Title: | An R Package To Add Geometric Layers On Circular Or Other Layout Tree Of "ggtree" |
---|---|
Description: | 'ggtreeExtra' extends the method for mapping and visualizing associated data on phylogenetic tree using 'ggtree'. These associated data can be presented on the external panels to circular layout, fan layout, or other rectangular layout tree built by 'ggtree' with the grammar of 'ggplot2'. |
Authors: | Shuangbin Xu [aut, cre] , Guangchuang Yu [aut, ctb] |
Maintainer: | Shuangbin Xu <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.17.0 |
Built: | 2025-01-17 04:08:15 UTC |
Source: | https://github.com/bioc/ggtreeExtra |
'geom_fruit()' can automatically re-arrange the input 'data' according to the tree structure. It can present the associated data on the external panels of the tree using the 'geom' function defined in 'ggplot2' or other ggplot2-based packages with aesthetic 'mapping' and other parameters, and it will align the external layers in the outer ring of circular layout tree or with rectangular layout tree side by side. Note: the tree should be created by 'ggtree'.
geom_fruit( mapping, data = NULL, geom, offset = 0.03, pwidth = 0.2, position = "auto", inherit.aes = FALSE, grid.params = NULL, axis.params = list(axis = "none", text.angle = 0, text.size = 0.8, text = NULL, title = NULL, title.size = 3, title.height = 0.1, title.angle = 0, title.color = "black", nbreak = 4, line.size = 0.2, line.color = "grey", line.alpha = 1, limits = NULL, ...), ... ) fruit_plot( p, data = NULL, geom, mapping, offset = 0.03, pwidth = 0.2, position = "auto", ... )
geom_fruit( mapping, data = NULL, geom, offset = 0.03, pwidth = 0.2, position = "auto", inherit.aes = FALSE, grid.params = NULL, axis.params = list(axis = "none", text.angle = 0, text.size = 0.8, text = NULL, title = NULL, title.size = 3, title.height = 0.1, title.angle = 0, title.color = "black", nbreak = 4, line.size = 0.2, line.color = "grey", line.alpha = 1, limits = NULL, ...), ... ) fruit_plot( p, data = NULL, geom, mapping, offset = 0.03, pwidth = 0.2, position = "auto", ... )
mapping |
aes mapping for 'geom' |
data |
data to plot by 'geom', the column contained tree tip labels should be as y in mapping. |
geom |
geom function to plot the data. |
offset |
numeric, distance between external layers or between tree and external layers, default is 0.03, meaning the 0.03 times of x range of tree (0.03 * xrange of tree). |
pwidth |
numeric, the width of external geometric layer, default is 0.2, meaning the 0.2 times of x range of tree (0.2 * xrange of tree). |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function, default is 'auto', see details in the following. |
inherit.aes |
logical, If 'FALSE', overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, default is FALSE. |
grid.params |
list, the parameters to control the attributes of grid lines, default is NULL, see the grid.params in the following. grid.params control the attributes of grid line of external layer, it can be referred to the following parameters:
|
axis.params |
list, the parameters to control the attributes of pseudo axis, see the axis.params in the following. axis.params control the attributes of axis, it can be referred to the following parameters:
|
... |
additional parameters for 'geom' |
p |
tree view |
The 'data' parameter is data.frame or tibble type, it is the same with the data for corresponding geometric layers, but it must contain one column of taxa labels of tree, it will be mapped to 'y' axis in 'mapping'. When 'data' is not provided, the associated data in tree data will be extracted automatically, and the 'y' axis don't need to be mapped.
The 'mapping' parameter is setting of aesthetic mappings created by 'aes()' or 'aes_()' of 'ggplot2', the 'y' should be assigned to the variable names of column of taxa labels in data.frame of 'data', only if the 'data' is not provided, see the above.
