Title: | An openCL compiler with the capacity to compile R functions and run the code on GPU |
---|---|
Description: | The package aims to help users write openCL code with little or no effort. It is able to compile an user-defined R function and run it on a device such as a CPU or a GPU. The user can also write and run their openCL code directly by calling .kernel function. |
Authors: | Jiefei Wang [aut, cre], Martin Morgan [aut] |
Maintainer: | Jiefei Wang <[email protected]> |
License: | GPL-3 |
Version: | 1.23.0 |
Built: | 2024-12-29 07:54:46 UTC |
Source: | https://github.com/bioc/gpuMagic |
The function serves as a bridge between R and openCL, it sends the openCL code and R matrix object to the device and excutes it on the device. The function has an auto-type ability which can make the openCL code independent with the type of its function argument, see detail and examples for the usage.
.kernel( src = "", kernel, parms, .device = "auto", .globalThreadNum = "length(FirstArg)", .options = kernel.getOption() )
.kernel( src = "", kernel, parms, .device = "auto", .globalThreadNum = "length(FirstArg)", .options = kernel.getOption() )
src |
the source code, it can be either a file directory or the code |
kernel |
the kernel function that will be called on the device |
parms |
a list containing the function arguments. The number of elements in the list has to match the number of function arguments. |
.device |
the device that will excute the function. If not specified, all the selected devices will be used. |
.globalThreadNum |
the number of threads that will be created to excute the kernel. If not specified, the length of the first argument will be used as the thread number |
.options |
the kernel options |
The function .kernel()
is the low level API to communicate with openCL device.
It provides a way to run the customized code on the device, the source code should be
openCL code and the kernel is the kernel function that you want to run on the device.
You can specify with device the code should be run on by specifying the .device
argument.
By default, if you do not specify any device, the first device in the device list will be used
The argument .globalThreadNum
specifys the number of threads that will be used to excute the kernel.
The concept is the same as 'global_work_size“ in openCL functions
There are multiple options that you can change in the kernel function.
You can call the function kernel.getOption()
to obtain the default setting.
The most distinguishable feature in this package is probably the auto type function, which
can set the type of the kernel arguments as an macro in the openCL code. This feature allows the
user to create a type-free code. If the kernelOption$autoType
in .options
is true(Default),
four macros will be defined, they are(X is the position of the function arguments):
autoX: The variable type
gAutoX: Short for global autoX
lAutoX: short for local autoX
autoX_v4: Define a vector of length 4 with the same variable type as the X th function argument
Please refer to the example for the usage
A vector or a matrix
#The GPU code code=' kernel void matAdd(gAuto1* A,gAuto2* B,gAuto3* C,gAuto4* size){ uint col_id=get_global_id(0); uint rowNum=*size; for(uint i=0;i<rowNum;i++){ C[i+col_id*rowNum]=A[i+col_id*rowNum]+B[i+col_id*rowNum]; } } ' #Create data in R m=100 n=200 A=matrix(runif(m*n),m,n) B=matrix(runif(m*n),m,n) #Send the data to GPU A_dev=gpuMatrix(A,type='double') B_dev=gpuMatrix(B,type='double') #Create an empty data matrix in GPU C_dev=gpuEmptMatrix(row=m,col=n,type='double') #Get the default options options=kernel.getOption() #Run the GPU function with n threads, each thread computes one column addition .kernel(src = code,kernel='matAdd',parms=list(A_dev,B_dev,C_dev,m), .globalThreadNum = n,.options = options) #This is just a patch to fix check error if(!is.null(C_dev)){ #Retrieve the data C_dev=download(C_dev) C=as.matrix(C_dev) #Check the error range(C-A-B) }
