alpha RRA algorithm (default: 0.05).
Extract a results table
ResultsTable(object, direction = "negative")
ResultsTable(object, direction = "negative")
object |
PoolScreenExp object |
direction |
Whether the table should contain information on positive or negative fold changes ['negative'| 'positive'] |
plot
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) ResultsTable(pse_an, direction = 'negative')
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) ResultsTable(pse_an, direction = 'negative')
run gscreend
RunGscreend(object, quant1 = 0.1, quant2 = 0.9, alphacutoff = 0.05)
RunGscreend(object, quant1 = 0.1, quant2 = 0.9, alphacutoff = 0.05)
object |
PoolScreenExp object |
quant1 |
lower quantile for least quantile of squares regression (default: 0.1) |
quant2 |
upper quantile for least quantile of squares regression (default: 0.9) |
alphacutoff |
alpha cutoff for alpha-RRA (default: 0.05) |
object
raw_counts <- read.table( system.file('extdata', 'simulated_counts.txt', package = 'gscreend'), header=TRUE) # Create the PoolScreenExp to be analyzed counts_matrix <- cbind(raw_counts$library0, raw_counts$R0_0, raw_counts$R1_0) rowData <- data.frame(sgRNA_id = raw_counts$sgrna_id, gene = raw_counts$Gene) colData <- data.frame(samplename = c('library', 'R1', 'R2'), timepoint = c('T0', 'T1', 'T1')) library(SummarizedExperiment) se <- SummarizedExperiment(assays=list(counts=counts_matrix), rowData=rowData, colData=colData) pse <- createPoolScreenExp(se) # Run Analysis pse_an <- RunGscreend(pse)
raw_counts <- read.table( system.file('extdata', 'simulated_counts.txt', package = 'gscreend'), header=TRUE) # Create the PoolScreenExp to be analyzed counts_matrix <- cbind(raw_counts$library0, raw_counts$R0_0, raw_counts$R1_0) rowData <- data.frame(sgRNA_id = raw_counts$sgrna_id, gene = raw_counts$Gene) colData <- data.frame(samplename = c('library', 'R1', 'R2'), timepoint = c('T0', 'T1', 'T1')) library(SummarizedExperiment) se <- SummarizedExperiment(assays=list(counts=counts_matrix), rowData=rowData, colData=colData) pse <- createPoolScreenExp(se) # Run Analysis pse_an <- RunGscreend(pse)
sgRNAData: set and retrieve sgRNAData of PoolScreenExp
sgRNAData(x)
sgRNAData(x)
x |
PoolScreenExp object |
sgRNA slot of the object
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) sgRNAData(pse_an)
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) sgRNAData(pse_an)
Accessor function for the sgRNA slot of the PoolScreenExp class
## S4 method for signature 'PoolScreenExp' sgRNAData(x)
## S4 method for signature 'PoolScreenExp' sgRNAData(x)
x |
PoolScreenExp object |
sgRNA slot of the object
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) sgRNAData(pse_an)
# import a PoolScreenExp object that has been generated using # RunGscreend() pse_an <- readRDS( system.file('extdata', 'gscreend_analysed_experiment.RData', package = 'gscreend')) sgRNAData(pse_an)