Title: | Visualization tools for genomic data |
---|---|
Description: | The ggbio package extends and specializes the grammar of graphics for biological data. The graphics are designed to answer common scientific questions, in particular those often asked of high throughput genomics data. All core Bioconductor data structures are supported, where appropriate. The package supports detailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several splicing summaries. |
Authors: | Tengfei Yin [aut], Michael Lawrence [aut, ths, cre], Dianne Cook [aut, ths], Johannes Rainer [ctb] |
Maintainer: | Michael Lawrence <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.55.0 |
Built: | 2024-12-29 07:01:06 UTC |
Source: | https://github.com/bioc/ggbio |
Arrange grobs and parse their legend, then put it together on the right.
arrangeGrobByParsingLegend(..., nrow = NULL, ncol = NULL, widths = c(4, 1), legend.idx = NULL)
arrangeGrobByParsingLegend(..., nrow = NULL, ncol = NULL, widths = c(4, 1), legend.idx = NULL)
... |
ggplot graphics. |
nrow |
number of row for layout. |
ncol |
number of columns for layout |
widths |
width ratio for plot group and legend group. |
legend.idx |
legend index you want to keep. |
a
Tengfei Yin
library(ggplot2) p1 <- qplot(x = mpg, y= cyl, data = mtcars, color = carb) p2 <- qplot(x = mpg, y= cyl, data = mtcars, color = wt) p3 <- qplot(x = mpg, y= cyl, data = mtcars, color = qsec) p4 <- qplot(x = mpg, y= cyl, data = mtcars, color = gear) arrangeGrobByParsingLegend(p1, p2, p3, p4) arrangeGrobByParsingLegend(p1, p2, p3, p4, ncol = 1) arrangeGrobByParsingLegend(p1, p2, p3, p4, legend.idx = 2)
library(ggplot2) p1 <- qplot(x = mpg, y= cyl, data = mtcars, color = carb) p2 <- qplot(x = mpg, y= cyl, data = mtcars, color = wt) p3 <- qplot(x = mpg, y= cyl, data = mtcars, color = qsec) p4 <- qplot(x = mpg, y= cyl, data = mtcars, color = gear) arrangeGrobByParsingLegend(p1, p2, p3, p4) arrangeGrobByParsingLegend(p1, p2, p3, p4, ncol = 1) arrangeGrobByParsingLegend(p1, p2, p3, p4, legend.idx = 2)
autoplot
is a generic function to visualize various data
object, it tries to give better default graphics and customized
choices for each data type, quick and convenient to explore your
genomic data compare to low level ggplot
method, it is much
simpler and easy to produce fairly complicate graphics, though you may
lose some flexibility for each layer.
## S4 method for signature 'GRanges' autoplot(object, ..., chr, xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, space.skip = 0.1, legend = TRUE, geom = NULL, stat = NULL, chr.weight = NULL, coord = c("default", "genome", "truncate_gaps"), layout = c("linear", "karyogram", "circle")) ## S4 method for signature 'GRangesList' autoplot(object, ..., xlab, ylab, main, indName = "grl_name", geom = NULL, stat = NULL, coverage.col = "gray50", coverage.fill = coverage.col, group.selfish = FALSE) ## S4 method for signature 'IRanges' autoplot(object, ..., xlab, ylab, main) ## S4 method for signature 'Seqinfo' autoplot(object, ideogram = FALSE, ... ) ## S4 method for signature 'GAlignments' autoplot(object, ..., xlab, ylab, main, which, geom = NULL, stat = NULL) ## S4 method for signature 'BamFile' autoplot(object, ..., which, xlab, ylab, main, bsgenome, geom = "line", stat = "coverage", method = c("raw", "estimate"), coord = c("linear", "genome"), resize.extra = 10, space.skip = 0.1, show.coverage = TRUE) ## S4 method for signature 'character' autoplot(object, ..., xlab, ylab, main, which) ## S4 method for signature 'TxDbOREnsDb' autoplot(object, which, ..., xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, mode = c("full", "reduce"),geom = c("alignment"), stat = c("identity", "reduce"), names.expr = "tx_name", label = TRUE) ## S4 method for signature 'BSgenome' autoplot(object, which, ..., xlab, ylab, main, geom = NULL) ## S4 method for signature 'Rle' autoplot(object, ..., xlab, ylab, main, binwidth, nbin = 30, geom = NULL, stat = c("bin", "identity", "slice"), type = c("viewSums", "viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' autoplot(object, ..., xlab, ylab, main, nbin = 30, binwidth, facetByRow = TRUE, stat = c("bin", "identity", "slice"), geom = NULL, type = c("viewSums", "viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'matrix' autoplot(object, ..., xlab, ylab, main, geom = c("tile", "raster"), axis.text.angle = NULL, hjust = 0.5, na.value = NULL, rownames.label = TRUE, colnames.label = TRUE, axis.text.x = TRUE, axis.text.y = TRUE) ## S4 method for signature 'ExpressionSet' autoplot(object, ..., type = c("heatmap", "none", "scatterplot.matrix", "pcp", "MA", "boxplot", "mean-sd"), test.method = "t", rotate = FALSE, pheno.plot = FALSE, main_to_pheno = 4.5, padding = 0.2) ## S4 method for signature 'RangedSummarizedExperiment' autoplot(object, ..., type = c("heatmap", "link", "pcp", "boxplot", "scatterplot.matrix"), pheno.plot = FALSE, main_to_pheno = 4.5, padding = 0.2, assay.id = 1) ## S4 method for signature 'VCF' autoplot(object, ..., xlab, ylab, main, assay.id, type = c("default", "geno", "info", "fixed"), full.string = FALSE, ref.show = TRUE, genome.axis = TRUE, transpose = TRUE) ## S4 method for signature 'OrganismDb' autoplot(object, which, ..., xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, geom = c("alignment"), stat = c("identity", "reduce"), columns = c("TXNAME", "SYMBOL", "TXID", "GENEID"), names.expr = "SYMBOL", label = TRUE, label.color = "gray40") ## S4 method for signature 'VRanges' autoplot(object, ...,which = NULL, arrow = TRUE, indel.col = "gray30", geom = NULL, xlab, ylab, main) ## S4 method for signature 'TabixFile' autoplot(object, which, ...)
## S4 method for signature 'GRanges' autoplot(object, ..., chr, xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, space.skip = 0.1, legend = TRUE, geom = NULL, stat = NULL, chr.weight = NULL, coord = c("default", "genome", "truncate_gaps"), layout = c("linear", "karyogram", "circle")) ## S4 method for signature 'GRangesList' autoplot(object, ..., xlab, ylab, main, indName = "grl_name", geom = NULL, stat = NULL, coverage.col = "gray50", coverage.fill = coverage.col, group.selfish = FALSE) ## S4 method for signature 'IRanges' autoplot(object, ..., xlab, ylab, main) ## S4 method for signature 'Seqinfo' autoplot(object, ideogram = FALSE, ... ) ## S4 method for signature 'GAlignments' autoplot(object, ..., xlab, ylab, main, which, geom = NULL, stat = NULL) ## S4 method for signature 'BamFile' autoplot(object, ..., which, xlab, ylab, main, bsgenome, geom = "line", stat = "coverage", method = c("raw", "estimate"), coord = c("linear", "genome"), resize.extra = 10, space.skip = 0.1, show.coverage = TRUE) ## S4 method for signature 'character' autoplot(object, ..., xlab, ylab, main, which) ## S4 method for signature 'TxDbOREnsDb' autoplot(object, which, ..., xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, mode = c("full", "reduce"),geom = c("alignment"), stat = c("identity", "reduce"), names.expr = "tx_name", label = TRUE) ## S4 method for signature 'BSgenome' autoplot(object, which, ..., xlab, ylab, main, geom = NULL) ## S4 method for signature 'Rle' autoplot(object, ..., xlab, ylab, main, binwidth, nbin = 30, geom = NULL, stat = c("bin", "identity", "slice"), type = c("viewSums", "viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' autoplot(object, ..., xlab, ylab, main, nbin = 30, binwidth, facetByRow = TRUE, stat = c("bin", "identity", "slice"), geom = NULL, type = c("viewSums", "viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'matrix' autoplot(object, ..., xlab, ylab, main, geom = c("tile", "raster"), axis.text.angle = NULL, hjust = 0.5, na.value = NULL, rownames.label = TRUE, colnames.label = TRUE, axis.text.x = TRUE, axis.text.y = TRUE) ## S4 method for signature 'ExpressionSet' autoplot(object, ..., type = c("heatmap", "none", "scatterplot.matrix", "pcp", "MA", "boxplot", "mean-sd"), test.method = "t", rotate = FALSE, pheno.plot = FALSE, main_to_pheno = 4.5, padding = 0.2) ## S4 method for signature 'RangedSummarizedExperiment' autoplot(object, ..., type = c("heatmap", "link", "pcp", "boxplot", "scatterplot.matrix"), pheno.plot = FALSE, main_to_pheno = 4.5, padding = 0.2, assay.id = 1) ## S4 method for signature 'VCF' autoplot(object, ..., xlab, ylab, main, assay.id, type = c("default", "geno", "info", "fixed"), full.string = FALSE, ref.show = TRUE, genome.axis = TRUE, transpose = TRUE) ## S4 method for signature 'OrganismDb' autoplot(object, which, ..., xlab, ylab, main, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, geom = c("alignment"), stat = c("identity", "reduce"), columns = c("TXNAME", "SYMBOL", "TXID", "GENEID"), names.expr = "SYMBOL", label = TRUE, label.color = "gray40") ## S4 method for signature 'VRanges' autoplot(object, ...,which = NULL, arrow = TRUE, indel.col = "gray30", geom = NULL, xlab, ylab, main) ## S4 method for signature 'TabixFile' autoplot(object, which, ...)
object |
object to be plot. |
columns |
columns passed to method works for |
label.color |
when label turned on for gene model, this parameter controls label color. |
arrow |
arrow passed to geome_alignment function to control intron arrow attributes. |
indel.col |
indel colors. |
ideogram |
Weather to call |
transpose |
logical value, defaut TRUE, always make features from VCF as x, so we can use it to map to genomic position. |
axis.text.angle |
axis text angle. |
axis.text.x |
logical value indicates whether to show x axis and labels or not. |
axis.text.y |
logical value indicates whether to show y axis and labels or not. |
hjust |
horizontal just for axis text. |
rownames.label |
logical value indicates whether to show rownames of matrix as y label or not. |
colnames.label |
logical value indicates whether to show colnames of matrix as y label or not. |
na.value |
color for NA value. |
rotate |
|
pheno.plot |
show pheno plot or not. |
main_to_pheno |
main matrix plot width to pheno plot width ratio. |
padding |
padding between plots. |
assay.id |
index for assay you are going to use. |
geom |
Geom to use (Single character for now). Please see section Geometry for details. |
truncate.gaps |
logical value indicate to truncate gaps or not. |
truncate.fun |
shrinkage function. Please see |
ratio |
used in |
mode |
Display mode for genomic features. |
space.skip |
space ratio between chromosome spaces in coordate genome. |
coord |
Coodinate system. |
chr.weight |
numeric vectors which sum to <1, the names of vectors has to be matched with seqnames in seqinfo, and you can only specify part of the seqnames, other lengths of chromosomes will be assined proportionally to their seqlengths, for example, you could specify chr1 to be 0.5, so the chr1 will take half of the space and other chromosomes squeezed to take left of the space. |
legend |
A logical value indicates whether to show legend or not. Default is
|
which |
A |
show.coverage |
A logical value indicates whether to show coverage or not. This is used for geom "mismatch.summary". |
resize.extra |
A numeric value used to add buffer to intervals to compute stepping levels on. |
bsgenome |
A BSgenome object. Only need for geom "mismatch.summary". |
xlab |
x label. |
ylab |
y label. |
label |
logic value, default TRUE. To show label by the side of features. |
facetByRow |
A logical value, default is TRUE ,facet RleList by row. If FALSE, facet by column. |
type |
For Rle/RleList, "raw" plot everything, so be careful, that would be
pretty slow if you have too much data. For "viewMins", "viewMaxs",
"viewMeans", "viewSums", require extra arguments to slice the
object. so users need to at least provide For ExpreesionSet, ploting types. |
layout |
Layout including linear, circular and karyogram. for |
method |
method used for parsing coverage from bam files. 'estimate' use fast esitmated method and 'raw' use relatively slow parsing method. |
test.method |
test method |
... |
Extra parameters. Usually are those parameters used in autoplot to control aesthetics or geometries. |
main |
title. |
stat |
statistical transformation. |
indName |
When coerce |
coverage.col |
coverage stroke color. |
coverage.fill |
coverage fill color. |
group.selfish |
Passed to |
names.expr |
names expression used for creating labels. For
|
binwidth |
width of the bins. |
nbin |
number of bins. |
genome.axis |
logical value, if TRUE, whenever possible, try to parse genomic postition for each column(e.g. RangedSummarizedExperiment), show column as exatcly the genomic position instead of showing them side by side and indexed from 1. |
full.string |
logical value. If TRUE, show full string of indels in plot for VCF. |
ref.show |
logical value. If TRUE, show REF in VCF at bottom track. |
chr |
characters indicates the seqnames to be subseted. |
A ggplot
object, so you can use common features from ggplot2
package to manipulate the plot.
autoplot
is redefined as generic s4 method inside this package,
user could use autoplot
in the way they are familiar with, and
we are also setting limitation inside this package, like
scales X scales is always genomic coordinates in most cases, x could be specified as start/end/midpoint when it's special geoms for interval data like point/line
colors Try to use default color scheme defined in biovizBase package as possible as it can
We have developed new geom
for different objects, some of
them may require extra parameters you need to provide. Some of the
geom are more like geom + stat in ggplot2
package. e.g. "coverage.line" and "coverage.polygon".We simply combine
them together, but in the future, we plan to make it more general.
This package is designed for only biological data, especially genomic
data if users want to explore the data in a more flexible way, you
could simply coerce the GRanges
to a data.frame, then
just use formal autoplot
function in ggplot2, or autoplot
generic for data.frame
.
Some objects share the same geom so we introduce all the geom together in this section
Showing all the intervals as stepped rectangle, colored by strand automatically.
