This package aims to import, parse, and analyze KEGG data such as
KEGG PATHWAY and KEGG MODULE. The package supports visualizing KEGG
information using ggplot2 and ggraph through using the grammar of
graphics. The package enables the direct visualization of the results
from various omics analysis packages and the connection to the other
tidy manipulation packages. In this documentation, the basic usage of
ggkegg
is presented. Please refer to the documentation
for the detailed usage.
There are many great packages performing KEGG PATHWAY analysis in R.
pathview
fetches KEGG PATHWAY information, enabling the output of images
reflecting various user-defined values on the map. KEGGlincs
can overlay LINCS data to KEGG PATHWAY, and examine the map using
Cytoscape. graphite
acquires pathways including KEGG and Reactome, convert them into
graphNEL format, and provides an interface for topological analysis.
KEGGgraph
also downloads KEGG PATHWAY information and converts it into a format
analyzable in R. Extending to these packages, the purpose of developing
this package, ggkegg
, is to allow for tidy manipulation of
KEGG information by the power of tidygraph
, to plot the
relevant information in flexible and customizable ways using grammar of
graphics, to examine the global and overview maps consisting of
compounds and reactions.
The users can obtain a KEGG PATHWAY tbl_graph
by
pathway
function. If you want to cache the file, please
specify use_cache=TRUE
, and if you already have the XML
files of the pathway, please specify the directory of the file with
directory
argument. Here, we obtain Cell cycle
pathway (hsa04110
) using cache. pathway_id
column is inserted to node and edge by default, which allows for the
identification of the pathway ID in the other functions.
library(ggkegg)
library(tidygraph)
library(dplyr)
graph <- ggkegg::pathway("hsa04110", use_cache=TRUE)
graph
## # A tbl_graph: 134 nodes and 157 edges
## #
## # A directed acyclic multigraph with 40 components
## #
## # Node Data: 134 × 18 (active)
## name type reaction graphics_name x y width height fgcolor bgcolor
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 hsa:10… gene <NA> CDKN2A, ARF,… 532 -218 46 17 #000000 #BFFFBF
## 2 hsa:51… gene <NA> FZR1, CDC20C… 981 -630 46 17 #000000 #BFFFBF
## 3 hsa:41… gene <NA> MCM2, BM28, … 553 -681 46 17 #000000 #BFFFBF
## 4 hsa:23… gene <NA> ORC6, ORC6L.… 494 -681 46 17 #000000 #BFFFBF
## 5 hsa:10… gene <NA> ANAPC10, APC… 981 -392 46 17 #000000 #BFFFBF
## 6 hsa:10… gene <NA> ANAPC10, APC… 981 -613 46 17 #000000 #BFFFBF
## 7 hsa:65… gene <NA> SKP1, EMC19,… 188 -613 46 17 #000000 #BFFFBF
## 8 hsa:65… gene <NA> SKP1, EMC19,… 432 -285 46 17 #000000 #BFFFBF
## 9 hsa:983 gene <NA> CDK1, CDC2, … 780 -562 46 17 #000000 #BFFFBF
## 10 hsa:701 gene <NA> BUB1B, BUB1b… 873 -392 46 17 #000000 #BFFFBF
## # ℹ 124 more rows
## # ℹ 8 more variables: graphics_type <chr>, coords <chr>, xmin <dbl>,
## # xmax <dbl>, ymin <dbl>, ymax <dbl>, orig.id <chr>, pathway_id <chr>
## #
## # Edge Data: 157 × 6
## from to type subtype_name subtype_value pathway_id
## <int> <int> <chr> <chr> <chr> <chr>
## 1 118 39 GErel expression --> hsa04110
## 2 50 61 PPrel inhibition --| hsa04110
## 3 50 61 PPrel phosphorylation +p hsa04110
## # ℹ 154 more rows
The output can be analysed readily using tidygraph
and
dplyr
verbs. For example, centrality calculations can be
performed as follows.