The 'geom' parameter is the geometric function defined in 'ggplot2' or other 'ggplot2-extension', e.g.
ggplot2 | geom_bar,geom_col,geom_boxplot,geom_violin,geom_tile | circular, rectangular |
ggmsa | geom_msa | rectangular |
ggstar | geom_star | circular, rectangular |
ggimage | geom_image,geom_phylopic | circular, rectangular |
ggpmisc | geom_plot,geom_table | circular, rectangular |
ggridges | geom_density_ridges | circular, rectangular |
ggtext | geom_richtext | circular, rectangular |
... |
if the 'geom' is 'geom_bar', 'geom_col', 'geom_boxplot', 'geom_violin', the 'orientation' should be specified to 'y'.
The default 'position' parameter is 'auto', it will guess and determine (hopefully) a suitable position for the specified geometric layer. That means using 'position_stackx()' for geom_bar(), 'position_dodgex()' for 'geom_violin()' and 'geom_boxplot()', and 'position_identityx()' for others (e.g. geom_point() and geom_tile() etc.). A geometric layer that has a position parameter should be compatible with geom_fruit(), as it allows using position functions defined in the ggtreeExtra package to adjust output layer position.
and the grid line also can be added using 'grid.params=list(...)'.
The axis line and text can be added using 'axis.params=list(axis="x",...)'.
The 'p' parameter only work when you use fruit_plot()
, which is alias of geom_fruit()
.
ggplot object
Shuangbin Xu and Guangchuang Yu
library(ggtree) library(ggplot2) library(ggstar) set.seed(1024) tr <- rtree(100) dd = data.frame(id=tr$tip.label, value=abs(rnorm(100))) dt = data.frame(id=tr$tip.label, group=c(rep("A",50),rep("B",50))) p <- ggtree(tr, layout="circular") p1 <- p + geom_fruit( data=dt, geom=geom_star, mapping=aes(y=id, fill=group), size=2.5, starstroke=0 ) p2 <- p1 + geom_fruit( data=dd, geom=geom_col, mapping=aes(x=value, y=id) ) p <- p %<+% dd %<+% dt p5 <- p + geom_fruit( geom = geom_star, mapping = aes(y=id, fill=group), size = 2.5, starstroke = 0 ) + geom_fruit( geom = geom_col, mapping = aes(x=value, y=id), pwidth = .3, axis.params = list( axis = 'x', text.size = 2, nbreak = 2, text.angle = -40, vjust = 1, hjust = 0, limits = c(0, 2) ), grid.params = list() )
library(ggtree) library(ggplot2) library(ggstar) set.seed(1024) tr <- rtree(100) dd = data.frame(id=tr$tip.label, value=abs(rnorm(100))) dt = data.frame(id=tr$tip.label, group=c(rep("A",50),rep("B",50))) p <- ggtree(tr, layout="circular") p1 <- p + geom_fruit( data=dt, geom=geom_star, mapping=aes(y=id, fill=group), size=2.5, starstroke=0 ) p2 <- p1 + geom_fruit( data=dd, geom=geom_col, mapping=aes(x=value, y=id) ) p <- p %<+% dd %<+% dt p5 <- p + geom_fruit( geom = geom_star, mapping = aes(y=id, fill=group), size = 2.5, starstroke = 0 ) + geom_fruit( geom = geom_col, mapping = aes(x=value, y=id), pwidth = .3, axis.params = list( axis = 'x', text.size = 2, nbreak = 2, text.angle = -40, vjust = 1, hjust = 0, limits = c(0, 2) ), grid.params = list() )
add the layers to the same position out of ggtree.
geom_fruit_list(fruit, ...)
geom_fruit_list(fruit, ...)