For TxDb
or EnsDb
objects, showing full model.
Showing all the intervals as stepped segments, colored by strand automatically.
For object BSgenome
, show nucleotides as colored segment.
For Rle/RleList, show histogram-like segments.
Showing interval as line, the interval data could also be just single position when start = end, x is one of start/end/midpoint, y value is unquoted name in elementMetadata column names. y value is required.
Showing interval as point, the interval data could also be just single position when start = end, x is one of start/end/midpoint, y value is unquoted name in elementMetadata column names. y value is required.
For object BSgenome
, show nucleotides as colored point.
Coverage showing as lines for interval data.
Coverage showing as polygon for interval data.
Splicing summary. The size and width of the line and rectangle should represent the counts in each model. Need to provide model.
For TxDb
or EnsDb
objects, showing
single(reduced) model only.
For TxDb
or EnsDb
objects, showing
transcirpts isoforms.
Showing color coded mismatched stacked bar to indicate the proportion of mismatching at each position, the reference is set to gray.
For object BSgenome
, show nucleotides as colored text.
For object BSgenome
, show nucleotides as colored rectangle.
Faceting in ggbio package is a little differnt from ggplot2 in several ways
The faceted column could only be seqnames or regions on the genome. So we limited the formula passing to facet argument, e.g something \~ seqnames, is accepted formula, you can change "something" to variable name in the elementMetadata. But you can not change the second part.
Sometime, we need to view different regions, so we also have a
facet_gr argument which accept a GRanges
. If
this is provided, it will override the default seqnames and use
provided region to facet the graphics, this might be useful for
different gene centric views.
Tengfei Yin
set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) idx <- sample(1:length(gr), size = 50) ################################################### ### code chunk number 3: default ################################################### autoplot(gr[idx]) ################################################### ### code chunk number 4: bar-default-pre ################################################### set.seed(123) gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b <- c(gr.b, gr.b2) head(gr.b) ################################################### ### code chunk number 5: bar-default ################################################### p1 <- autoplot(gr.b, geom = "bar") ## use value to fill the bar p2 <- autoplot(gr.b, geom = "bar", aes(fill = value)) tracks(default = p1, fill = p2) ################################################### ### code chunk number 6: autoplot.Rnw:236-237 ################################################### autoplot(gr[idx], geom = "arch", aes(color = value), facets = sample ~ seqnames) ################################################### ### code chunk number 7: gr-group ################################################### gra <- GRanges("chr1", IRanges(c(1,7,20), end = c(4,9,30)), group = c("a", "a", "b")) ## if you desn't specify group, then group based on stepping levels, and gaps are computed without ## considering extra group method p1 <- autoplot(gra, aes(fill = group), geom = "alignment") ## when use group method, gaps only computed for grouped intervals. ## default is group.selfish = TRUE, each group keep one row. ## in this way, group labels could be shown as y axis. p2 <- autoplot(gra, aes(fill = group, group = group), geom = "alignment") ## group.selfish = FALSE, save space p3 <- autoplot(gra, aes(fill = group, group = group), geom = "alignment", group.selfish = FALSE) tracks('non-group' = p1,'group.selfish = TRUE' = p2 , 'group.selfish = FALSE' = p3) ################################################### ### code chunk number 8: gr-facet-strand ################################################### autoplot(gr, stat = "coverage", geom = "area", facets = strand ~ seqnames, aes(fill = strand)) ################################################### ### code chunk number 9: gr-autoplot-circle ################################################### autoplot(gr[idx], layout = 'circle') ################################################### ### code chunk number 10: gr-circle ################################################### seqlengths(gr) <- c(400, 500, 700) values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))] idx <- sample(1:length(gr), size = 50) gr <- gr[idx] ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr, geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1) ################################################### ### code chunk number 11: seqinfo-src ################################################### data(hg19Ideogram, package = "biovizBase") sq <- seqinfo(hg19Ideogram) sq ################################################### ### code chunk number 12: seqinfo ################################################### autoplot(sq[paste0("chr", c(1:22, "X"))]) ################################################### ### code chunk number 13: ir-load ################################################### set.seed(1) N <- 100 ir <- IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)) ## add meta data df <- DataFrame(value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) values(ir) <- df ir ################################################### ### code chunk number 14: ir-exp ################################################### p1 <- autoplot(ir) p2 <- autoplot(ir, aes(fill = pair)) + theme(legend.position = "none") p3 <- autoplot(ir, stat = "coverage", geom = "line", facets = sample ~. ) p4 <- autoplot(ir, stat = "reduce") tracks(p1, p2, p3, p4) ################################################### ### code chunk number 15: grl-simul ################################################### set.seed(1) N <- 100 ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(30:40, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) grl <- split(gr, values(gr)$pair) ################################################### ### code chunk number 16: grl-exp ################################################### ## default gap.geom is 'chevron' p1 <- autoplot(grl, group.selfish = TRUE) p2 <- autoplot(grl, group.selfish = TRUE, main.geom = "arrowrect", gap.geom = "segment") tracks(p1, p2) ################################################### ### code chunk number 17: grl-name ################################################### autoplot(grl, aes(fill = ..grl_name..)) ## equal to ## autoplot(grl, aes(fill = grl_name)) ################################################### ### code chunk number 18: rle-simul ################################################### library(IRanges) set.seed(1) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) ## @knitr create xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRle ################################################### ### code chunk number 19: rle-bin ################################################### p1 <- autoplot(xRle) p2 <- autoplot(xRle, nbin = 80) p3 <- autoplot(xRle, geom = "heatmap", nbin = 200) tracks('nbin = 30' = p1, "nbin = 80" = p2, "nbin = 200(heatmap)" = p3) ################################################### ### code chunk number 20: rle-id ################################################### p1 <- autoplot(xRle, stat = "identity") p2 <- autoplot(xRle, stat = "identity", geom = "point", color = "red") tracks('line' = p1, "point" = p2) ################################################### ### code chunk number 21: rle-slice ################################################### p1 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5) p2 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap") tracks('bar' = p1, "heatmap" = p2) ################################################### ### code chunk number 22: rlel-simul ################################################### xRleList <- RleList(xRle, 2L * xRle) xRleList ################################################### ### code chunk number 23: rlel-bin ################################################### p1 <- autoplot(xRleList) p2 <- autoplot(xRleList, nbin = 80) p3 <- autoplot(xRleList, geom = "heatmap", nbin = 200) tracks('nbin = 30' = p1, "nbin = 80" = p2, "nbin = 200(heatmap)" = p3) ################################################### ### code chunk number 24: rlel-id ################################################### p1 <- autoplot(xRleList, stat = "identity") p2 <- autoplot(xRleList, stat = "identity", geom = "point", color = "red") tracks('line' = p1, "point" = p2) ################################################### ### code chunk number 25: rlel-slice ################################################### p1 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5) p2 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap") tracks('bar' = p1, "heatmap" = p2) ################################################### ### code chunk number 26: txdb ################################################### library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ################################################### ### code chunk number 27: txdb-visual ################################################### p1 <- autoplot(txdb, which = genesymbol["ALDOA"], names.expr = "tx_name:::gene_id") p2 <- autoplot(txdb, which = genesymbol["ALDOA"], stat = "reduce", color = "brown", fill = "brown") tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("") ################################################### ### EnsDb ################################################### ## Fetching gene models from an EnsDb object. library(EnsDb.Hsapiens.v75) ensdb <- EnsDb.Hsapiens.v75 ## We use a GenenameFilter to specifically retrieve all transcripts for that gene. p1 <- autoplot(ensdb, which = GeneNameFilter("ALDOA"), names.expr = "gene_name") ## Instead of providing the GenenameFilter, we can also use filter expressions p2 <- autoplot(ensdb, which = ~ genename == "ALDOA", stat = "reduce", color = "brown", fill = "brown") tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("") ## Alternatively, we can specify a GRangesFilter and display all genes ## that are (partially) overlapping with that genomic region: gr <- GRanges(seqnames=16, IRanges(30768000, 30770000), strand="+") autoplot(ensdb, GRangesFilter(gr, "any"), names.expr="gene_name") ## Just submitting the GRanges object also works. autoplot(ensdb, gr, names.expr="gene_name") ## Or genes encoded on both strands. gr <- GRanges(seqnames = 16, IRanges(30768000, 30770000), strand = "*") autoplot(ensdb, GRangesFilter(gr), names.expr="gene_name") ## Also, we can spefify directly the gene ids and plot all transcripts of these ## genes (not only those overlapping with the region) autoplot(ensdb, GeneIdFilter(c("ENSG00000196118", "ENSG00000156873"))) ################################################### ### code chunk number 28: ga-load ################################################### library(GenomicAlignments) data("genesymbol", package = "biovizBase") bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") which <- keepStandardChromosomes(genesymbol["RBM17"]) ## need to set use.names = TRUE ga <- readGAlignments(bamfile, param = ScanBamParam(which = which), use.names = TRUE) ################################################### ### code chunk number 29: ga-exp ################################################### p1 <- autoplot(ga) p2 <- autoplot(ga, geom = "rect") p3 <- autoplot(ga, geom = "line", stat = "coverage") tracks(default = p1, rect = p2, coverage = p3) ################################################### ### code chunk number 30: bf-load (eval = FALSE) ################################################### ## library(Rsamtools) ## bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam" ## bf <- BamFile(bamfile) ################################################### ### code chunk number 31: bf-est-cov (eval = FALSE) ################################################### ## autoplot(bamfile) ## autoplot(bamfile, which = c("chr1", "chr2")) ## autoplot(bf) ## autoplot(bf, which = c("chr1", "chr2")) ## ## data(genesymbol, package = "biovizBase") ## autoplot(bamfile, method = "raw", which = genesymbol["ALDOA"]) ## ## library(BSgenome.Hsapiens.UCSC.hg19) ## autoplot(bf, stat = "mismatch", which = genesymbol["ALDOA"], bsgenome = Hsapiens) ################################################### ### code chunk number 32: char-bam (eval = FALSE) ################################################### ## bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam" ## autoplot(bamfile) ################################################### ### code chunk number 33: char-gr ################################################### library(rtracklayer) test_path <- system.file("tests", package = "rtracklayer") test_bed <- file.path(test_path, "test.bed") autoplot(test_bed, aes(fill = name)) ################################################### ### matrix ################################################### volcano <- volcano[20:70, 20:60] - 150 autoplot(volcano) autoplot(volcano, xlab = "xlab", main = "main", ylab = "ylab") ## special scale theme for 0-centered values autoplot(volcano, geom = "raster")+scale_fill_fold_change() ## when a matrix has colnames and rownames label them by default colnames(volcano) <- sort(sample(1:300, size = ncol(volcano), replace = FALSE)) autoplot(volcano)+scale_fill_fold_change() rownames(volcano) <- letters[sample(1:24, size = nrow(volcano), replace = TRUE)] autoplot(volcano) ## even with row/col names, you could also disable it and just use numeric index autoplot(volcano, colnames.label = FALSE) autoplot(volcano, rownames.label = FALSE, colnames.label = FALSE) ## don't want the axis has label?? autoplot(volcano, axis.text.x = FALSE) autoplot(volcano, axis.text.y = FALSE) # or totally remove axis colnames(volcano) <- lapply(letters[sample(1:24, size = ncol(volcano), replace = TRUE)], function(x){ paste(rep(x, 7), collapse = "") }) ## Oops, overlapped autoplot(volcano) ## tweak with it. autoplot(volcano, axis.text.angle = -45, hjust = 0) ## when character is the value x <- sample(c(letters[1:3], NA), size = 100, replace = TRUE) mx <- matrix(x, nrow = 5) autoplot(mx) ## tile gives you a white margin rownames(mx) <- LETTERS[1:5] autoplot(mx, color = "white") colnames(mx) <- LETTERS[1:20] autoplot(mx, color = "white") autoplot(mx, color = "white", size = 2) ## weird in aes(), though works ## default tile is flexible autoplot(mx, aes(width = 0.6, height = 0.6)) autoplot(mx, aes(width = 0.6, height = 0.6), na.value = "white") autoplot(mx, aes(width = 0.6, height = 0.6)) + theme_clear() ################################################### ### Views ################################################### lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- dnorm(1:5e3, mean = 1e3, sd = 200) xRle <- Rle(xVector) v1 <- Views(xRle, start = sample(.4e3:.6e3, size = 50, replace = FALSE), width =1000) autoplot(v1) names(v1) <- letters[sample(1:24, size = length(v1), replace = TRUE)] autoplot(v1) autoplot(v1, geom = "tile", aes(width = 0.5, height = 0.5)) autoplot(v1, geom = "line") autoplot(v1, geom = "line", aes(color = row)) + theme(legend.position = "none") autoplot(v1, geom = "line", facets = NULL) autoplot(v1, geom = "line", facets = NULL, alpha = 0.1) ################################################### ### ExpressionSet ################################################### library(Biobase) data(sample.ExpressionSet) sample.ExpressionSet set.seed(1) ## select 50 features idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50) eset <- sample.ExpressionSet[idx,] eset autoplot(as.matrix(pData(eset))) ## default heatmap p1 <- autoplot(eset) p2 <- p1 + scale_fill_fold_change() p2 autoplot(eset) autoplot(eset, geom = "tile", color = "white", size = 2) autoplot(eset, geom = "tile", aes(width = 0.6, height = 0.6)) autoplot(eset, pheno.plot = TRUE) idx <- order(pData(eset)[,1]) eset2 <- eset[,idx] autoplot(eset2, pheno.plot = TRUE) ## parallel coordainte plot autoplot(eset, type = "pcp") ## boxplot autoplot(eset, type = "boxplot") ## scatterplot.matrix ## slow, be carefull ##autoplot(eset[, 1:7], type = "scatterplot.matrix") ## mean-sd autoplot(eset, type = "mean-sd") ################################################### ### RangedSummarizedExperiment ################################################### library(SummarizedExperiment) nrows <- 200; ncols <- 6 counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows) counts2 <- matrix(runif(nrows * ncols, 1, 1e4), nrows) rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200, 1e5, 1e6)), width=100), strand=sample(c("+", "-"), 200, TRUE)) colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3), row.names=LETTERS[1:6]) sset <- SummarizedExperiment(assays=SimpleList(counts=counts, counts2 = counts2), rowRanges=rowRanges, colData=colData) autoplot(sset) + scale_fill_fold_change() autoplot(sset, pheno.plot = TRUE) ################################################### ### pcp ################################################### autoplot(sset, type = "pcp") ################################################### ### boxplot ################################################### autoplot(sset, type = "boxplot") ################################################### ### scatterplot matrix ################################################### ##autoplot(sset, type = "scatterplot.matrix") ################################################### ### vcf ################################################### ## Not run: library(VariantAnnotation) vcffile <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation") vcf <- readVcf(vcffile, "hg19") ## default use type 'geno' ## default use genome position autoplot(vcf) ## or disable it autoplot(vcf, genome.axis = FALSE) ## not transpose autoplot(vcf, genome.axis = FALSE, transpose = FALSE, rownames.label = FALSE) autoplot(vcf) ## use autoplot(vcf, assay.id = "DS") ## equivalent to autoplot(vcf, assay.id = 2) ## doesn't work when assay.id cannot find autoplot(vcf, assay.id = "NO") ## use AF or first autoplot(vcf, type = "info") ## geom bar autoplot(vcf, type = "info", aes(y = THETA)) autoplot(vcf, type = "info", aes(y = THETA, fill = VT, color = VT)) autoplot(vcf, type = "fixed") autoplot(vcf, type = "fixed", size = 10) + xlim(c(50310860, 50310890)) + ylim(0.75, 1.25) p1 <- autoplot(vcf, type = "fixed") + xlim(50310860, 50310890) p2 <- autoplot(vcf, type = "fixed", full.string = TRUE) + xlim(50310860, 50310890) tracks("full.string = FALSE" = p1, "full.string = TRUE" = p2)+ scale_y_continuous(breaks = NULL, limits = c(0, 3)) p3 <- autoplot(vcf, type = "fixed", ref.show = FALSE) + xlim(50310860, 50310890) + scale_y_continuous(breaks = NULL, limits = c(0, 2)) p3 ## End(Not run) ################################################### ### code chunk number 56: bs-v ################################################### library(BSgenome.Hsapiens.UCSC.hg19) data(genesymbol, package = "biovizBase") p1 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50)) p2 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50), geom = "rect") tracks(text = p1, rect = p2) ################################################### ### code chunk number 57: sessionInfo ################################################### sessionInfo()