graph |>
mutate(degree=centrality_degree(mode="all"),
betweenness=centrality_betweenness()) |>
activate(nodes) |>
filter(type=="gene") |>
arrange(desc(degree)) |>
as_tibble() |>
relocate(degree, betweenness)
## # A tibble: 112 × 20
## degree betweenness name type reaction graphics_name x y width
## <dbl> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 11 144 hsa:7157 gene <NA> TP53, BCC7, … 590 -337 46
## 2 10 8 hsa:993 gene <NA> CDC25A, CDC2… 614 -496 46
## 3 9 0 hsa:983 gene <NA> CDK1, CDC2, … 689 -562 46
## 4 9 78.7 hsa:5925 gene <NA> RB1, OSRC, P… 353 -630 46
## 5 8 15 hsa:5347 gene <NA> PLK1, PLK, S… 862 -562 46
## 6 8 7 hsa:1111 h… gene <NA> CHEK1, CHK1,… 696 -393 46
## 7 7 0 hsa:983 gene <NA> CDK1, CDC2, … 780 -562 46
## 8 7 161. hsa:1026 gene <NA> CDKN1A, CAP2… 459 -407 46
## 9 7 5 hsa:994 hs… gene <NA> CDC25B... 830 -496 46
## 10 6 7 hsa:9088 gene <NA> PKMYT1, MYT1… 763 -622 46
## # ℹ 102 more rows
## # ℹ 11 more variables: height <dbl>, fgcolor <chr>, bgcolor <chr>,
## # graphics_type <chr>, coords <chr>, xmin <dbl>, xmax <dbl>, ymin <dbl>,
## # ymax <dbl>, orig.id <chr>, pathway_id <chr>
ggraph
The parsed tbl_graph
can be used to plot the information
by ggraph
using the grammar of graphics. The components in
the graph such as nodes, edges, and text can be plotted layer by
layer.
graph <- graph |> mutate(showname=strsplit(graphics_name, ",") |>
vapply("[", 1, FUN.VALUE="a"))
ggraph(graph, layout="manual", x=x, y=y)+
geom_edge_parallel(aes(linetype=subtype_name),
arrow=arrow(length=unit(1,"mm"), type="closed"),
end_cap=circle(1,"cm"),
start_cap=circle(1,"cm"))+
geom_node_rect(aes(fill=I(bgcolor),
filter=type == "gene"),
color="black")+
geom_node_text(aes(label=showname,
filter=type == "gene"),
size=2)+
theme_void()
Besides the default ordering, various layout functions in
igraph
and ggraph
can be used.
graph |> mutate(x=NULL, y=NULL) |>
ggraph(layout="nicely")+
geom_edge_parallel(aes(color=subtype_name),
arrow=arrow(length=unit(1,"mm"), type="closed"),
end_cap=circle(0.1,"cm"),
start_cap=circle(0.1,"cm"))+
geom_node_point(aes(filter=type == "gene"),
color="black")+
geom_node_point(aes(filter=type == "group"),
color="tomato")+
geom_node_text(aes(label=showname,
filter=type == "gene"),
size=3, repel=TRUE, bg.colour="white")+
scale_edge_color_viridis(discrete=TRUE)+
theme_void()
In the above example, graphics_name
column in the node
table were used, which are available in the default KGML file. Some of
them are truncated, and the user can convert identifiers using
convert_id
function to be used in mutate
. One
can pipe the functions to convert name
column consisting of
hsa
KEGG gene IDs in node table of
tbl_graph
.
graph |>
activate(nodes) |>
mutate(hsa=convert_id("hsa")) |>
filter(type == "gene") |>
as_tibble() |>
relocate(hsa)
## # A tibble: 112 × 20
## hsa name type reaction graphics_name x y width height fgcolor
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 CDKN2A hsa:10… gene <NA> CDKN2A, ARF,… 532 -218 46 17 #000000
## 2 FZR1 hsa:51… gene <NA> FZR1, CDC20C… 981 -630 46 17 #000000
## 3 MCM2 hsa:41… gene <NA> MCM2, BM28, … 553 -681 46 17 #000000
## 4 ORC6 hsa:23… gene <NA> ORC6, ORC6L.… 494 -681 46 17 #000000
## 5 ANAPC10 hsa:10… gene <NA> ANAPC10, APC… 981 -392 46 17 #000000
## 6 ANAPC10 hsa:10… gene <NA> ANAPC10, APC… 981 -613 46 17 #000000
## 7 SKP1 hsa:65… gene <NA> SKP1, EMC19,… 188 -613 46 17 #000000
## 8 SKP1 hsa:65… gene <NA> SKP1, EMC19,… 432 -285 46 17 #000000
## 9 CDK1 hsa:983 gene <NA> CDK1, CDC2, … 780 -562 46 17 #000000
## 10 BUB1B hsa:701 gene <NA> BUB1B, BUB1b… 873 -392 46 17 #000000
## # ℹ 102 more rows
## # ℹ 10 more variables: bgcolor <chr>, graphics_type <chr>, coords <chr>,
## # xmin <dbl>, xmax <dbl>, ymin <dbl>, ymax <dbl>, orig.id <chr>,
## # pathway_id <chr>, showname <chr>
highlight_set_nodes()
and
highlight_set_edges()
can be used to identify nodes that
satisfy query IDs. Nodes often have multiple IDs, and user can choose
how="any"
(if one of identifiers in the nodes matches the
query) or how="all"
(if all of the identifiers in the nodes
match the query) to highlight.