fruit |
the layer of geom_fruit. |
... |
another layers of geom_fruit, or scales. |
ggplot object
Shuangbin Xu and GuangChuang Yu
library(ggplot2) library(ggtree) library(ggstar) library(ggnewscale) set.seed(1024) tr <- rtree(100) dt <- data.frame(id=tr$tip.label, value=abs(rnorm(100)), group=c(rep("A",50),rep("B",50))) df <- dt dtf <- dt colnames(df)[[3]] <- "group2" colnames(dtf)[[3]] <- "group3" p <- ggtree(tr, layout="fan", open.angle=0) # first circle p1 <- p + geom_fruit( data=dt, geom=geom_bar, mapping=aes(y=id, x=value, fill=group), orientation="y", stat="identity" ) + new_scale_fill() # second circle fruitlist <- geom_fruit_list( geom_fruit( data = df, geom = geom_bar, mapping = aes(y=id, x=value, fill=group2), orientation = "y", stat = "identity" ), scale_fill_manual(values=c("blue", "red")), new_scale_fill(), geom_fruit( data = dt, geom = geom_star, mapping = aes(y=id, x=value, fill=group), size = 2.5, color = NA, starstroke = 0 ) ) p2 <- p1 + fruitlist + new_scale_fill() # third circle p3 <- p2 + geom_fruit( data=dtf, geom=geom_bar, mapping = aes(y=id, x=value, fill=group3), orientation = "y", stat = "identity" ) + scale_fill_manual(values=c("#00AED7", "#009E73")) p3
library(ggplot2) library(ggtree) library(ggstar) library(ggnewscale) set.seed(1024) tr <- rtree(100) dt <- data.frame(id=tr$tip.label, value=abs(rnorm(100)), group=c(rep("A",50),rep("B",50))) df <- dt dtf <- dt colnames(df)[[3]] <- "group2" colnames(dtf)[[3]] <- "group3" p <- ggtree(tr, layout="fan", open.angle=0) # first circle p1 <- p + geom_fruit( data=dt, geom=geom_bar, mapping=aes(y=id, x=value, fill=group), orientation="y", stat="identity" ) + new_scale_fill() # second circle fruitlist <- geom_fruit_list( geom_fruit( data = df, geom = geom_bar, mapping = aes(y=id, x=value, fill=group2), orientation = "y", stat = "identity" ), scale_fill_manual(values=c("blue", "red")), new_scale_fill(), geom_fruit( data = dt, geom = geom_star, mapping = aes(y=id, x=value, fill=group), size = 2.5, color = NA, starstroke = 0 ) ) p2 <- p1 + fruitlist + new_scale_fill() # third circle p3 <- p2 + geom_fruit( data=dtf, geom=geom_bar, mapping = aes(y=id, x=value, fill=group3), orientation = "y", stat = "identity" ) + scale_fill_manual(values=c("#00AED7", "#009E73")) p3
Dodging preserves the vertical position of an geom while adjusting the
horizontal position. position_dodgex2
is a special case of position_dodgex
for arranging box plots, which can have variable widths. position_dodgex2
also works with bars and rectangles. But unlike position_dodgex
,
position_dodgex2
works without a grouping variable in a layer.
position_dodgex( width = NULL, hexpand = NA, vexpand = NA, preserve = c("total", "single") ) position_dodgex2( width = NULL, preserve = c("total", "single"), hexpand = NA, vexpand = NA, padding = 0.1, reverse = FALSE )
position_dodgex( width = NULL, hexpand = NA, vexpand = NA, preserve = c("total", "single") ) position_dodgex2( width = NULL, preserve = c("total", "single"), hexpand = NA, vexpand = NA, padding = 0.1, reverse = FALSE )
width |
Dodging width, when different to the width of the individual elements. This is useful when you want to align narrow geoms with wider geoms. |
hexpand |
numeric, Horizon expand for geoms that have a position, default is NA. |
vexpand |
numeric, Vertical expand for geoms that have a position, default is NA. |
preserve |
Should dodging preserve the total width of all elements at a position, or the width of a single element? |
padding |
Padding between elements at the same position. Elements are shrunk by this proportion to allow space between them. Defaults to 0.1. |
reverse |
If |
position methods
Other position adjustments:
position_identityx()
,
position_points_sinax()