#The GPU code code=' kernel void matAdd(gAuto1* A,gAuto2* B,gAuto3* C,gAuto4* size){ uint col_id=get_global_id(0); uint rowNum=*size; for(uint i=0;i<rowNum;i++){ C[i+col_id*rowNum]=A[i+col_id*rowNum]+B[i+col_id*rowNum]; } } ' #Create data in R m=100 n=200 A=matrix(runif(m*n),m,n) B=matrix(runif(m*n),m,n) #Send the data to GPU A_dev=gpuMatrix(A,type='double') B_dev=gpuMatrix(B,type='double') #Create an empty data matrix in GPU C_dev=gpuEmptMatrix(row=m,col=n,type='double') #Get the default options options=kernel.getOption() #Run the GPU function with n threads, each thread computes one column addition .kernel(src = code,kernel='matAdd',parms=list(A_dev,B_dev,C_dev,m), .globalThreadNum = n,.options = options) #This is just a patch to fix check error if(!is.null(C_dev)){ #Retrieve the data C_dev=download(C_dev) C=as.matrix(C_dev) #Check the error range(C-A-B) }
extract/set parts of the data in gpuMatrix object
## S4 method for signature 'gpuMatrix,ANY,ANY,missing' x[i = NA, j = NA, ..., drop = TRUE] ## S4 replacement method for signature 'gpuMatrix,ANY,ANY,numeric' x[i, j, ...] <- value
## S4 method for signature 'gpuMatrix,ANY,ANY,missing' x[i = NA, j = NA, ..., drop = TRUE] ## S4 replacement method for signature 'gpuMatrix,ANY,ANY,numeric' x[i, j, ...] <- value
x |
an gpuMatrix object |
i , j
|
indices specifying elements to extract or replace. The index j can be missing or empty. |
... |
This argument is only for compatibility. It does not have any effect. |
drop |
For matrices and arrays. If TRUE the result is coerced to the lowest possible dimension. |
value |
The value you want to set |
A matrix subset
no return value
The function will convert the gpuMatrix object into a matrix,
if you have run any GPU functions on the gpuMatrix object,
please call download(x)
to synchronize the data before calling this function.
## S3 method for class 'gpuMatrix' as.matrix(x, ...)
## S3 method for class 'gpuMatrix' as.matrix(x, ...)
x |
an gpuMatrix object |
... |
This argument is only for compatibility. It does not take any effect. |
A matrix
The function will convert the gpuMatrix object into a vector,
if you have run any GPU functions on the gpuMatrix object,
please call download(x)
to synchronize the data before calling this function.
## S3 method for class 'gpuMatrix' as.vector(x, mode = NULL)
## S3 method for class 'gpuMatrix' as.vector(x, mode = NULL)
x |
an gpuMatrix object |
mode |
This argument is only for compatibility. It does not take any effect. |
A vector
Compile the R function without excute it in the device.
compileGPUCode( X, FUN, ..., .macroParms = NULL, .options = gpuSapply.getOption() )
compileGPUCode( X, FUN, ..., .macroParms = NULL, .options = gpuSapply.getOption() )
X |
a vector that |
FUN |
The function to be applied to each element of |
... |
optional arguments to |
.macroParms |
The function argument that will be treated as macro in the code. If an argument is treated as macro, its value cannot be changed by the code |
.options |
The package and openCL compilation options, please call |
A list of compilation information
#matrix add function matAdd = function(ind,A,B){ C = A[,ind]+B[,ind] return(C) } n = 100 m = 200 #Create the data A = matrix(runif(n*m),n,m) B = matrix(runif(n*m),n,m) #Compile the R code res = compileGPUCode(1:m,matAdd,A,B) #print GPU code cat(res$gpu_code)
#matrix add function matAdd = function(ind,A,B){ C = A[,ind]+B[,ind] return(C) } n = 100 m = 200 #Create the data A = matrix(runif(n*m),n,m) B = matrix(runif(n*m),n,m) #Compile the R code res = compileGPUCode(1:m,matAdd,A,B) #print GPU code cat(res$gpu_code)
This is a set of functions to query the device information and select which device should be used in the computation
getDeviceList() getDeviceInfo(i) getCurDevice() setDevice(i) getDeviceIndex() getJobStatus(i)
getDeviceList() getDeviceInfo(i) getCurDevice() setDevice(i) getDeviceIndex() getJobStatus(i)
i |
A 1-based device index, it should be an integer |
'getDeviceList()': The function is used to obtain all the opencl-enable devices
'getDeviceInfo()': Get the ith device information, call 'getDeviceList()' first to figure out the index before using this function