graph |>
activate(nodes) |>
mutate(highlight=highlight_set_nodes("hsa:7157")) |>
ggraph(layout="manual", x=x, y=y)+
geom_node_rect(aes(fill=I(bgcolor),
filter=type == "gene"), color="black")+
geom_node_rect(aes(fill="tomato", filter=highlight), color="black")+
geom_node_text(aes(label=showname,
filter=type == "gene"), size=2)+
geom_edge_parallel(aes(linetype=subtype_name),
arrow=arrow(length=unit(1,"mm"),
type="closed"),
end_cap=circle(1,"cm"),
start_cap=circle(1,"cm"))+
theme_void()
We can use overlay_raw_map
to overlay the raw KEGG
images on the created ggraph
. The node and text can be
directly customized by using various geoms, effects such as
ggfx
, and scaling functions. The code below creates nodes
using default parsed background color and just overlay the image.
KEGG MODULE can be parsed and used in the analysis. The formula to
obtain module is the same as pathway. Here, we use test pathway which
contains two KEGG ORTHOLOGY, two compounds and one reaction. This will
create kegg_module
class object storing definition and
reactions.
## M00002
## Glycolysis, core module involving three-carbon compounds
The module can be visualized by text-based or network-based,
depicting how the KOs interact each other. For text based visualization
like the one shown in the original KEGG website,
module_text
can be used.
For network based visualization,
obtain_sequential_module_definition
can be used.
## Network-based
mod |>
obtain_sequential_module_definition() |> ## return tbl_graph
plot_module_blocks()
We can assess module completeness, as well as user-defined module
abundances. Please refer to the module
section of documentation. The network can be created by the same
way, and create kegg_network
class object storing
information.
The package supports direct importing and visualization, and
investigation of the results of the other packages such as enrichment
analysis results from clusterProfiler
and differential
expression analysis results from DESeq2
. Pplease refer to
use
cases in the documentation for more detailed use cases.
ggkegg
ggkegg
function can be used with various input. For
example, if the user provides pathway ID, the function automatically
returns the ggraph
with the original layout, which can be
used directly for stacking geoms. The other supported IDs are module,
network, and also the enrichResult
object, and the other
options such as converting IDs are available.
## [1] "ggraph" "gg" "ggplot"
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] dplyr_1.1.4 ggkegg_1.5.0 tidygraph_1.3.1 igraph_2.1.2
## [5] XML_3.99-0.17 ggraph_2.2.1 ggplot2_3.5.1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 rjson_0.2.23 xfun_0.49
## [4] bslib_0.8.0 GlobalOptions_0.1.2 ggrepel_0.9.6
## [7] vctrs_0.6.5 tools_4.4.2 generics_0.1.3
## [10] curl_6.0.1 tibble_3.2.1 RSQLite_2.3.9
## [13] blob_1.2.4 pkgconfig_2.0.3 data.table_1.16.4
## [16] dbplyr_2.5.0 lifecycle_1.0.4 stringr_1.5.1
## [19] compiler_4.4.2 farver_2.1.2 munsell_0.5.1
## [22] ggforce_0.4.2 graphlayouts_1.2.1 htmltools_0.5.8.1
## [25] sys_3.4.3 buildtools_1.0.0 sass_0.4.9
## [28] yaml_2.3.10 pillar_1.10.0 crayon_1.5.3
## [31] jquerylib_0.1.4 tidyr_1.3.1 MASS_7.3-61
## [34] cachem_1.1.0 magick_2.8.5 viridis_0.6.5
## [37] tidyselect_1.2.1 digest_0.6.37 stringi_1.8.4
## [40] purrr_1.0.2 labeling_0.4.3 maketools_1.3.1
## [43] shadowtext_0.1.4 polyclip_1.10-7 fastmap_1.2.0
## [46] grid_4.4.2 colorspace_2.1-1 cli_3.6.3
## [49] magrittr_2.0.3 patchwork_1.3.0 utf8_1.2.4
## [52] withr_3.0.2 filelock_1.0.3 scales_1.3.0
## [55] bit64_4.5.2 rmarkdown_2.29 httr_1.4.7
## [58] bit_4.5.0.1 gridExtra_2.3 GetoptLong_1.0.5
## [61] memoise_2.0.1 evaluate_1.0.1 knitr_1.49
## [64] BiocFileCache_2.15.0 viridisLite_0.4.2 rlang_1.1.4
## [67] Rcpp_1.0.13-1 glue_1.8.0 DBI_1.2.3
## [70] tweenr_2.0.3 BiocManager_1.30.25 jsonlite_1.8.9
## [73] R6_2.5.1