library(ggplot2) library(patchwork) iris$ID <- rep(c(rep("test1", 15), rep("test2", 15), rep("test3", 20)),3) p <- ggplot(iris, aes(x=Species,y=Petal.Length,fill=ID)) p1 <- p + geom_bar(stat="identity",position=position_dodgex()) p2 <- p + geom_bar(stat="identity",position=position_dodgex(vexpand=5)) p3 <- ggplot(iris, aes(x=Petal.Length, y=Species, fill=ID)) + geom_bar(stat="identity", orientation="y", position=position_dodgex(hexpand=5)) p4 <- p1 + p2 + p3 p4 p5 <- p + geom_boxplot(position=position_dodgex2()) p6 <- p + geom_boxplot(position=position_dodgex2(vexpand=5)) p7 <- ggplot(iris, aes(x=Petal.Length, y=Species, fill=ID)) + geom_boxplot(orientation="y", position=position_dodgex2(hexpand=5)) p8 <- p5 + p6 + p7 p8
library(ggplot2) library(patchwork) iris$ID <- rep(c(rep("test1", 15), rep("test2", 15), rep("test3", 20)),3) p <- ggplot(iris, aes(x=Species,y=Petal.Length,fill=ID)) p1 <- p + geom_bar(stat="identity",position=position_dodgex()) p2 <- p + geom_bar(stat="identity",position=position_dodgex(vexpand=5)) p3 <- ggplot(iris, aes(x=Petal.Length, y=Species, fill=ID)) + geom_bar(stat="identity", orientation="y", position=position_dodgex(hexpand=5)) p4 <- p1 + p2 + p3 p4 p5 <- p + geom_boxplot(position=position_dodgex2()) p6 <- p + geom_boxplot(position=position_dodgex2(vexpand=5)) p7 <- ggplot(iris, aes(x=Petal.Length, y=Species, fill=ID)) + geom_boxplot(orientation="y", position=position_dodgex2(hexpand=5)) p8 <- p5 + p6 + p7 p8
adjust identity position which can be shifted vertically or horizontally.
position_identityx(hexpand = NA, vexpand = NA)
position_identityx(hexpand = NA, vexpand = NA)
hexpand |
numeric, distance to be shifted horizontally for geoms that have a position, default is NA. |
vexpand |
numeric, distance to be shifted vertically for geoms that have a position, default is NA. |
position method.
Shuangbin Xu
Other position adjustments:
position_dodgex()
,
position_points_sinax()
library(ggplot2) library(patchwork) p <- ggplot(mtcars, aes(x=wt, y=mpg)) p1 <- p + geom_point(position=position_identityx()) + ylim(0, 50) # whole point layer was shifted vertically (distance=5). # the label of axis y should be subtracted 5 to get the true value.. p2 <- p + geom_point(position=position_identityx(vexpand=5)) + ylim(0, 50) # whole point layer was shifted horizontally (distance=5). # the label of axis x should be subtracted 5 to get the true value. p3 <- ggplot(mtcars, aes(y=wt, x=mpg)) + geom_point(position=position_identityx(hexpand=5)) + xlim(0, 50) p4 <- p1 + p2 + p3 p4
library(ggplot2) library(patchwork) p <- ggplot(mtcars, aes(x=wt, y=mpg)) p1 <- p + geom_point(position=position_identityx()) + ylim(0, 50) # whole point layer was shifted vertically (distance=5). # the label of axis y should be subtracted 5 to get the true value.. p2 <- p + geom_point(position=position_identityx(vexpand=5)) + ylim(0, 50) # whole point layer was shifted horizontally (distance=5). # the label of axis x should be subtracted 5 to get the true value. p3 <- ggplot(mtcars, aes(y=wt, x=mpg)) + geom_point(position=position_identityx(hexpand=5)) + xlim(0, 50) p4 <- p1 + p2 + p3 p4
This is primarily used for aligning points generated through 'geom_point()' with dodged boxplots (e.g., a 'geom_boxplot()' with a fill aesthetic supplied). And the points can be shifted vertically or horizontally with 'hexpand' or 'vexpand' arguments.
position_jitterdodgex( jitter.width = NULL, jitter.height = 0, dodge.width = 0.75, hexpand = NA, vexpand = NA, seed = NA )
position_jitterdodgex( jitter.width = NULL, jitter.height = 0, dodge.width = 0.75, hexpand = NA, vexpand = NA, seed = NA )
jitter.width |
degree of jitter in x direction. Defaults to 40% of the resolution of the data. |
jitter.height |
degree of jitter in y direction. Defaults to 0. |
dodge.width |
the amount to dodge in the x direction. Defaults to 0.75,
the default |
hexpand , vexpand
|
The distance to be shifted vertically or horizontally, default is NA. |
seed |
A random seed to make the jitter reproducible.