set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) idx <- sample(1:length(gr), size = 50) ################################################### ### code chunk number 3: default ################################################### autoplot(gr[idx]) ################################################### ### code chunk number 4: bar-default-pre ################################################### set.seed(123) gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b <- c(gr.b, gr.b2) head(gr.b) ################################################### ### code chunk number 5: bar-default ################################################### p1 <- autoplot(gr.b, geom = "bar") ## use value to fill the bar p2 <- autoplot(gr.b, geom = "bar", aes(fill = value)) tracks(default = p1, fill = p2) ################################################### ### code chunk number 6: autoplot.Rnw:236-237 ################################################### autoplot(gr[idx], geom = "arch", aes(color = value), facets = sample ~ seqnames) ################################################### ### code chunk number 7: gr-group ################################################### gra <- GRanges("chr1", IRanges(c(1,7,20), end = c(4,9,30)), group = c("a", "a", "b")) ## if you desn't specify group, then group based on stepping levels, and gaps are computed without ## considering extra group method p1 <- autoplot(gra, aes(fill = group), geom = "alignment") ## when use group method, gaps only computed for grouped intervals. ## default is group.selfish = TRUE, each group keep one row. ## in this way, group labels could be shown as y axis. p2 <- autoplot(gra, aes(fill = group, group = group), geom = "alignment") ## group.selfish = FALSE, save space p3 <- autoplot(gra, aes(fill = group, group = group), geom = "alignment", group.selfish = FALSE) tracks('non-group' = p1,'group.selfish = TRUE' = p2 , 'group.selfish = FALSE' = p3) ################################################### ### code chunk number 8: gr-facet-strand ################################################### autoplot(gr, stat = "coverage", geom = "area", facets = strand ~ seqnames, aes(fill = strand)) ################################################### ### code chunk number 9: gr-autoplot-circle ################################################### autoplot(gr[idx], layout = 'circle') ################################################### ### code chunk number 10: gr-circle ################################################### seqlengths(gr) <- c(400, 500, 700) values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))] idx <- sample(1:length(gr), size = 50) gr <- gr[idx] ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr, geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1) ################################################### ### code chunk number 11: seqinfo-src ################################################### data(hg19Ideogram, package = "biovizBase") sq <- seqinfo(hg19Ideogram) sq ################################################### ### code chunk number 12: seqinfo ################################################### autoplot(sq[paste0("chr", c(1:22, "X"))]) ################################################### ### code chunk number 13: ir-load ################################################### set.seed(1) N <- 100 ir <- IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)) ## add meta data df <- DataFrame(value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) values(ir) <- df ir ################################################### ### code chunk number 14: ir-exp ################################################### p1 <- autoplot(ir) p2 <- autoplot(ir, aes(fill = pair)) + theme(legend.position = "none") p3 <- autoplot(ir, stat = "coverage", geom = "line", facets = sample ~. ) p4 <- autoplot(ir, stat = "reduce") tracks(p1, p2, p3, p4) ################################################### ### code chunk number 15: grl-simul ################################################### set.seed(1) N <- 100 ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(30:40, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) grl <- split(gr, values(gr)$pair) ################################################### ### code chunk number 16: grl-exp ################################################### ## default gap.geom is 'chevron' p1 <- autoplot(grl, group.selfish = TRUE) p2 <- autoplot(grl, group.selfish = TRUE, main.geom = "arrowrect", gap.geom = "segment") tracks(p1, p2) ################################################### ### code chunk number 17: grl-name ################################################### autoplot(grl, aes(fill = ..grl_name..)) ## equal to ## autoplot(grl, aes(fill = grl_name)) ################################################### ### code chunk number 18: rle-simul ################################################### library(IRanges) set.seed(1) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) ## @knitr create xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRle ################################################### ### code chunk number 19: rle-bin ################################################### p1 <- autoplot(xRle) p2 <- autoplot(xRle, nbin = 80) p3 <- autoplot(xRle, geom = "heatmap", nbin = 200) tracks('nbin = 30' = p1, "nbin = 80" = p2, "nbin = 200(heatmap)" = p3) ################################################### ### code chunk number 20: rle-id ################################################### p1 <- autoplot(xRle, stat = "identity") p2 <- autoplot(xRle, stat = "identity", geom = "point", color = "red") tracks('line' = p1, "point" = p2) ################################################### ### code chunk number 21: rle-slice ################################################### p1 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5) p2 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap") tracks('bar' = p1, "heatmap" = p2) ################################################### ### code chunk number 22: rlel-simul ################################################### xRleList <- RleList(xRle, 2L * xRle) xRleList ################################################### ### code chunk number 23: rlel-bin ################################################### p1 <- autoplot(xRleList) p2 <- autoplot(xRleList, nbin = 80) p3 <- autoplot(xRleList, geom = "heatmap", nbin = 200) tracks('nbin = 30' = p1, "nbin = 80" = p2, "nbin = 200(heatmap)" = p3) ################################################### ### code chunk number 24: rlel-id ################################################### p1 <- autoplot(xRleList, stat = "identity") p2 <- autoplot(xRleList, stat = "identity", geom = "point", color = "red") tracks('line' = p1, "point" = p2) ################################################### ### code chunk number 25: rlel-slice ################################################### p1 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5) p2 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap") tracks('bar' = p1, "heatmap" = p2) ################################################### ### code chunk number 26: txdb ################################################### library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ################################################### ### code chunk number 27: txdb-visual ################################################### p1 <- autoplot(txdb, which = genesymbol["ALDOA"], names.expr = "tx_name:::gene_id") p2 <- autoplot(txdb, which = genesymbol["ALDOA"], stat = "reduce", color = "brown", fill = "brown") tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("") ################################################### ### EnsDb ################################################### ## Fetching gene models from an EnsDb object. library(EnsDb.Hsapiens.v75) ensdb <- EnsDb.Hsapiens.v75 ## We use a GenenameFilter to specifically retrieve all transcripts for that gene. p1 <- autoplot(ensdb, which = GeneNameFilter("ALDOA"), names.expr = "gene_name") ## Instead of providing the GenenameFilter, we can also use filter expressions p2 <- autoplot(ensdb, which = ~ genename == "ALDOA", stat = "reduce", color = "brown", fill = "brown") tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("") ## Alternatively, we can specify a GRangesFilter and display all genes ## that are (partially) overlapping with that genomic region: gr <- GRanges(seqnames=16, IRanges(30768000, 30770000), strand="+") autoplot(ensdb, GRangesFilter(gr, "any"), names.expr="gene_name") ## Just submitting the GRanges object also works. autoplot(ensdb, gr, names.expr="gene_name") ## Or genes encoded on both strands. gr <- GRanges(seqnames = 16, IRanges(30768000, 30770000), strand = "*") autoplot(ensdb, GRangesFilter(gr), names.expr="gene_name") ## Also, we can spefify directly the gene ids and plot all transcripts of these ## genes (not only those overlapping with the region) autoplot(ensdb, GeneIdFilter(c("ENSG00000196118", "ENSG00000156873"))) ################################################### ### code chunk number 28: ga-load ################################################### library(GenomicAlignments) data("genesymbol", package = "biovizBase") bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") which <- keepStandardChromosomes(genesymbol["RBM17"]) ## need to set use.names = TRUE ga <- readGAlignments(bamfile, param = ScanBamParam(which = which), use.names = TRUE) ################################################### ### code chunk number 29: ga-exp ################################################### p1 <- autoplot(ga) p2 <- autoplot(ga, geom = "rect") p3 <- autoplot(ga, geom = "line", stat = "coverage") tracks(default = p1, rect = p2, coverage = p3) ################################################### ### code chunk number 30: bf-load (eval = FALSE) ################################################### ## library(Rsamtools) ## bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam" ## bf <- BamFile(bamfile) ################################################### ### code chunk number 31: bf-est-cov (eval = FALSE) ################################################### ## autoplot(bamfile) ## autoplot(bamfile, which = c("chr1", "chr2")) ## autoplot(bf) ## autoplot(bf, which = c("chr1", "chr2")) ## ## data(genesymbol, package = "biovizBase") ## autoplot(bamfile, method = "raw", which = genesymbol["ALDOA"]) ## ## library(BSgenome.Hsapiens.UCSC.hg19) ## autoplot(bf, stat = "mismatch", which = genesymbol["ALDOA"], bsgenome = Hsapiens) ################################################### ### code chunk number 32: char-bam (eval = FALSE) ################################################### ## bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam" ## autoplot(bamfile) ################################################### ### code chunk number 33: char-gr ################################################### library(rtracklayer) test_path <- system.file("tests", package = "rtracklayer") test_bed <- file.path(test_path, "test.bed") autoplot(test_bed, aes(fill = name)) ################################################### ### matrix ################################################### volcano <- volcano[20:70, 20:60] - 150 autoplot(volcano) autoplot(volcano, xlab = "xlab", main = "main", ylab = "ylab") ## special scale theme for 0-centered values autoplot(volcano, geom = "raster")+scale_fill_fold_change() ## when a matrix has colnames and rownames label them by default colnames(volcano) <- sort(sample(1:300, size = ncol(volcano), replace = FALSE)) autoplot(volcano)+scale_fill_fold_change() rownames(volcano) <- letters[sample(1:24, size = nrow(volcano), replace = TRUE)] autoplot(volcano) ## even with row/col names, you could also disable it and just use numeric index autoplot(volcano, colnames.label = FALSE) autoplot(volcano, rownames.label = FALSE, colnames.label = FALSE) ## don't want the axis has label?? autoplot(volcano, axis.text.x = FALSE) autoplot(volcano, axis.text.y = FALSE) # or totally remove axis colnames(volcano) <- lapply(letters[sample(1:24, size = ncol(volcano), replace = TRUE)], function(x){ paste(rep(x, 7), collapse = "") }) ## Oops, overlapped autoplot(volcano) ## tweak with it. autoplot(volcano, axis.text.angle = -45, hjust = 0) ## when character is the value x <- sample(c(letters[1:3], NA), size = 100, replace = TRUE) mx <- matrix(x, nrow = 5) autoplot(mx) ## tile gives you a white margin rownames(mx) <- LETTERS[1:5] autoplot(mx, color = "white") colnames(mx) <- LETTERS[1:20] autoplot(mx, color = "white") autoplot(mx, color = "white", size = 2) ## weird in aes(), though works ## default tile is flexible autoplot(mx, aes(width = 0.6, height = 0.6)) autoplot(mx, aes(width = 0.6, height = 0.6), na.value = "white") autoplot(mx, aes(width = 0.6, height = 0.6)) + theme_clear() ################################################### ### Views ################################################### lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- dnorm(1:5e3, mean = 1e3, sd = 200) xRle <- Rle(xVector) v1 <- Views(xRle, start = sample(.4e3:.6e3, size = 50, replace = FALSE), width =1000) autoplot(v1) names(v1) <- letters[sample(1:24, size = length(v1), replace = TRUE)] autoplot(v1) autoplot(v1, geom = "tile", aes(width = 0.5, height = 0.5)) autoplot(v1, geom = "line") autoplot(v1, geom = "line", aes(color = row)) + theme(legend.position = "none") autoplot(v1, geom = "line", facets = NULL) autoplot(v1, geom = "line", facets = NULL, alpha = 0.1) ################################################### ### ExpressionSet ################################################### library(Biobase) data(sample.ExpressionSet) sample.ExpressionSet set.seed(1) ## select 50 features idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50) eset <- sample.ExpressionSet[idx,] eset autoplot(as.matrix(pData(eset))) ## default heatmap p1 <- autoplot(eset) p2 <- p1 + scale_fill_fold_change() p2 autoplot(eset) autoplot(eset, geom = "tile", color = "white", size = 2) autoplot(eset, geom = "tile", aes(width = 0.6, height = 0.6)) autoplot(eset, pheno.plot = TRUE) idx <- order(pData(eset)[,1]) eset2 <- eset[,idx] autoplot(eset2, pheno.plot = TRUE) ## parallel coordainte plot autoplot(eset, type = "pcp") ## boxplot autoplot(eset, type = "boxplot") ## scatterplot.matrix ## slow, be carefull ##autoplot(eset[, 1:7], type = "scatterplot.matrix") ## mean-sd autoplot(eset, type = "mean-sd") ################################################### ### RangedSummarizedExperiment ################################################### library(SummarizedExperiment) nrows <- 200; ncols <- 6 counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows) counts2 <- matrix(runif(nrows * ncols, 1, 1e4), nrows) rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200, 1e5, 1e6)), width=100), strand=sample(c("+", "-"), 200, TRUE)) colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3), row.names=LETTERS[1:6]) sset <- SummarizedExperiment(assays=SimpleList(counts=counts, counts2 = counts2), rowRanges=rowRanges, colData=colData) autoplot(sset) + scale_fill_fold_change() autoplot(sset, pheno.plot = TRUE) ################################################### ### pcp ################################################### autoplot(sset, type = "pcp") ################################################### ### boxplot ################################################### autoplot(sset, type = "boxplot") ################################################### ### scatterplot matrix ################################################### ##autoplot(sset, type = "scatterplot.matrix") ################################################### ### vcf ################################################### ## Not run: library(VariantAnnotation) vcffile <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation") vcf <- readVcf(vcffile, "hg19") ## default use type 'geno' ## default use genome position autoplot(vcf) ## or disable it autoplot(vcf, genome.axis = FALSE) ## not transpose autoplot(vcf, genome.axis = FALSE, transpose = FALSE, rownames.label = FALSE) autoplot(vcf) ## use autoplot(vcf, assay.id = "DS") ## equivalent to autoplot(vcf, assay.id = 2) ## doesn't work when assay.id cannot find autoplot(vcf, assay.id = "NO") ## use AF or first autoplot(vcf, type = "info") ## geom bar autoplot(vcf, type = "info", aes(y = THETA)) autoplot(vcf, type = "info", aes(y = THETA, fill = VT, color = VT)) autoplot(vcf, type = "fixed") autoplot(vcf, type = "fixed", size = 10) + xlim(c(50310860, 50310890)) + ylim(0.75, 1.25) p1 <- autoplot(vcf, type = "fixed") + xlim(50310860, 50310890) p2 <- autoplot(vcf, type = "fixed", full.string = TRUE) + xlim(50310860, 50310890) tracks("full.string = FALSE" = p1, "full.string = TRUE" = p2)+ scale_y_continuous(breaks = NULL, limits = c(0, 3)) p3 <- autoplot(vcf, type = "fixed", ref.show = FALSE) + xlim(50310860, 50310890) + scale_y_continuous(breaks = NULL, limits = c(0, 2)) p3 ## End(Not run) ################################################### ### code chunk number 56: bs-v ################################################### library(BSgenome.Hsapiens.UCSC.hg19) data(genesymbol, package = "biovizBase") p1 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50)) p2 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50), geom = "rect") tracks(text = p1, rect = p2) ################################################### ### code chunk number 57: sessionInfo ################################################### sessionInfo()
Show interval data as alignment.