'getCurDevice()': Get the information of the current devices
'setDevice()': Set which device will be used in the opencl, call 'getDeviceList()' first to figure out the index before use this function
'getDeviceIndex()': Get the index of the current devices
'getJobStatus()': Query the current job status in a device
'getDeviceList()': A data.frame that contains all device info
'getDeviceInfo()': A list with the device information
'getCurDevice()': No return value, the result will be printed in the console
'setDevice()': No return value
'getDeviceIndex()': An integer representing the device index
'getJobStatus()': A character representing the device status
#Get the available devices getDeviceList() #Get the information of the first device getDeviceInfo(1) #Get the information of current used devices getCurDevice() #Use the first device setDevice(1) #Use two devices #setDevice(c(1,2)) #Get the index of the current devices getDeviceIndex() #Get the job status in the first device getJobStatus(1)
#Get the available devices getDeviceList() #Get the information of the first device getDeviceInfo(1) #Get the information of current used devices getCurDevice() #Use the first device setDevice(1) #Use two devices #setDevice(c(1,2)) #Get the index of the current devices getDeviceIndex() #Get the job status in the first device getJobStatus(1)
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
Internal usage only, the package export this function only for the other package to access.
gpu_cast_float(x) gpu_cast_double(x) gpu_cast_uint(x) gpu_cast_int(x) gpu_cast_long(x) gpu_cast_ulong(x) isgreater(x, y) ## S3 method for class 'extCode' extractVars(x) extractVars(x) ## Default S3 method: extractVars(x) ## S3 method for class 'expression' extractVars(x) ## S3 method for class 'varInfo' extractVars(x)
gpu_cast_float(x) gpu_cast_double(x) gpu_cast_uint(x) gpu_cast_int(x) gpu_cast_long(x) gpu_cast_ulong(x) isgreater(x, y) ## S3 method for class 'extCode' extractVars(x) extractVars(x) ## Default S3 method: extractVars(x) ## S3 method for class 'expression' extractVars(x) ## S3 method for class 'varInfo' extractVars(x)
x |
Internal usage only |
y |
Internal usage only |
A double type data
A vector of variables
gpu_cast_float(10) #Just to make biocCheck happy with that.
gpu_cast_float(10) #Just to make biocCheck happy with that.
Get all the available openCL variable type
gpuMagic.getAvailableType()
gpuMagic.getAvailableType()
A vector of all the available data type.
gpuMagic.getAvailableType()
gpuMagic.getAvailableType()
The function will print the memory usage on the console
gpuMagic.getMemUsage()
gpuMagic.getMemUsage()
No return value, the result will be printed in the console.
gpuMagic.getMemUsage()
gpuMagic.getMemUsage()
The functions gets the computing precision when compile the GPU code and the number of workers in a computing group.
gpuMagic.getOptions(opt = "all")
gpuMagic.getOptions(opt = "all")
opt |
The options that the function will return. It can be either 'all' or a vector of the option names. |
The fields default.float
, default.int
and default.index.type
are used to control the computing precision.
When transferring data from R to GPU, if the data in R has a numeric or double storage mode,
default.float
will be used to convert data type.
Similarly, If the data has an Integer storage model. default.int
will be used.
default.index.type
controls the variable type for the for loop index, variable dimension etc.
default.thread.num
is used to control the number of workers in a group in openCL. It is not expected to be changed unless you know what you are doing.
A list of the options
#Get all the available options opt=gpuMagic.getOptions() opt
#Get all the available options opt=gpuMagic.getOptions() opt
The functions set the computing precision when compile the GPU code and the number of workers in a computing group.
gpuMagic.setOptions(...)
gpuMagic.setOptions(...)
... |
There are two possible ways to set the options. You can either provide
to change the options. |
No return value
gpuMagic.getOptions()
for the name of the options.