Useful if you need to apply the same jitter twice, e.g., for a point and
a corresponding label.
The random seed is reset after jittering.
If |
This is the extension of 'position_jitter' of ggplot2, points are randomly shifted up and down and/or left and right. In addition, the whole points layer can be shifted by the 'hexpand' or 'vexpand' parameter. Counterintuitively adding random noise to a plot can sometimes make it easier to read. Jittering is particularly useful for small datasets with at least one discrete position.
position_jitterx( width = NULL, height = NULL, hexpand = NA, vexpand = NA, seed = NA )
position_jitterx( width = NULL, height = NULL, hexpand = NA, vexpand = NA, seed = NA )
width , height
|
Amount of vertical and horizontal jitter. The jitter is added in both positive and negative directions, so the total spread is twice the value specified here. If omitted, defaults to 40% of the resolution of the data: this means the jitter values will occupy 80% of the implied bins. Categorical data is aligned on the integers, so a width or height of 0.5 will spread the data so it's not possible to see the distinction between the categories. |
hexpand , vexpand
|
The distance to be shifted vertically or horizontally, default is NA. |
seed |
A random seed to make the jitter reproducible.
Useful if you need to apply the same jitter twice, e.g., for a point and
a corresponding label.
The random seed is reset after jittering.
If |
library(ggtree) library(treeio) library(ggplot2) set.seed(1024) tr <- rtree(10) df <- data.frame(id=tr$tip.label, group=rep(c("A", "B"),5)) dat <- data.frame(id=rep(tr$tip.label, 8), value=rnorm(80, 0.5, 0.15)) dt <- merge(dat, df, by.x="id", by.y="id") p1 <- ggtree(tr) %<+% df + geom_tiplab( align=TRUE, linesize=.1, size=3 ) gf1 <- geom_fruit(data=dat, geom=geom_boxplot, mapping=aes(x=value, y=id), orientation="y", offset=0.1, pwidth=0.9 ) set.seed(1024) gf2 <- geom_fruit( data=dat, geom=geom_point, mapping=aes(x=value, y=id, color=group), offset=0.1, pwidth=0.9, position= position_jitterx(height=0.3), axis.params=list(axis="x", text.size=2), grid.params=list() ) p2 <- p1 + geom_fruit_list(gf1, gf2) p2
library(ggtree) library(treeio) library(ggplot2) set.seed(1024) tr <- rtree(10) df <- data.frame(id=tr$tip.label, group=rep(c("A", "B"),5)) dat <- data.frame(id=rep(tr$tip.label, 8), value=rnorm(80, 0.5, 0.15)) dt <- merge(dat, df, by.x="id", by.y="id") p1 <- ggtree(tr) %<+% df + geom_tiplab( align=TRUE, linesize=.1, size=3 ) gf1 <- geom_fruit(data=dat, geom=geom_boxplot, mapping=aes(x=value, y=id), orientation="y", offset=0.1, pwidth=0.9 ) set.seed(1024) gf2 <- geom_fruit( data=dat, geom=geom_point, mapping=aes(x=value, y=id, color=group), offset=0.1, pwidth=0.9, position= position_jitterx(height=0.3), axis.params=list(axis="x", text.size=2), grid.params=list() ) p2 <- p1 + geom_fruit_list(gf1, gf2) p2
This is a position adjustment specifically for 'geom_density_ridges()' and related geoms. It
only jitters the points drawn by these geoms, if any. If no points are present, the plot
remains unchanged. The effect is similar to position_jitter()
: points are randomly shifted up and down
and/or left and right. It add 'hexpand' that can control shift horizontally.
position_points_jitterx( width = 0, height = 0.2, yoffset = 0, hexpand = NA, adjust_vlines = FALSE, seed = NULL )
position_points_jitterx( width = 0, height = 0.2, yoffset = 0, hexpand = NA, adjust_vlines = FALSE, seed = NULL )
width |
Width for horizontal jittering. By default set to 0. |
height |
Height for vertical jittering, applied in both directions (up and down). By default 0.2. |
yoffset |
Vertical offset applied in addition to jittering. |
hexpand |
numeric, distance to be shifted horizontally for geoms that have a position, default is NA. |
adjust_vlines |
If |
seed |
Random seed. If set to NULL, the current random number generator is used. If set to NA, a new random random seed is generated. If set to a number, this number is used as seed for jittering only. |
Other position adjustments for ridgeline plots: position_points_sinax
, position_raincloudx
This is a position adjustment specifically for 'geom_density_ridges()', but it add 'hexpand' that can control shift horizontally.