## S4 method for signature 'GRanges' geom_alignment(data, ..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), range.geom = c("rect", "arrowrect"), gap.geom = c("chevron", "arrow", "segment"), rect.height = NULL, group.selfish = TRUE, label = TRUE) ## S4 method for signature 'TxDbOREnsDb' geom_alignment(data, ..., which, columns = c("tx_id", "tx_name", "gene_id"), names.expr = "tx_name", facets = NULL, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025) ## S4 method for signature 'GRangesList' geom_alignment(data, ..., which = NULL, cds.rect.h = 0.25, exon.rect.h = cds.rect.h, utr.rect.h = cds.rect.h/2, xlab, ylab, main, facets = NULL, geom = "alignment", stat = c("identity", "reduce"), range.geom = "rect", gap.geom = "arrow", utr.geom = "rect", names.expr = NULL, label = TRUE, label.color = "gray40", label.size = 3, arrow.rate = 0.015, length = unit(0.1, "cm")) ## S4 method for signature 'OrganismDb' geom_alignment(data, ..., which, columns = c("TXNAME", "SYMBOL", "TXID", "GENEID"), names.expr = "SYMBOL", facets = NULL, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025 )
## S4 method for signature 'GRanges' geom_alignment(data, ..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), range.geom = c("rect", "arrowrect"), gap.geom = c("chevron", "arrow", "segment"), rect.height = NULL, group.selfish = TRUE, label = TRUE) ## S4 method for signature 'TxDbOREnsDb' geom_alignment(data, ..., which, columns = c("tx_id", "tx_name", "gene_id"), names.expr = "tx_name", facets = NULL, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025) ## S4 method for signature 'GRangesList' geom_alignment(data, ..., which = NULL, cds.rect.h = 0.25, exon.rect.h = cds.rect.h, utr.rect.h = cds.rect.h/2, xlab, ylab, main, facets = NULL, geom = "alignment", stat = c("identity", "reduce"), range.geom = "rect", gap.geom = "arrow", utr.geom = "rect", names.expr = NULL, label = TRUE, label.color = "gray40", label.size = 3, arrow.rate = 0.015, length = unit(0.1, "cm")) ## S4 method for signature 'OrganismDb' geom_alignment(data, ..., which, columns = c("TXNAME", "SYMBOL", "TXID", "GENEID"), names.expr = "SYMBOL", facets = NULL, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025 )
data |
A |
... |
Extra parameters such as aes() passed. |
which |
|
cds.rect.h |
cds heights. |
exon.rect.h |
exon heights. |
utr.rect.h |
utr heights. |
label.color |
label color. |
label.size |
label size. |
arrow.rate |
arrow rate. |
length |
arrow length. |
columns |
columns to get from object. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
stat |
For For |
gap.geom |
Geom for 'gap' computed from the data you passed based on the group information. |
rect.height |
Half height of the arrow body. |
group.selfish |
Passed to |
truncate.gaps |
logical value indicate to truncate gaps or not. |
truncate.fun |
shrinkage function. Please see |
ratio |
used in |
geom |
geometric object. only support "gene" now. |
range.geom |
geom for main intevals or exons. |
utr.geom |
geom for utr region. |
names.expr |
expression for showing y label. |
label |
logical value. Whether to label the intervals with names specified
by argument |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_alignment() ## or ggplot() + geom_alignment(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_alignment(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair), group.selfish = FALSE) ## ======================================= ## main/gap geom ## ======================================= ggplot(gr) + geom_alignment(range.geom = "arrowrect", gap.geom = "chevron") ## ======================================= ## For TxDb ## ======================================= library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. ggbio() + geom_alignment(data = txdb, which = genesymbol["RBM17"]) p1 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) p1 p2 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], stat = "reduce") tracks(full = p1, reduce = p2, heights = c(3, 1)) tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset() tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset(axis.line.color = NA) ## change y labels ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id")
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_alignment() ## or ggplot() + geom_alignment(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_alignment(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair), group.selfish = FALSE) ## ======================================= ## main/gap geom ## ======================================= ggplot(gr) + geom_alignment(range.geom = "arrowrect", gap.geom = "chevron") ## ======================================= ## For TxDb ## ======================================= library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. ggbio() + geom_alignment(data = txdb, which = genesymbol["RBM17"]) p1 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) p1 p2 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], stat = "reduce") tracks(full = p1, reduce = p2, heights = c(3, 1)) tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset() tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset(axis.line.color = NA) ## change y labels ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id")
Show interval data as arches.
## S4 method for signature 'data.frame' geom_arch(data, ..., n = 25, max.height = 10) ## S4 method for signature 'GRanges' geom_arch(data, ..., xlab, ylab, main, facets = NULL, rect.height = 0, n = 25, max.height = 10)
## S4 method for signature 'data.frame' geom_arch(data, ..., n = 25, max.height = 10) ## S4 method for signature 'GRanges' geom_arch(data, ..., xlab, ylab, main, facets = NULL, rect.height = 0, n = 25, max.height = 10)
data |
A |
... |
Extra parameters passed to autoplot function,
|
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
n |
Integer values at which interpolation takes place to create 'n' equally spaced points spanning the interval ['min(x)', 'max(x)']. |
facets |
Faceting formula to use. |
rect.height |
When data is |
max.height |
Max height of all arches. |
To draw a interval data as arches, we need to provide a special geom for
this purpose. Arches is popular in gene viewer or genomoe browser,
when they try to show isoforms or gene model.geom_arch
,
just like any other geom_*
function in ggplot2, you can pass
aes() to it to map variable to height of arches.
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 library(GenomicRanges) ## ======================================= ## simmulated GRanges ## ======================================= gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ======================================= ## default ## ======================================= ggplot(gr) + geom_arch() # or ggplot() + geom_arch(gr) ## ======================================= ## facetting and aesthetics ## ======================================= ggplot(gr) + geom_arch(aes(color = value, height = value, size = value), alpha = 0.2, facets = sample ~ seqnames)
set.seed(1) N <- 100 library(GenomicRanges) ## ======================================= ## simmulated GRanges ## ======================================= gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ======================================= ## default ## ======================================= ggplot(gr) + geom_arch() # or ggplot() + geom_arch(gr) ## ======================================= ## facetting and aesthetics ## ======================================= ggplot(gr) + geom_arch(aes(color = value, height = value, size = value), alpha = 0.2, facets = sample ~ seqnames)
Show interval data as arrows.
## S4 method for signature 'GRanges' geom_arrow(data, ..., xlab, ylab, main, angle = 30, length = unit(0.12, "cm"), type = "open", stat = c("stepping", "identity"), facets = NULL, arrow.rate = 0.03, group.selfish = TRUE)
## S4 method for signature 'GRanges' geom_arrow(data, ..., xlab, ylab, main, angle = 30, length = unit(0.12, "cm"), type = "open", stat = c("stepping", "identity"), facets = NULL, arrow.rate = 0.03, group.selfish = TRUE)
data |
A |
... |
Extra parameters such as aes() passed. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
angle |
The angle of the arrow head in degrees (smaller numbers produce narrower, pointier arrows). Essentially describes the width of the arrow head. |
length |
A unit specifying the length of the arrow head (from tip to base). |
type |
One of "open" or "closed" indicating whether the arrow head should be a closed triangle. |
stat |
Character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify |
facets |
Faceting formula to use. |
arrow.rate |
Arrow density of the arrow body. |
group.selfish |
Passed to |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_arrow() # or ggplot() + geom_arrow(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_arrow(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_arrow(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish ## ====================================================================== ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE) ## ====================================================================== ## other options to control arrow angle, density, ... ## ====================================================================== library(grid) ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair), arrow.rate = 0.01, length = unit(0.3, "cm"), angle = 45, group.selfish = FALSE)
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_arrow() # or ggplot() + geom_arrow(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_arrow(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_arrow(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish ## ====================================================================== ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE) ## ====================================================================== ## other options to control arrow angle, density, ... ## ====================================================================== library(grid) ggplot(gr) + geom_arrow(stat = "stepping", aes(y = value, group = pair), arrow.rate = 0.01, length = unit(0.3, "cm"), angle = 45, group.selfish = FALSE)
Show interval data as rectangle with a arrow head.
## S4 method for signature 'GRanges' geom_arrowrect(data, ..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), rect.height = NULL, arrow.head = 0.06, arrow.head.rate = arrow.head, arrow.head.fix = NULL, group.selfish = TRUE)
## S4 method for signature 'GRanges' geom_arrowrect(data, ..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), rect.height = NULL, arrow.head = 0.06, arrow.head.rate = arrow.head, arrow.head.fix = NULL, group.selfish = TRUE)
data |
A |
... |
Extra parameters such as aes() passed. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
stat |
Character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify |
rect.height |
Half height of the arrow body. |
arrow.head |
Arrow head to body ratio. |
arrow.head.rate |
Arrow head to body ratio. same with arrow.head. |
arrow.head.fix |
fixed length of arrow head. |
group.selfish |
Passed to |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_arrowrect() ## or ggplot() + geom_arrowrect(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_arrowrect(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_arrowrect(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_arrowrect(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_arrowrect(gr, stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_arrowrect() ## or ggplot() + geom_arrowrect(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_arrowrect(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_arrowrect(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_arrowrect(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_arrowrect(gr, stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
Show interval data as vertical bar, width equals to interval width and use 'score' or specified 'y' as y scale.
## S4 method for signature 'ANY' geom_bar(data, ...) ## S4 method for signature 'GRanges' geom_bar(data,..., xlab, ylab, main)
## S4 method for signature 'ANY' geom_bar(data, ...) ## S4 method for signature 'GRanges' geom_bar(data,..., xlab, ylab, main)
data |
Typically a |
... |
Extra parameters such as aes() or |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
Useful for showing bed like files, when imported as GRanges, have a extra 'score' column, use it as default y, you could also specify y by using aes(y = ).
A 'Layer'.
## load library(GenomicRanges) ## simul set.seed(123) gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b <- c(gr.b, gr.b2) ## default use score as y ## bar ggplot(gr.b) + geom_bar(aes(fill = value)) ## or ggplot() + geom_bar(gr.b, aes(fill = value)) ggplot(gr.b) + geom_bar(aes(y = value)) ## equal to autoplot(gr.b, geom = "bar")
## load library(GenomicRanges) ## simul set.seed(123) gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10), width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10, 3), value = runif(10, 1, 100)) gr.b <- c(gr.b, gr.b2) ## default use score as y ## bar ggplot(gr.b) + geom_bar(aes(fill = value)) ## or ggplot() + geom_bar(gr.b, aes(fill = value)) ggplot(gr.b) + geom_bar(aes(y = value)) ## equal to autoplot(gr.b, geom = "bar")
Break normal intervals stroed in GRanges
object and show them
as chevron, useful for showing model or splice summary.