#Get all the available options opt=gpuMagic.getOptions() #change the default float type opt$default.float='float' #set the options gpuMagic.setOptions(opt) #set the options(Alternative way) gpuMagic.setOptions(default.float='float')
#Get all the available options opt=gpuMagic.getOptions() #change the default float type opt$default.float='float' #set the options gpuMagic.setOptions(opt) #set the options(Alternative way) gpuMagic.setOptions(default.float='float')
gpuMatrix class
gpuMatrix(data, type = "auto", device = "auto") gpuEmptMatrix(row = 1, col = 1, type = "auto", device = "auto") upload(x) download(x) ## S4 method for signature 'gpuMatrix' download(x) ## S4 method for signature 'ANY' download(x) nrow(x) ## S4 method for signature 'gpuMatrix' dim(x) ## S4 method for signature 'gpuMatrix' length(x) getSize(x)
gpuMatrix(data, type = "auto", device = "auto") gpuEmptMatrix(row = 1, col = 1, type = "auto", device = "auto") upload(x) download(x) ## S4 method for signature 'gpuMatrix' download(x) ## S4 method for signature 'ANY' download(x) nrow(x) ## S4 method for signature 'gpuMatrix' dim(x) ## S4 method for signature 'gpuMatrix' length(x) getSize(x)
data |
It can be a matrix or an R object that can be converted into a matrix. |
type |
The precision that is used to store the data, the default is |
device |
The device that the data is sent to, the default is the first device. |
row , col
|
the row and column number of the matrix |
x |
an gpuMatrix object |
gpuMatrix()
: Create a matrix in an openCL device
gpuEmptMatrix()
: Create an empty matrix without initialization in an openCL device
upload()
: The function will automatically be called when an gpuMatrix object is created.
It is only needed when you want to update value of the matrix.
download()
: Get the data from the device. You should explicitly call it when you want to collect the data from the device.
nrow()
,ncol()
: return the number of rows or columns present in x
dim()
: Retrieve the dimension of an gpuMatrix object
length()
: Get the length of an gpuMatrix object.
'getSize()': Get the matrix size in byte
gpuMatrix()
: A gpuMatrix object
gpuEmptMatrix()
: A gpuMatrix object
n=10 m=20 A=matrix(runif(n*m),n,m) #Create a 64 bit floating point GPU matrix A_dev=gpuMatrix(A,'double') #Create an empty matrix B_dev=gpuEmptMatrix(row=n,col=m)
n=10 m=20 A=matrix(runif(n*m),n,m) #Create a 64 bit floating point GPU matrix A_dev=gpuMatrix(A,'double') #Create an empty matrix B_dev=gpuEmptMatrix(row=n,col=m)
Please refer to sapply to see the basic usage
gpuSapply( X, FUN, ..., .macroParms = NULL, .device = "auto", loading = "auto", .options = gpuSapply.getOption() )
gpuSapply( X, FUN, ..., .macroParms = NULL, .device = "auto", loading = "auto", .options = gpuSapply.getOption() )
X |
a vector that |
FUN |
The function to be applied to each element of |
... |
optional arguments to |
.macroParms |
The function argument that will be treated as macro in the code. If an argument is treated as macro, its value cannot be changed by the code |
.device |
the device ID(s) indicates the device that the function will be excuted on. Running the code on Multiple devices is supported but is still under development |
loading |
The loading of each device, only useful when having multiple devices. |
.options |
The package and openCL compilation options, please call |
This function compiles the R code and runs it on the openCL-compatible devices. The usage is similar to the sapply function with some addtional opencl-related arguments.