position_points_sinax( rel_min = 0.02, rel_max = 0.98, seed = NULL, hexpand = NA )
position_points_sinax( rel_min = 0.02, rel_max = 0.98, seed = NULL, hexpand = NA )
rel_min |
numeric, the relative minimum value at which a point can be placed. |
rel_max |
numeric, the relative maximum value at which a point can be placed. |
seed |
numeric, Random seed, if set to NULL, the current random number generator is used. If set to NA, a new random random seed is generated. If set to a number, this number is used as seed for jittering only, default is NULL. |
hexpand |
numeric, distance to be shifted horizontally for geoms that have a position, default is NA. |
position method.
Shuangbin Xu
Other position adjustments:
position_dodgex()
,
position_identityx()
This is a position adjustment specifically for 'geom_density_ridges()' and related geoms. It
only jitters the points drawn by these geoms, if any. If no points are present, the plot
remains unchanged. The effect is similar to position_points_jitterx()
, only that by default the
points lie all underneath the baseline of each individual ridgeline.
It add 'hexpand' that can control shift horizontally.
position_raincloudx( width = 0, height = 0.4, ygap = 0.05, hexpand = NA, adjust_vlines = FALSE, seed = NULL )
position_raincloudx( width = 0, height = 0.4, ygap = 0.05, hexpand = NA, adjust_vlines = FALSE, seed = NULL )
width |
Width for horizontal jittering. By default set to 0. |
height |
Total height of point cloud. By default 0.4. |
ygap |
Vertical gap between ridgeline baseline and point cloud. |
hexpand |
numeric, distance to be shifted horizontally for geoms that have a position, default is NA. |
adjust_vlines |
If |
seed |
Random seed. See |
The idea for this position adjustment comes from Micah Allen, who proposed this type of plot in a blog post on March 15, 2018.
Other position adjustments for ridgeline plots: position_points_jitterx
, position_points_sinax
Stack overlapping objects which can be shifted vertically or horizontally
position_stackx(vjust = 1, hexpand = NA, vexpand = NA, reverse = FALSE)
position_stackx(vjust = 1, hexpand = NA, vexpand = NA, reverse = FALSE)
vjust |
Vertical adjustment for geoms that have a position
(like points or lines), not a dimension (like bars or areas). Set to
|
hexpand |
numeric, distance to be shifted horizontally for geoms that have a position, default is NA. |
vexpand |
numeric, distance to be shifted vertically for geoms that have a position, default is NA. |
reverse |
If |
position method.
Shuangbin Xu
library(ggplot2) library(patchwork) df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2)) # p1 <- ggplot(df, aes(x=trt, y=outcome)) + geom_bar(stat="identity", position=position_stackx()) p2 <- ggplot(df, aes(x=trt, y=outcome)) + geom_bar(stat="identity", position=position_stackx(vexpand=5)) p3 <- ggplot(df, aes(x=outcome, y=trt)) + geom_bar(stat="identity", orientation="y", position=position_stackx(hexpand=5)) p <- p1 + p2 + p3 p
library(ggplot2) library(patchwork) df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2)) # p1 <- ggplot(df, aes(x=trt, y=outcome)) + geom_bar(stat="identity", position=position_stackx()) p2 <- ggplot(df, aes(x=trt, y=outcome)) + geom_bar(stat="identity", position=position_stackx(vexpand=5)) p3 <- ggplot(df, aes(x=outcome, y=trt)) + geom_bar(stat="identity", orientation="y", position=position_stackx(hexpand=5)) p <- p1 + p2 + p3 p
PositionDodgex
PositionDodgex2
PositionIdentityx
PositionPointsJitterx
PositionRaincloudx
PositionPointsSinax
PositionStackx
Shuangbin Xu