## S4 method for signature 'GRanges' geom_chevron(data, ..., xlab, ylab, main, offset = 0.1, facets = NULL, stat = c("stepping", "identity"), chevron.height.rescale = c(0.1, 0.8), group.selfish = TRUE)
## S4 method for signature 'GRanges' geom_chevron(data, ..., xlab, ylab, main, offset = 0.1, facets = NULL, stat = c("stepping", "identity"), chevron.height.rescale = c(0.1, 0.8), group.selfish = TRUE)
data |
A GRanges object. |
... |
Extra parameters passed to autoplot function. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
offset |
A nunmeric value or characters. If it's numeric value, indicate how
much you want the chevron to wiggle, usually the rectangle for
drawing |
facets |
faceting formula to use. |
stat |
character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify |
chevron.height.rescale |
A numeric vector of length 2. When the offset parameters is a character which is one of the data columns, this parameter rescale the offset. |
group.selfish |
Passed to |
To draw a normal GRanges as Chevron, we need to provide a special geom for
this purpose. Chevron is popular in gene viewer or genomoe browser,
when they try to show isoforms or gene model.geom_chevron
,
just like any other geom_*
function in ggplot2, you can pass
aes() to it to use height of chevron or width
of chevron to show statistics summary.
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ## ====================================================================== ggplot(gr) + geom_chevron() ## or ggplot() + geom_chevron(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_chevron(facets = sample ~ seqnames, aes(color = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_chevron(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_chevron(stat = "stepping", aes(group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_chevron(stat = "stepping", aes(group = pair), group.selfish = FALSE, xlab = "xlab", ylab = "ylab", main = "main") p <- qplot(x = mpg, y = cyl, data = mtcars) ## ====================================================================== ## offset ## ====================================================================== gr2 <- GRanges("chr1", IRanges(c(1, 10, 20), width = 5)) gr2.p <- gaps(gr2) ## resize to connect them gr2.p <- resize(gr2.p, fix = "center", width = width(gr2.p)+2) ggplot(gr2) + geom_rect() + geom_chevron(gr2.p) ## notice the rectangle height is 0.8 ## offset = 0 just like a line ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = 0) ## equal height ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = 0.4) ## ====================================================================== ## chevron.height ## ====================================================================== values(gr2.p)$score <- c(100, 200) ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = "score") ## chevron.height ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = "score", chevron.height.rescale = c(0.4, 10))
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## default ## ## ====================================================================== ggplot(gr) + geom_chevron() ## or ggplot() + geom_chevron(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_chevron(facets = sample ~ seqnames, aes(color = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_chevron(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_chevron(stat = "stepping", aes(group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_chevron(stat = "stepping", aes(group = pair), group.selfish = FALSE, xlab = "xlab", ylab = "ylab", main = "main") p <- qplot(x = mpg, y = cyl, data = mtcars) ## ====================================================================== ## offset ## ====================================================================== gr2 <- GRanges("chr1", IRanges(c(1, 10, 20), width = 5)) gr2.p <- gaps(gr2) ## resize to connect them gr2.p <- resize(gr2.p, fix = "center", width = width(gr2.p)+2) ggplot(gr2) + geom_rect() + geom_chevron(gr2.p) ## notice the rectangle height is 0.8 ## offset = 0 just like a line ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = 0) ## equal height ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = 0.4) ## ====================================================================== ## chevron.height ## ====================================================================== values(gr2.p)$score <- c(100, 200) ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = "score") ## chevron.height ggplot(gr2) + geom_rect() + geom_chevron(gr2.p, offset = "score", chevron.height.rescale = c(0.4, 10))
Show interval data as rectangle.
## S4 method for signature 'ANY' geom_rect(data, ...) ## S4 method for signature 'GRanges' geom_rect(data,..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), rect.height = NULL, group.selfish = TRUE)
## S4 method for signature 'ANY' geom_rect(data, ...) ## S4 method for signature 'GRanges' geom_rect(data,..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), rect.height = NULL, group.selfish = TRUE)
data |
Typically a |
... |
Extra parameters such as aes() or |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
stat |
Character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify |
rect.height |
Half height of the arrow body. |
group.selfish |
Passed to |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## data.frame call ggplot2::geom_rect ## ====================================================================== ggplot() + geom_rect(data = mtcars, aes(xmin = mpg, ymin = wt, xmax = mpg + 10, ymax = wt + 0.2, fill = cyl)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_rect() # or ggplot() + geom_rect(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_rect(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_rect(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_rect(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_rect(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## data.frame call ggplot2::geom_rect ## ====================================================================== ggplot() + geom_rect(data = mtcars, aes(xmin = mpg, ymin = wt, xmax = mpg + 10, ymax = wt + 0.2, fill = cyl)) ## ====================================================================== ## default ## ====================================================================== ggplot(gr) + geom_rect() # or ggplot() + geom_rect(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_rect(facets = sample ~ seqnames, aes(color = strand, fill = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_rect(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_rect(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_rect(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
Show interval data as segments.
## S4 method for signature 'ANY' geom_segment(data, ...) ## S4 method for signature 'GRanges' geom_segment(data,..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), group.selfish = TRUE)
## S4 method for signature 'ANY' geom_segment(data, ...) ## S4 method for signature 'GRanges' geom_segment(data,..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), group.selfish = TRUE)
data |
A |
... |
Extra parameters such as aes() or |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
stat |
Character vector specifying statistics to use. "stepping" with
randomly assigned stepping levels as y varialbe. "identity" allow
users to specify |
group.selfish |
Passed to |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## data.frame call ggplot2::geom_segment ## ====================================================================== ggplot() + geom_segment(data = mtcars, aes(x = mpg, y = wt, xend = mpg + 10, yend = wt + 0.2, color = cyl)) ## ====================================================================== ## default ## ## ====================================================================== ggplot(gr) + geom_segment() ## or ggplot() + geom_segment(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_segment(facets = sample ~ seqnames, aes(color = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_segment(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_segment(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_segment(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
set.seed(1) N <- 100 require(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## ====================================================================== ## data.frame call ggplot2::geom_segment ## ====================================================================== ggplot() + geom_segment(data = mtcars, aes(x = mpg, y = wt, xend = mpg + 10, yend = wt + 0.2, color = cyl)) ## ====================================================================== ## default ## ## ====================================================================== ggplot(gr) + geom_segment() ## or ggplot() + geom_segment(gr) ## ====================================================================== ## facetting and aesthetics ## ====================================================================== ggplot(gr) + geom_segment(facets = sample ~ seqnames, aes(color = strand)) ## ====================================================================== ## stat:identity ## ====================================================================== ggplot(gr) + geom_segment(stat = "identity", aes(y = value)) ## ====================================================================== ## stat:stepping ## ====================================================================== ggplot(gr) + geom_segment(stat = "stepping", aes(y = value, group = pair)) ## ====================================================================== ## group.selfish controls when ## ====================================================================== ggplot(gr) + geom_segment(stat = "stepping", aes(y = value, group = pair), group.selfish = FALSE)
a sub class of ggplot and gg class defined in ggplot2 package, used for ggbio specific methods.
GGbio(ggplot = NULL, data = NULL, fetchable = FALSE, blank = FALSE, ...)
GGbio(ggplot = NULL, data = NULL, fetchable = FALSE, blank = FALSE, ...)
ggplot |
a ggplot or gg object. |
data |
raw data |
fetchable |
logical value, default |
blank |
logical value, default |
... |
More properties passed to class like |
This class is defined to facilitate the ggbio-specific visualization
method, especially when using ggplot
to construct ggbio
supported object, that will return a ggbio class. And internals tricks
will help a lazy evaluation for following +
method.
a ggbio object.
Tengfei Yin
p1 <- qplot() g1 <- ggbio(p1) class(g1)
p1 <- qplot() g1 <- ggbio(p1) class(g1)
These methods extend ggplot
to support several
types of Bioconductor objects, as well as some base types like
matrix. They return a ggbio
object, which stores the original data
object. Please check the corresponding method for mold
to see how an object is coerced into a data.frame.
## S3 method for class 'Vector' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'Seqinfo' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'ExpressionSet' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'RsamtoolsFile' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'TxDbOREnsDb' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'BSgenome' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'matrix' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'character' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'SummarizedExperiment' ggplot(data, mapping = aes(), assay.id = 1L, ..., environment = parent.frame()) ## S3 method for class 'GAlignments' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'VCF' ggplot(data, mapping = aes(), ..., environment = parent.frame())
## S3 method for class 'Vector' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'Seqinfo' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'ExpressionSet' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'RsamtoolsFile' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'TxDbOREnsDb' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'BSgenome' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'matrix' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'character' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'SummarizedExperiment' ggplot(data, mapping = aes(), assay.id = 1L, ..., environment = parent.frame()) ## S3 method for class 'GAlignments' ggplot(data, mapping = aes(), ..., environment = parent.frame()) ## S3 method for class 'VCF' ggplot(data, mapping = aes(), ..., environment = parent.frame())
data |
original data object. |
mapping |
the aesthetic mapping. |
... |
other arguments passed to specific methods. |
environment |
fall-back environment for evaluation of aesthetic symbols |
assay.id |
index of assay you are using when multiple assays exist. |
The biggest difference for objects returned by ggplot
in
ggbio from ggplot2, is we always keep the original data copy, this
is useful because in ggbio, our starting point is not always
data.frame, many special statistical transformation is computed upon
original data objects instead of coerced data.frame. This is a hack
to follow ggplot2's API while allow our own defined components to
trace back to original data copy and do the transformation. For
objects supported by mold
we transform them to
data.frame stored along the original data set, for objects which not
supported by mold
method, we only store the original copy
for ggbio specific graphics.
ggplot()
is typically used to construct a plot incrementally,
using the +
operator to add layers to the existing ggplot object.
This is advantageous in that the code is explicit about which
layers are added and the order in which they are added. For
complex graphics with multiple layers, initialization with
ggplot
is recommended. You can always call qplot
in
package ggplot2 or autoplot
in ggbio for convenient usage.
There are three common ways to invoke ggplot
:
ggplot(df, aes(x, y, <other aesthetics>))
ggplot(df)
ggplot()
The first method is recommended if all layers use the same data and
the same set of aesthetics, although this method can also be used to
add a layer using data from another data frame. The second method
specifies the default data frame to use for the plot, but no
aesthetics are defined up front. This is useful when one data frame
is used predominantly as layers are added, but the aesthetics may
vary from one layer to another. The third method initializes a
skeleton ggplot
object which is fleshed out as layers are
added. This method is useful when multiple data frames are used to
produce different layers, as is often the case in complex graphics.
The examples below illustrate how these methods of invoking
ggplot
can be used in constructing a graphic.
a return ggbio
object, which is a subclass of ggplot
defined in ggplot2 package, but that's more, a '.data' list entry is
stored with the returned object.
Tengfei Yin
set.seed(1) N <- 100 library(GenomicRanges) ## GRanges gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## automatically facetting and assign y ## this must mean geom_rect support GRanges object ggplot(gr) + geom_rect() ggplot(gr) + geom_alignment() ggplot() + geom_alignment(gr) ## use pure ggplot2's geom_rect, no auto facet ggplot(gr) + ggplot2::geom_rect(aes(xmin = start, ymin = score, xmax = end, ymax = score + 1)) ## GRangesList grl <- split(gr, values(gr)$pair) ggplot(grl) + geom_alignment() ggplot(grl) + geom_rect() ggplot(grl) + ggplot2::geom_rect(aes(xmin = start, ymin = score, xmax = end, ymax = score + 1)) ## IRanges ir <- ranges(gr) ggplot(ir) + geom_rect() ggplot(ir) + layout_circle(geom = "rect") ## Seqinfo seqlengths(gr) <- c(400, 500, 420) ggplot(seqinfo(gr)) + geom_point(aes(x = midpoint, y = seqlengths)) ## matrix mx <- matrix(1:12, nrow = 3) ggplot(mx, aes(x = x, y = y)) + geom_raster(aes(fill = value)) ## row is the factor ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = value)) colnames(mx) colnames(mx) <- letters[1:ncol(mx)] mx ## has extra 'colnames' ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = colnames)) rownames(mx) rownames(mx) <- LETTERS[1:nrow(mx)] ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = rownames)) ## please check autoplot, matrix for more control ## Views ## ExpressionSet library(Biobase) data(sample.ExpressionSet) sample.ExpressionSet set.seed(1) ## select 50 features idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50) eset <- sample.ExpressionSet[idx,] ggplot(eset) + geom_tile(aes(x = x, y = y, fill = value)) ## please check autoplot,matrix method which gives you more control ggplot(eset) + geom_tile(aes(x = x, y = y, fill = sex)) ggplot(eset) + geom_tile(aes(x = x, y = y, fill = type)) ## Rle library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) ggplot(xRle) + geom_tile(aes(x = x, y = y, fill = value)) ## RleList xRleList <- RleList(xRle, 2L * xRle) xRleList ggplot(xRleList) + geom_tile(aes(x = x, y = y, fill = value)) + facet_grid(group~.) names(xRleList) <- c("a" ,"b") ggplot(xRleList) + geom_tile(aes(x = x, y = y, fill = value)) + facet_grid(group~.) ## RangedSummarizedExperiment library(SummarizedExperiment) nrows <- 200; ncols <- 6 counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows) counts2 <- matrix(runif(nrows * ncols, 1, 1e4), nrows) rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200, 1e5, 1e6)), width=100), strand=sample(c("+", "-"), 200, TRUE)) colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3), row.names=LETTERS[1:6]) sset <- SummarizedExperiment(assays=SimpleList(counts=counts, counts2 = counts2), rowRanges=rowRanges, colData=colData) ggplot(sset) + geom_raster(aes(x = x, y = y , fill = value))
set.seed(1) N <- 100 library(GenomicRanges) ## GRanges gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## automatically facetting and assign y ## this must mean geom_rect support GRanges object ggplot(gr) + geom_rect() ggplot(gr) + geom_alignment() ggplot() + geom_alignment(gr) ## use pure ggplot2's geom_rect, no auto facet ggplot(gr) + ggplot2::geom_rect(aes(xmin = start, ymin = score, xmax = end, ymax = score + 1)) ## GRangesList grl <- split(gr, values(gr)$pair) ggplot(grl) + geom_alignment() ggplot(grl) + geom_rect() ggplot(grl) + ggplot2::geom_rect(aes(xmin = start, ymin = score, xmax = end, ymax = score + 1)) ## IRanges ir <- ranges(gr) ggplot(ir) + geom_rect() ggplot(ir) + layout_circle(geom = "rect") ## Seqinfo seqlengths(gr) <- c(400, 500, 420) ggplot(seqinfo(gr)) + geom_point(aes(x = midpoint, y = seqlengths)) ## matrix mx <- matrix(1:12, nrow = 3) ggplot(mx, aes(x = x, y = y)) + geom_raster(aes(fill = value)) ## row is the factor ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = value)) colnames(mx) colnames(mx) <- letters[1:ncol(mx)] mx ## has extra 'colnames' ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = colnames)) rownames(mx) rownames(mx) <- LETTERS[1:nrow(mx)] ggplot(mx, aes(x = x, y = row)) + geom_raster(aes(fill = rownames)) ## please check autoplot, matrix for more control ## Views ## ExpressionSet library(Biobase) data(sample.ExpressionSet) sample.ExpressionSet set.seed(1) ## select 50 features idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50) eset <- sample.ExpressionSet[idx,] ggplot(eset) + geom_tile(aes(x = x, y = y, fill = value)) ## please check autoplot,matrix method which gives you more control ggplot(eset) + geom_tile(aes(x = x, y = y, fill = sex)) ggplot(eset) + geom_tile(aes(x = x, y = y, fill = type)) ## Rle library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) ggplot(xRle) + geom_tile(aes(x = x, y = y, fill = value)) ## RleList xRleList <- RleList(xRle, 2L * xRle) xRleList ggplot(xRleList) + geom_tile(aes(x = x, y = y, fill = value)) + facet_grid(group~.) names(xRleList) <- c("a" ,"b") ggplot(xRleList) + geom_tile(aes(x = x, y = y, fill = value)) + facet_grid(group~.) ## RangedSummarizedExperiment library(SummarizedExperiment) nrows <- 200; ncols <- 6 counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows) counts2 <- matrix(runif(nrows * ncols, 1, 1e4), nrows) rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200, 1e5, 1e6)), width=100), strand=sample(c("+", "-"), 200, TRUE)) colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3), row.names=LETTERS[1:6]) sset <- SummarizedExperiment(assays=SimpleList(counts=counts, counts2 = counts2), rowRanges=rowRanges, colData=colData) ggplot(sset) + geom_raster(aes(x = x, y = y , fill = value))
ggsave is a convenient function for saving a plot. It defaults to saving the last plot that you displayed, and for a default size uses the size of the current graphics device. It also guesses the type of graphics device from the extension. This means the only argument you need to supply is the filename.