A vector or a matrix
#matrix multiplication function matMul = function(ind,A,B){ C = A%*%B[,ind] return(C) } n = 100 m = 200 k = 100 #Create the data A = matrix(runif(n*m),n,m) B = matrix(runif(k*m),m,k) #Perform matrix multiplication #GPU res_gpu = gpuSapply(1:k,matMul,A,B) #CPU res_cpu = sapply(1:k,matMul,A,B) #error range(res_gpu-res_cpu)
#matrix multiplication function matMul = function(ind,A,B){ C = A%*%B[,ind] return(C) } n = 100 m = 200 k = 100 #Create the data A = matrix(runif(n*m),n,m) B = matrix(runif(k*m),m,k) #Perform matrix multiplication #GPU res_gpu = gpuSapply(1:k,matMul,A,B) #CPU res_cpu = sapply(1:k,matMul,A,B) #error range(res_gpu-res_cpu)
Get the package compilation options, the openCl compilation options(kernel.getOption()
) are also included.
gpuSapply.getOption()
gpuSapply.getOption()
There are a few options that are allowed to be changed, they are:
sapplyOption.debugCode
: Replace the compiled GPU code with your customized code, this option is
useful when you want to debug the compiled code, or when you want to customize the compiled code.
sapplyOption.compileEveryTime
: Specify whether you want the compiler to compile the R code everytime.
An options class
opt=gpuSapply.getOption()
opt=gpuSapply.getOption()
Get the openCL compilation options
kernel.getOption()
kernel.getOption()
#' verbose
turn the verbose mode on and off.
kernelOption$localThreadNum
controls the local thread number in each group,
the local thread number should be a divisor of the argument .globalThreadNum
.
If it is set to auto
, the suggested number of local thread number will be
obtained from openCL API and reduced to a divisor of .globalThreadNum
.
kernelOption$localThreadNumMacro
specifys whether the local thread number
should be inserted into the code as an macro. If it is TRUE, the macro
cl_local_thread_num
will be defined. It is useful when you want to dynamically
allocate the memory \(Mostly local memory\) according to the local thread number
kernelOption$signature
This is for internal usage only, please do not change it
kernelOption$flag
The openCL compiler flag.
kernelOption$autoType
Determine whether the type of kernel arguments should be
defined as an macro, see the .kernel
document for detail
A list of available options
opt=kernel.getOption() opt
opt=kernel.getOption() opt
The function create a matrix, it is only useful in the openCL functions. it can also be called in R, but its argument may or may not take any effect.
Matrix( nrow = 1, ncol = 1, precision = GPUVar$default_float, constDef = FALSE, shared = FALSE, location = "global" )
Matrix( nrow = 1, ncol = 1, precision = GPUVar$default_float, constDef = FALSE, shared = FALSE, location = "global" )
nrow , ncol
|
The matrix dimension. |
precision |
The variable type, please refer to |
constDef |
Specify if the variable can be redefined. The package will automatically update the variable definition when it is needed, if you do not need this feature, you can manually turn the feature off. It is useful in some special cases such as turning off the auto update to do the integer division (By default, the package will convert the variable to the default float type before doing the division). |
shared |
If the matrix is shared by all the workers in a work group. Do not use it if you don't know its meaning. |
location |
The physical memory location of the matrix, it can be either 'global' or 'local'. Do not use it if you don't know its meaning. |
a matrix initialize with 0.
#Create a 10-by-10 matrix A=Matrix(10,10)
#Create a 10-by-10 matrix A=Matrix(10,10)
gpuMatrix class
## S4 method for signature 'gpuMatrix' ncol(x)
## S4 method for signature 'gpuMatrix' ncol(x)
x |
an gpuMatrix object |
gpuMatrix()
: Create a matrix in an openCL device
gpuEmptMatrix()
: Create an empty matrix without initialization in an openCL device
upload()
: The function will automatically be called when an gpuMatrix object is created.
It is only needed when you want to update value of the matrix.
download()
: Get the data from the device. You should explicitly call it when you want to collect the data from the device.
nrow()
,ncol()
: return the number of rows or columns present in x
dim()
: Retrieve the dimension of an gpuMatrix object
length()
: Get the length of an gpuMatrix object.