ggsave(filename, plot = last_plot(), device = default_device(filename), path = NULL, scale = 1, width = par("din")[1], height = par("din")[2], units = c("in", "cm", "mm"), dpi = 300, limitsize = TRUE, ...)
ggsave(filename, plot = last_plot(), device = default_device(filename), path = NULL, scale = 1, width = par("din")[1], height = par("din")[2], units = c("in", "cm", "mm"), dpi = 300, limitsize = TRUE, ...)
filename |
file name/filename of plot |
plot |
plot to save, defaults to last plot displayed |
device |
device to use, automatically extract from file name extension |
path |
path to save plot to (if you just want to set path and not filename) |
scale |
scaling factor |
width |
width (defaults to the width of current plotting window) |
height |
height (defaults to the height of current plotting window) |
units |
units for width and height when either one is explicitly specified (in, cm, or mm) |
dpi |
dpi to use for raster graphics |
limitsize |
when |
... |
other arguments passed to graphics device |
ggsave
currently recognises the extensions eps/ps,
tex (pictex), pdf, jpeg, tiff, png, bmp, svg and wmf
(windows only).
'Grob' class is a container for 'grob' based object defined with grid
system. Generic function Grob
gets grob object supported by grid system, and make an instance of
subclass of class 'Grob'.
'GrobList' is a container of list of 'Grob' object.
## S4 method for signature 'gg' Grob(x) ## S4 method for signature 'gtable' Grob(x) ## S4 method for signature 'trellis' Grob(x) ## S4 method for signature 'lattice' Grob(x) ## S4 method for signature 'GGbio' Grob(x)
## S4 method for signature 'gg' Grob(x) ## S4 method for signature 'gtable' Grob(x) ## S4 method for signature 'trellis' Grob(x) ## S4 method for signature 'lattice' Grob(x) ## S4 method for signature 'GGbio' Grob(x)
x |
object of class: gg, gtable, trellis, lattice, GGbio. |
A Grob
object.
Tengfei Yin
Plot single chromosome with cytobands.
plotIdeogram(obj, subchr = NULL, zoom.region = NULL, which = NULL, xlab, ylab, main, xlabel = FALSE, color = "red", fill = "red", alpha = 0.7, zoom.offset = 0.2, size = 1, cytobands = TRUE, aspect.ratio = 1/20, genome) ## constructor Ideogram(obj, subchr = NULL, which = NULL, xlabel = FALSE, cytobands = TRUE, color = "red", fill = "red", alpha = 0.7, zoom.region = NULL, zoom.offset = 0.2, size = 1, aspect.ratio = 1/20, ..., genome)
plotIdeogram(obj, subchr = NULL, zoom.region = NULL, which = NULL, xlab, ylab, main, xlabel = FALSE, color = "red", fill = "red", alpha = 0.7, zoom.offset = 0.2, size = 1, cytobands = TRUE, aspect.ratio = 1/20, genome) ## constructor Ideogram(obj, subchr = NULL, which = NULL, xlabel = FALSE, cytobands = TRUE, color = "red", fill = "red", alpha = 0.7, zoom.region = NULL, zoom.offset = 0.2, size = 1, aspect.ratio = 1/20, ..., genome)
obj |
A |
subchr |
A single character of chromosome names to show. |
which |
|
zoom.region |
A numeric vector of length 2 indicating zoomed region. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
xlabel |
A logical value. Show the x label or not. |
color |
color for highlight region. |
fill |
fill color for highlight region. |
alpha |
alpha for highlight regio. |
zoom.offset |
zoomed highlights region offset around chromosome plotting region. |
size |
size for zoomed region rectangle boundary. |
cytobands |
If FALSE, plot just blank chromosome without cytobands. default is TRUE. es |
aspect.ratio |
aspect ratio for the chromosome ideogram plot, default is NULL. |
genome |
genome character passed to |
... |
passed to ggbio constructor. |
User could provide the whole ideogram and use subchr to point to particular chromosome.
A ggplot
object.
Tengfei Yin
## Not run: library(biovizBase) p.ideo <- Ideogram(genome = "hg19") p.ideo library(GenomicRanges) p.ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000))) Ideogram(genome = "hg19", xlabel = TRUE) ## End(Not run)
## Not run: library(biovizBase) p.ideo <- Ideogram(genome = "hg19") p.ideo library(GenomicRanges) p.ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000))) Ideogram(genome = "hg19", xlabel = TRUE) ## End(Not run)
Create a circle layout.
## S4 method for signature 'GRanges' layout_circle(data, ..., geom = c("point", "line", "link", "ribbon", "rect", "bar", "segment", "hist", "scale", "heatmap", "ideogram", "text"), linked.to, radius = 10, trackWidth = 5, space.skip = 0.015, direction = c("clockwise", "anticlockwise"), link.fun = function(x, y, n = 30) bezier(x, y, evaluation = n), rect.inter.n = 60, rank, ylim = NULL, scale.n = 60, scale.unit = NULL, scale.type = c("M", "B", "sci"), grid.n = 5, grid.background = "gray70", grid.line = "white", grid = FALSE, chr.weight = NULL) ## S4 method for signature 'missing' layout_circle(data, ...) circle(...)
## S4 method for signature 'GRanges' layout_circle(data, ..., geom = c("point", "line", "link", "ribbon", "rect", "bar", "segment", "hist", "scale", "heatmap", "ideogram", "text"), linked.to, radius = 10, trackWidth = 5, space.skip = 0.015, direction = c("clockwise", "anticlockwise"), link.fun = function(x, y, n = 30) bezier(x, y, evaluation = n), rect.inter.n = 60, rank, ylim = NULL, scale.n = 60, scale.unit = NULL, scale.type = c("M", "B", "sci"), grid.n = 5, grid.background = "gray70", grid.line = "white", grid = FALSE, chr.weight = NULL) ## S4 method for signature 'missing' layout_circle(data, ...) circle(...)
data |
A |
... |
Extra parameters such as aesthetics mapping in aes(), or
|
geom |
The geometric object to use display the data. |
linked.to |
Character indicates column that specifying end of the linking lines,
that column should be a |
radius |
Numeric value indicates radius. Default is 10. |
trackWidth |
Numeric value indicates the track width. |
space.skip |
Numeric value indicates the ratio of skipped region between chunks(chromosomes
in |
direction |
Space layout orders. |
link.fun |
Function used for interpolate the linking lines. Default is Hmisc::bezier. |
rect.inter.n |
n passed to interpolate function in rectangle transformation(from a rectangle) to a section in circular view. |
rank |
For default equal trackWidth, use rank to specify the circle orders. |
ylim |
Numeric range to control y limits. |
scale.n |
Approximate number of ticks you want to show on the whole
space. used when scale.unit is |
scale.unit |
Unit used for computing scale. Default is |
scale.type |
Scale type used for |
grid |
logical value indicate showing grid background for track or not. |
grid.n |
integer value indicate horizontal grid line number. |
grid.background |
grid background color. |
grid.line |
grid line color. |
chr.weight |
numeric vectors which sum to <1, the names of vectors has to be matched with seqnames in seqinfo, and you can only specify part of the seqnames, other lengths of chromosomes will be assined proportionally to their seqlengths, for example, you could specify chr1 to be 0.5, so the chr1 will take half of the space and other chromosomes squeezed to take left of the space. |
A 'Layer'.
Tengfei Yin
N <- 100 library(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) seqlengths(gr) <- c(400, 500, 700) values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))] ## doesn't pass gr to the ggplot ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr, geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1) ## more formal API ggplot(gr) + layout_circle(geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1)
N <- 100 library(GenomicRanges) ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) seqlengths(gr) <- c(400, 500, 700) values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))] ## doesn't pass gr to the ggplot ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr, geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1) ## more formal API ggplot(gr) + layout_circle(geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) + layout_circle(geom = "bar", radius = 10, trackWidth = 4, aes(fill = score, y = score)) + layout_circle(geom = "point", color = "red", radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1)
Create a karyogram layout.
## S4 method for signature 'GRanges' layout_karyogram(data, ..., xlab, ylab, main, facets = seqnames ~ ., cytobands = FALSE, geom = "rect", stat = NULL, ylim = NULL, rect.height = 10)
## S4 method for signature 'GRanges' layout_karyogram(data, ..., xlab, ylab, main, facets = seqnames ~ ., cytobands = FALSE, geom = "rect", stat = NULL, ylim = NULL, rect.height = 10)
data |
a |
... |
Extra parameters such as aes() or arbitrary |
xlab |
character vector or expression for x axis label. |
ylab |
character vector or expression for y axis label. |
main |
character vector or expression for plot title. |
facets |
faceting formula to use. |
cytobands |
logical value indicate to show the cytobands or not. |
geom |
The geometric object to use display the data. |
stat |
character vector specifying statistics to use. |
ylim |
limits for y axis, usually the chromosome spaces y limits are from 0 to rect.height, which 10, so if you wan to stack some data on top of it, you can set limits to like c(10, 20). |
rect.height |
numreic value indicate half of the rectangle ploting region, used for alignment of multiple layers. |
A 'Layer'.
Tengfei Yin
### R code from vignette source 'karyogram.Rnw' ################################################### ### code chunk number 1: loading ################################################### library(ggbio) data(hg19IdeogramCyto, package = "biovizBase") head(hg19IdeogramCyto) ## default pre-set color stored in getOption("biovizBase")$cytobandColor ################################################### ### code chunk number 2: default ################################################### autoplot(hg19IdeogramCyto, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 3: change-order ################################################### library(GenomeInfoDb) hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y"))) head(hg19) autoplot(hg19, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 4: cyto-normal ################################################### library(GenomicRanges) ## it's a 'ideogram' biovizBase::isIdeogram(hg19) ## set to FALSE autoplot(hg19, layout = "karyogram", cytobands = FALSE, aes(fill = gieStain)) + scale_fill_giemsa() ################################################### ### code chunk number 5: load-RNAediting ################################################### data(darned_hg19_subset500, package = "biovizBase") dn <- darned_hg19_subset500 head(dn) ## add seqlengths ## we have seqlegnths information in another data set data(hg19Ideogram, package = "biovizBase") seqlengths(dn) <- seqlengths(hg19Ideogram)[names(seqlengths(dn))] ## now we have seqlengths head(dn) ## then we change order dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X"))) autoplot(dn, layout = "karyogram") ## this equivalent to ## autoplot(seqinfo(dn)) ################################################### ### code chunk number 6: load-RNAediting-color ################################################### ## since default is geom rectangle, even though it's looks like segment ## we still use both fill/color to map colors autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 7: load-RNAediting-color-NA ################################################### ## since default is geom rectangle, even though it's looks like segment ## we still use both fill/color to map colors autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) + scale_color_discrete(na.value = "brown") ################################################### ### code chunk number 8: load-RNAediting-color-fake ################################################### dn2 <- dn seqlengths(dn2) <- rep(max(seqlengths(dn2)), length(seqlengths(dn2)) ) autoplot(dn2, layout = "karyogram", aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 9: plotKaryogram (eval = FALSE) ################################################### ## plotKaryogram(dn) ## plotKaryogram(dn, aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 10: low-default ################################################### ## plot ideogram p <- ggplot(hg19) + layout_karyogram(cytobands = TRUE) p ## eqevelant autoplot(hg19, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 11: low-default-addon ################################################### p <- p + layout_karyogram(dn, geom = "rect", ylim = c(11, 21), color = "red") ## commented line below won't work ## the cytoband fill color has been used already. ## p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect") p ################################################### ### code chunk number 12: edit-space ################################################### ## plot chromosome space p <- autoplot(seqinfo(dn)) ## make sure you pass rect as geom ## otherwise you just get background p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect") values(dn)$pvalue <- rnorm(length(dn)) p + layout_karyogram(dn, aes(x = start, y = pvalue), ylim = c(10, 30), geom = "line", color = "red") p ################################################### ### code chunk number 13: sessionInfo ################################################### sessionInfo()
### R code from vignette source 'karyogram.Rnw' ################################################### ### code chunk number 1: loading ################################################### library(ggbio) data(hg19IdeogramCyto, package = "biovizBase") head(hg19IdeogramCyto) ## default pre-set color stored in getOption("biovizBase")$cytobandColor ################################################### ### code chunk number 2: default ################################################### autoplot(hg19IdeogramCyto, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 3: change-order ################################################### library(GenomeInfoDb) hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y"))) head(hg19) autoplot(hg19, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 4: cyto-normal ################################################### library(GenomicRanges) ## it's a 'ideogram' biovizBase::isIdeogram(hg19) ## set to FALSE autoplot(hg19, layout = "karyogram", cytobands = FALSE, aes(fill = gieStain)) + scale_fill_giemsa() ################################################### ### code chunk number 5: load-RNAediting ################################################### data(darned_hg19_subset500, package = "biovizBase") dn <- darned_hg19_subset500 head(dn) ## add seqlengths ## we have seqlegnths information in another data set data(hg19Ideogram, package = "biovizBase") seqlengths(dn) <- seqlengths(hg19Ideogram)[names(seqlengths(dn))] ## now we have seqlengths head(dn) ## then we change order dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X"))) autoplot(dn, layout = "karyogram") ## this equivalent to ## autoplot(seqinfo(dn)) ################################################### ### code chunk number 6: load-RNAediting-color ################################################### ## since default is geom rectangle, even though it's looks like segment ## we still use both fill/color to map colors autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 7: load-RNAediting-color-NA ################################################### ## since default is geom rectangle, even though it's looks like segment ## we still use both fill/color to map colors autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) + scale_color_discrete(na.value = "brown") ################################################### ### code chunk number 8: load-RNAediting-color-fake ################################################### dn2 <- dn seqlengths(dn2) <- rep(max(seqlengths(dn2)), length(seqlengths(dn2)) ) autoplot(dn2, layout = "karyogram", aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 9: plotKaryogram (eval = FALSE) ################################################### ## plotKaryogram(dn) ## plotKaryogram(dn, aes(color = exReg, fill = exReg)) ################################################### ### code chunk number 10: low-default ################################################### ## plot ideogram p <- ggplot(hg19) + layout_karyogram(cytobands = TRUE) p ## eqevelant autoplot(hg19, layout = "karyogram", cytobands = TRUE) ################################################### ### code chunk number 11: low-default-addon ################################################### p <- p + layout_karyogram(dn, geom = "rect", ylim = c(11, 21), color = "red") ## commented line below won't work ## the cytoband fill color has been used already. ## p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect") p ################################################### ### code chunk number 12: edit-space ################################################### ## plot chromosome space p <- autoplot(seqinfo(dn)) ## make sure you pass rect as geom ## otherwise you just get background p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect") values(dn)$pvalue <- rnorm(length(dn)) p + layout_karyogram(dn, aes(x = start, y = pvalue), ylim = c(10, 30), geom = "line", color = "red") p ################################################### ### code chunk number 13: sessionInfo ################################################### sessionInfo()
genealize a graphic object to a Plot object.
## S4 method for signature 'gg' Plot(x) ## S4 method for signature 'trellis' Plot(x, mutable = FALSE) ## S4 method for signature 'GGbio' Plot(x) ## S4 method for signature 'Ideogram' Plot(x)
## S4 method for signature 'gg' Plot(x) ## S4 method for signature 'trellis' Plot(x, mutable = FALSE) ## S4 method for signature 'GGbio' Plot(x) ## S4 method for signature 'Ideogram' Plot(x)
x |
object of gg, GGbio, trellis, Ideogram. |
mutable |
whether a plot repsonse to |
A Plot object.
Tengfei Yin
Plot estimated fragment length for paired-end RNA-seq data against single reduced data model.
## S4 method for signature 'character,GRanges' plotFragLength(data, model, gap.ratio = 0.0025, geom = c("segment", "point", "line"), type = c("normal", "cut"), heights = c(400, 100), annotation = TRUE)
## S4 method for signature 'character,GRanges' plotFragLength(data, model, gap.ratio = 0.0025, geom = c("segment", "point", "line"), type = c("normal", "cut"), heights = c(400, 100), annotation = TRUE)
data |
A character indicate the bam file. |
model |
A reduced model to compute estimated fragment length. please see details. |
gap.ratio |
When type is set to "cut", it will provide a compact view, which cut the common gaps in a certain ratio. |
geom |
One or all three geoms could be drawn at the same time. y value of "point" and "line" indicate the estimated fragment length. and if geom is set to "segment", the segment is from the left most position to paired right most position, should be equal to "isize". |
type |
"normal" return a uncut view, loose but the coordinate is true genomic coordinates. "cut" cut the view in a compact way. |
heights |
Numeric vector indicate the heights of tracks. |
annotation |
A logical value. TRUE shows model, and FALSE shows only fragment length with labels. |
We use a easy way to define this estimated fragment length, we collect all paired reads and model, reduce model first, then find common gaps, remove common gaps between paired-end reads, and compute the new estimated fragment length.
A ggplot object when annotation = FALSE
and a frame grob if
annotation = TRUE
Tengfei Yin
## Not run: data(genesymbol) bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") library(TxDb.Hsapiens.UCSC.hg19.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene model <- exonsBy(txdb, by = "tx") model.new <- subsetByOverlaps(model, genesymbol["RBM17"]) exons.rbm17 <- subsetByOverlaps(exons(txdb), genesymbol["RBM17"]) exons.new <- reduce(exons.rbm17) plotFragLength(bamfile, exons.new, geom = "line") plotFragLength(bamfile, exons.new, geom = c("point","segment")) plotFragLength(bamfile, exons.new, geom = c("point","segment"), annotation = FALSE) plotFragLength(bamfile, exons.new, geom = c("point","segment"), type = "cut", gap.ratio = 0.001) ## End(Not run)
## Not run: data(genesymbol) bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") library(TxDb.Hsapiens.UCSC.hg19.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene model <- exonsBy(txdb, by = "tx") model.new <- subsetByOverlaps(model, genesymbol["RBM17"]) exons.rbm17 <- subsetByOverlaps(exons(txdb), genesymbol["RBM17"]) exons.new <- reduce(exons.rbm17) plotFragLength(bamfile, exons.new, geom = "line") plotFragLength(bamfile, exons.new, geom = c("point","segment")) plotFragLength(bamfile, exons.new, geom = c("point","segment"), annotation = FALSE) plotFragLength(bamfile, exons.new, geom = c("point","segment"), type = "cut", gap.ratio = 0.001) ## End(Not run)
A Manhattan plot is special scatter plot used to visualize data with a large number of data points, with a distribute of some higher-magnitude values. For example, in the GWAS(genome-wide association studies). Here we mainly focus on GWAS Manhattan plots. X-axis is genomic coordinates and Y-axis is negative logarithm of the associated P-value for each single nucleotide polymorphism. So higher the value, more stronger the association they are.
plotGrandLinear(obj, ..., facets, space.skip = 0.01, geom = NULL, cutoff = NULL, cutoff.color = "red", cutoff.size = 1, legend = FALSE, xlim, ylim, xlab, ylab, main, highlight.gr = NULL, highlight.name = NULL, highlight.col = "red", highlight.label = TRUE, highlight.label.size = 5, highlight.label.offset = 0.05, highlight.label.col = "black", spaceline = FALSE)
plotGrandLinear(obj, ..., facets, space.skip = 0.01, geom = NULL, cutoff = NULL, cutoff.color = "red", cutoff.size = 1, legend = FALSE, xlim, ylim, xlab, ylab, main, highlight.gr = NULL, highlight.name = NULL, highlight.col = "red", highlight.label = TRUE, highlight.label.size = 5, highlight.label.offset = 0.05, highlight.label.col = "black", spaceline = FALSE)
obj |
|
... |
extra arguments passed. such as color, size, alpha. |
facets |
facets formula, such as group ~ . |
space.skip |
numeric value for skip ratio, between chromosome spaces.default is 0.01. |
geom |
geometric object, defualt is "point". |
cutoff |
A numeric vector which used as cutoff for Manhattan plot. |
cutoff.color |
A character specifying the color used for cutoff. Default is "red". |
cutoff.size |
A numeric value which used as cutoff line size. |
legend |
A logical value indicate whether to show legend or not. Default is FALSE which disabled the legend. |
xlim |
limits for x scale. |
ylim |
limits for y scale. |
xlab |
Label for xscale. |
ylab |
Label for yscale. |
main |
title. |
highlight.gr |
a |
highlight.name |
if |
highlight.col |
highlight colors. |
highlight.label |
logical value, label the highlighted region of not. |
highlight.label.size |
highlight label size. |
highlight.label.offset |
highlight label offset. |
highlight.label.col |
highlight label color. |
spaceline |
show line between chromosomes. |
Please use seqlengths of the object and space.skip arguments to control the layout of the coordiant genome transformation.
aes(y = ...) is requried.
aes(color = ) is used to mapping to data variables, if just pass "color" without aes(), then will recycle the color to represent each chromosomes.please see the example below.
Return a ggplot object.
Tengfei Yin
## load library(ggbio) data(hg19IdeogramCyto, package = "biovizBase") data(hg19Ideogram, package = "biovizBase") library(GenomicRanges) ## simul_gr library(biovizBase) gr <- GRanges(rep(c("chr1", "chr2"), each = 5), IRanges(start = rep(seq(1, 100, length = 5), times = 2), width = 50)) autoplot(gr) ## coord:genome autoplot(gr, coord = "genome") gr.t <- transformToGenome(gr) head(gr.t) ## is is_coord_genome(gr.t) metadata(gr.t)$coord ## simul_snp chrs <- as.character(levels(seqnames(hg19IdeogramCyto))) seqlths <- seqlengths(hg19Ideogram)[chrs] set.seed(1) nchr <- length(chrs) nsnps <- 100 gr.snp <- GRanges(rep(chrs,each=nsnps), IRanges(start = do.call(c, lapply(chrs, function(chr){ N <- seqlths[chr] runif(nsnps,1,N) })), width = 1), SNP=sapply(1:(nchr*nsnps), function(x) paste("rs",x,sep='')), pvalue = -log10(runif(nchr*nsnps)), group = sample(c("Normal", "Tumor"), size = nchr*nsnps, replace = TRUE) ) ## shorter seqlengths(gr.snp) nms <- seqnames(seqinfo(gr.snp)) nms.new <- gsub("chr", "", nms) names(nms.new) <- nms gr.snp <- renameSeqlevels(gr.snp, nms.new) seqlengths(gr.snp) ## unorder autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## sort gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y")) autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## with_seql names(seqlths) <- gsub("chr", "", names(seqlths)) seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))] autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## line autoplot(gr.snp, coord = "genome", geom = "line", aes(y = pvalue, group = seqnames, color = seqnames)) ## plotGrandLinear plotGrandLinear(gr.snp, aes(y = pvalue)) ## morecolor plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames)) plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue")) plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue", "red")) plotGrandLinear(gr.snp, aes(y = pvalue), color = "red") ## cutoff plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue", cutoff.size = 4) ## cutoff-low plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue", size = 4) ## longer ## let's make a long name nms <- seqnames(seqinfo(gr.snp)) nms.new <- paste("chr00000", nms, sep = "") names(nms.new) <- nms gr.snp <- renameSeqlevels(gr.snp, nms.new) seqlengths(gr.snp) ## rotate plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x=element_text(angle=-90, hjust=0)) ## sessionInfo sessionInfo()
## load library(ggbio) data(hg19IdeogramCyto, package = "biovizBase") data(hg19Ideogram, package = "biovizBase") library(GenomicRanges) ## simul_gr library(biovizBase) gr <- GRanges(rep(c("chr1", "chr2"), each = 5), IRanges(start = rep(seq(1, 100, length = 5), times = 2), width = 50)) autoplot(gr) ## coord:genome autoplot(gr, coord = "genome") gr.t <- transformToGenome(gr) head(gr.t) ## is is_coord_genome(gr.t) metadata(gr.t)$coord ## simul_snp chrs <- as.character(levels(seqnames(hg19IdeogramCyto))) seqlths <- seqlengths(hg19Ideogram)[chrs] set.seed(1) nchr <- length(chrs) nsnps <- 100 gr.snp <- GRanges(rep(chrs,each=nsnps), IRanges(start = do.call(c, lapply(chrs, function(chr){ N <- seqlths[chr] runif(nsnps,1,N) })), width = 1), SNP=sapply(1:(nchr*nsnps), function(x) paste("rs",x,sep='')), pvalue = -log10(runif(nchr*nsnps)), group = sample(c("Normal", "Tumor"), size = nchr*nsnps, replace = TRUE) ) ## shorter seqlengths(gr.snp) nms <- seqnames(seqinfo(gr.snp)) nms.new <- gsub("chr", "", nms) names(nms.new) <- nms gr.snp <- renameSeqlevels(gr.snp, nms.new) seqlengths(gr.snp) ## unorder autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## sort gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y")) autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## with_seql names(seqlths) <- gsub("chr", "", names(seqlths)) seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))] autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01) ## line autoplot(gr.snp, coord = "genome", geom = "line", aes(y = pvalue, group = seqnames, color = seqnames)) ## plotGrandLinear plotGrandLinear(gr.snp, aes(y = pvalue)) ## morecolor plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames)) plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue")) plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue", "red")) plotGrandLinear(gr.snp, aes(y = pvalue), color = "red") ## cutoff plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue", cutoff.size = 4) ## cutoff-low plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue", size = 4) ## longer ## let's make a long name nms <- seqnames(seqinfo(gr.snp)) nms.new <- paste("chr00000", nms, sep = "") names(nms.new) <- nms gr.snp <- renameSeqlevels(gr.snp, nms.new) seqlengths(gr.snp) ## rotate plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x=element_text(angle=-90, hjust=0)) ## sessionInfo sessionInfo()
Plot GRanges object structure and linked to a even spaced paralell coordinates plot which represting the data in elementeMetadata.