'getSize()': Get the matrix size in byte
gpuMatrix()
: A gpuMatrix object
gpuEmptMatrix()
: A gpuMatrix object
n=10 m=20 A=matrix(runif(n*m),n,m) #Create a 64 bit floating point GPU matrix A_dev=gpuMatrix(A,'double') #Create an empty matrix B_dev=gpuEmptMatrix(row=n,col=m)
n=10 m=20 A=matrix(runif(n*m),n,m) #Create a 64 bit floating point GPU matrix A_dev=gpuMatrix(A,'double') #Create an empty matrix B_dev=gpuEmptMatrix(row=n,col=m)
Print the available options in a pretty format
## S3 method for class 'options' print(x, ...) ## S3 method for class 'plainText' print(x, ...) ## S3 method for class 'deviceList' print(x, ...) ## S3 method for class 'varInfo' print(x, simplify = TRUE, printDef = FALSE, ...)
## S3 method for class 'options' print(x, ...) ## S3 method for class 'plainText' print(x, ...) ## S3 method for class 'deviceList' print(x, ...) ## S3 method for class 'varInfo' print(x, simplify = TRUE, printDef = FALSE, ...)
x |
an options object. |
... |
just for making the package checking happy. |
simplify |
Specify whether only the important properties should be printed |
printDef |
Whether the variable definition should be printed(version=0) |
No return value, the result will be printed in the console
opt=gpuMagic.getOptions() print(opt)
opt=gpuMagic.getOptions() print(opt)
Doing some opration without copying memory
return_nocpy(x) t_nocpy(x)
return_nocpy(x) t_nocpy(x)
x |
an object |
return_nocpy
: The usage of the return_nocpy
is same as return
. This feature is for openCL code only,
if it is called in R, the function return()
will be called instead
t_nocpy
: The function transposes x
without allocating the memory. It only works for the openCL code,
if it is called in R, the function t()
will be called instead
return_nocpy
: No return value
t_nocpy
: the transpose of x
x=matrix(0) #return_nocpy(x) #x=t_nocpy(x)
x=matrix(0) #return_nocpy(x) #x=t_nocpy(x)
The function will create a scalar variable, it is only useful in the openCL functions. It can also be called in R, but its argument will not take any effect.
Scalar(precision = GPUVar$default_float, constDef = FALSE)
Scalar(precision = GPUVar$default_float, constDef = FALSE)
precision |
The variable type, please refer to |
constDef |
Specify if the variable can be redefined. The package will automatically update the variable definition when it is needed, if you do not need this feature, you can manually turn the feature off. It is useful in some special cases such as turning off the auto update to do the integer division (By default, the package will convert the variable to the default float type before doing the division). |
a variable initialize with 0.
a=Scalar(precision='double',constDef=FALSE)
a=Scalar(precision='double',constDef=FALSE)
The function will get a reference of the matrix subset. This is a 0-copy method, which means any change in the reference variable will cause the change in the original matrix. The function is useful when the GPU memory is limited or you do not want to create a copy the data. DO NOT call this function in R, this is for openCL code only(eg. gpuSapply).
subRef(variable, i = "", j = "")
subRef(variable, i = "", j = "")
variable |
the matrix you want to subset |
i |
the index of a vector or the row index of a matrix |
j |
(Optional) The column index of a matrix |
The package implement this function purely using the code. it will not actually be called on device side. For example, if we have the following code:
#Alternative of B=A[ind] B=subRef(A,ind) a=B[2]
In the compilation stage, the code will be changed to
a=A[ind[2]]
The variable B does not exist in the code after the compilation and therefore no memory is allocated for it.
A reference to the subset of a matrix
Since this feature is implemented like a macro,
so it is possible to change the value of ind
after the matrix B is created and before you modify the matrix B.
In such case, it may cause an unexpected error.
It is a good practice to keep the ind
same while using the subset reference.
#create data ind=1:10 A=matrix(0,100,100) #Use the one-index subsetting, create a vector of length 10 B=subRef(A,ind) #Subsetting the matrix A,create a 10-by-10 matrix C=subRef(A,ind,ind) #row subsetting D=subRef(A,ind,) #column subsetting E=subRef(A,,ind)
#create data ind=1:10 A=matrix(0,100,100) #Use the one-index subsetting, create a vector of length 10 B=subRef(A,ind) #Subsetting the matrix A,create a 10-by-10 matrix C=subRef(A,ind,ind) #row subsetting D=subRef(A,ind,) #column subsetting E=subRef(A,,ind)