## S4 method for signature 'RangedSummarizedExperiment' plotRangesLinkedToData(data, ..., stat.y = seq_len(ncol(data)), stat.ylab = names(assays(data)[stat.assay]), stat.assay = 1L) ## S4 method for signature 'GenomicRanges_OR_GRangesList' plotRangesLinkedToData(data, ..., stat.y = seq_len(ncol(mcols(data))), stat.ylab, sig, sig.col = c("black", "red"), stat.coord.trans = coord_trans(), annotation = list(), width.ratio = 0.8, theme.stat = theme_gray(), theme.align = theme_gray(), linetype = 3, heights)
## S4 method for signature 'RangedSummarizedExperiment' plotRangesLinkedToData(data, ..., stat.y = seq_len(ncol(data)), stat.ylab = names(assays(data)[stat.assay]), stat.assay = 1L) ## S4 method for signature 'GenomicRanges_OR_GRangesList' plotRangesLinkedToData(data, ..., stat.y = seq_len(ncol(mcols(data))), stat.ylab, sig, sig.col = c("black", "red"), stat.coord.trans = coord_trans(), annotation = list(), width.ratio = 0.8, theme.stat = theme_gray(), theme.align = theme_gray(), linetype = 3, heights)
data |
GRanges object with a DataFrame as elementMetadata. |
... |
Parameters passed to control lines in top plot. |
stat.y |
integer (variable position starting in DataFrame of data, start from 1) or strings (variable names) which indicate the column names. |
stat.ylab |
y label for stat track(the top track). |
stat.assay |
default 1L, element of assays. |
sig |
a character of element meta data column of logical value, indicates which row is signficant. and will be shown in link lines and rectangle. |
sig.col |
colors for significant, valid when you specify "sig" argument, the
first color indicates |
stat.coord.trans |
transformation used for top plot. |
annotation |
A list of ggplot object. |
width.ratio |
Control the segment length of statistic layer. |
theme.stat |
top plot theme. |
theme.align |
alignment themes. |
linetype |
linetype |
heights |
Heights of each track. |
Inspired by some graphics produced in some other packages, for example
in package DEXseq, the author provides graphics with gene
models and linked to an even spaced statistics summary. This is useful
because we always plot everything along the genomic coordinates, but
genomic features like exons are not evenly distributed, so we could
actually treat the statistics associated with exons like categorical
data, and show them as "Paralell Coordinates Plots". This is one
special layout which represent the data in a nice manner and also keep
the genomic structure information. With abliity of tracks
,
it's possible to generate such type of a graphic along with other
annotations.
The data we want is a normal GRanges
object, and make sure
the intervals are not overlaped with each other(currently), and you
may have multiple columns which store the statistics for multiple
samples, then we produce the graphic we introduced above and users
could pass other annotation track in the function which will be shown
below the main linked track.
The reason you need to pass annotation into the function instead of
binding them by tracks
later is because binding manually
with annotation tracks is tricky and this function doesn't return a
ggplot object.
return a frame grob; side-effect (plotting) if plot=T.
Tengfei Yin
library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(ggbio) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene model <- exonsBy(txdb, by = "tx") model17 <- subsetByOverlaps(model, genesymbol["RBM17"]) exons <- exons(txdb) exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"]) ## reduce to make sure there is no overlap ## just for example exon.new <- reduce(exon17) ## suppose values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3) values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10) values(exon.new)$score <- rnorm(length(exon.new)) values(exon.new)$significant <- sample(c(TRUE,FALSE), size = length(exon.new),replace = TRUE) plotRangesLinkedToData(exon.new, stat.y = c("sample1", "sample2")) plotRangesLinkedToData(exon.new, stat.y = 1:2) plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4) plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4, sig = "significant") plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4, sig = "significant", sig.col = c("gray90","red"))
library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(ggbio) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene model <- exonsBy(txdb, by = "tx") model17 <- subsetByOverlaps(model, genesymbol["RBM17"]) exons <- exons(txdb) exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"]) ## reduce to make sure there is no overlap ## just for example exon.new <- reduce(exon17) ## suppose values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3) values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10) values(exon.new)$score <- rnorm(length(exon.new)) values(exon.new)$significant <- sample(c(TRUE,FALSE), size = length(exon.new),replace = TRUE) plotRangesLinkedToData(exon.new, stat.y = c("sample1", "sample2")) plotRangesLinkedToData(exon.new, stat.y = 1:2) plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4) plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4, sig = "significant") plotRangesLinkedToData(exon.new, stat.y = 1:2, size = 3, linetype = 4, sig = "significant", sig.col = c("gray90","red"))
Plot splice summary by simply counting overlaped junction read in weighted way or not.
## For character,GRangesList ## S4 method for signature 'character,GRangesList' plotSpliceSum(data, model, ..., weighted = TRUE) ## For character,TxDb ## S4 method for signature 'character,TxDb' plotSpliceSum(data, model, which, ..., weighted = TRUE) ## For character,EnsDb ## S4 method for signature 'character,EnsDb' plotSpliceSum(data, model, which, ..., weighted = TRUE)
## For character,GRangesList ## S4 method for signature 'character,GRangesList' plotSpliceSum(data, model, ..., weighted = TRUE) ## For character,TxDb ## S4 method for signature 'character,TxDb' plotSpliceSum(data, model, which, ..., weighted = TRUE) ## For character,EnsDb ## S4 method for signature 'character,EnsDb' plotSpliceSum(data, model, which, ..., weighted = TRUE)
data |
A character specifying the bam file path of RNA-seq data. |
model |
A GRangesList which represting different isoforms, a TxDb or an
|
which |
A GRanges object specifying the region you want to get model from
the TxDb object.
For |
weighted |
If |
... |
Extra arugments passed to |
Internally we use biovizBase:::spliceSummary for simple counting, but
we encourage users to use their own robust way to make slicing summary
and store it as GRangesList, then plot the summary by qplot
function.
A ggplot object.
Tengfei Yin
## Not run: bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") library(TxDb.Hsapiens.UCSC.hg19.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene data(genesymbol) exons <- exonsBy(txdb, by = "tx") exons.rbm17 <- subsetByOverlaps(exons, genesymbol["RBM17"]) plotSpliceSum(bamfile, exons.rbm17) plotSpliceSum(bamfile, exons.rbm17, weighted = FALSE, offset = 0.01) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"]) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"], offset = 0.01) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"], show.label = TRUE, label.type = "count") ## End(Not run)
## Not run: bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase") library(TxDb.Hsapiens.UCSC.hg19.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene data(genesymbol) exons <- exonsBy(txdb, by = "tx") exons.rbm17 <- subsetByOverlaps(exons, genesymbol["RBM17"]) plotSpliceSum(bamfile, exons.rbm17) plotSpliceSum(bamfile, exons.rbm17, weighted = FALSE, offset = 0.01) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"]) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"], offset = 0.01) plotSpliceSum(bamfile, txdb, which = genesymbol["RBM17"], show.label = TRUE, label.type = "count") ## End(Not run)
Plot stacked overview for genome with or without cytobands. It's a
wrapper around layout_karyogram
.
plotStackedOverview(obj, ..., xlab, ylab, main, geom = "rect", cytobands = FALSE, rescale = TRUE, rescale.range = c(0, 10)) plotKaryogram(obj, ..., xlab, ylab, main, geom = "rect", cytobands = FALSE, rescale = TRUE, rescale.range = c(0, 10))
plotStackedOverview(obj, ..., xlab, ylab, main, geom = "rect", cytobands = FALSE, rescale = TRUE, rescale.range = c(0, 10)) plotKaryogram(obj, ..., xlab, ylab, main, geom = "rect", cytobands = FALSE, rescale = TRUE, rescale.range = c(0, 10))
obj |
a |
... |
arguments passed to graphic functions to control aesthetics. For
example, if you use geom "point", you need to provide "y" in
|
xlab |
label for x |
ylab |
label for y |
main |
title for plot. |
geom |
geom plotted on the stacked layout. Default is "rect", which showing
interval data as rectangles. It automatically figures out boundary
so you don't have to provide information in |
cytobands |
logical value. Default is |
rescale |
logical value. Default is |
rescale.range |
Numeric range of length 2. Default is (0, 10), because stacked layout draws a white background as chromosome space and this space is of height 10. We hide the y-axis since we don't need it for stacked overview. Sometime users may want to leave some margin for their data, they can use this arguments to control the rescale. |
Stacked overview is just a arbitrary layout for karyogram
layout, it use facets seqnaems ~ . as default to stack the genome. For
accurate mapping, you need to provide seqlengths
information in
your GRanges
object. Otherwise, data space will be computed for
stacked overview chromosome background, this is _NOT_ the actual
chromosome space!.
A ggplot
object.
Tengfei Yin
## Not run: library(biovizBase) data(hg19IdeogramCyto, package = "biovizBase") library(GenomicRanges) ## you can also get ideogram by biovizBase::getIdeogram ## make shorter and clean labels old.chrs <- seqnames(seqinfo(hg19IdeogramCyto)) new.chrs <- gsub("chr", "", old.chrs) ## lst <- as.list(new.chrs) names(new.chrs) <- old.chrs new.ideo <- renameSeqlevels(hg19IdeogramCyto, new.chrs) new.ideo <- keepSeqlevels(new.ideo, c(as.character(1:22) , "X", "Y")) new.ideo ## sample data data(darned_hg19_subset500, package = "biovizBase") idx <- is.na(values(darned_hg19_subset500)$exReg) values(darned_hg19_subset500)$exReg[idx] <- "unknown" ## you need to add seqlengths for accruate mapping chrnames <- unique(as.character(seqnames(darned_hg19_subset500))) data(hg19Ideogram, package = "biovizBase") seqlengths(darned_hg19_subset500) <- seqlengths(hg19Ideogram)[sort(chrnames)] dn <- darned_hg19_subset500 values(dn)$score <- rnorm(length(dn)) ## plotStackedOverview is a simple wrapper around this functions to create a stacked layout plotStackedOverview(new.ideo, cytobands = TRUE) plotStackedOverview(dn) plotStackedOverview(dn, aes(color = exReg, fill = exReg)) ## this will did the trick for you to rescale the space plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line") plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line", rescale.range = c(4, 6)) ## no rescale plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line", rescale = FALSE, xlab = "xlab", ylab = "ylab", main = "main") + ylab("ylab") ## no object? will ask you for species and query the data on the fly plotStackedOverview() plotStackedOverview(cytobands = TRUE) ## End(Not run)
## Not run: library(biovizBase) data(hg19IdeogramCyto, package = "biovizBase") library(GenomicRanges) ## you can also get ideogram by biovizBase::getIdeogram ## make shorter and clean labels old.chrs <- seqnames(seqinfo(hg19IdeogramCyto)) new.chrs <- gsub("chr", "", old.chrs) ## lst <- as.list(new.chrs) names(new.chrs) <- old.chrs new.ideo <- renameSeqlevels(hg19IdeogramCyto, new.chrs) new.ideo <- keepSeqlevels(new.ideo, c(as.character(1:22) , "X", "Y")) new.ideo ## sample data data(darned_hg19_subset500, package = "biovizBase") idx <- is.na(values(darned_hg19_subset500)$exReg) values(darned_hg19_subset500)$exReg[idx] <- "unknown" ## you need to add seqlengths for accruate mapping chrnames <- unique(as.character(seqnames(darned_hg19_subset500))) data(hg19Ideogram, package = "biovizBase") seqlengths(darned_hg19_subset500) <- seqlengths(hg19Ideogram)[sort(chrnames)] dn <- darned_hg19_subset500 values(dn)$score <- rnorm(length(dn)) ## plotStackedOverview is a simple wrapper around this functions to create a stacked layout plotStackedOverview(new.ideo, cytobands = TRUE) plotStackedOverview(dn) plotStackedOverview(dn, aes(color = exReg, fill = exReg)) ## this will did the trick for you to rescale the space plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line") plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line", rescale.range = c(4, 6)) ## no rescale plotStackedOverview(dn, aes(x = midpoint, y = score), geom = "line", rescale = FALSE, xlab = "xlab", ylab = "ylab", main = "main") + ylab("ylab") ## no object? will ask you for species and query the data on the fly plotStackedOverview() plotStackedOverview(cytobands = TRUE) ## End(Not run)
Rescale a numeric vector or ggplot object, could be used for static zoom-in in ggbio.
## S4 method for signature 'numeric' rescale(x, to = c(0, 1), from = range(x, na.rm = TRUE)) ## S4 method for signature 'ggplot' rescale(x, xlim, ylim, sx = 1, sy = 1) ## S4 method for signature 'gg' rescale(x, xlim, ylim, sx = 1, sy = 1)
## S4 method for signature 'numeric' rescale(x, to = c(0, 1), from = range(x, na.rm = TRUE)) ## S4 method for signature 'ggplot' rescale(x, xlim, ylim, sx = 1, sy = 1) ## S4 method for signature 'gg' rescale(x, xlim, ylim, sx = 1, sy = 1)
x |
A numeric object or ggplot object to be rescaled. |
to |
For numeric object. it's a vector of two numeric values, specifying the range to be rescale. |
from |
Range of x. |
xlim |
For ggplot object. This specify the new limits on x-scale. |
ylim |
For ggplot object. This specify the new limits on y-scale. |
sx |
Scale fold for x-scale. Default is 1, no change. |
sy |
Scale fold for y-scale. Default is 1, no change. |
When x
is numeric value, it's just call scales::rescale, please
refer to the manual page to check more details. If x
is ggplot
object, it first try to estimate current x limits and y limits of the ggplot
object, then rescale based on those information.
Return the object of the same class as x
after rescaling.
Tengfei Yin
library(ggbio) head(mtcars) range(mtcars$mpg) p <- qplot(data = mtcars, x = mpg, y = disp, geom = "point") p.new <- rescale(p, xlim = c(20, 25)) p.new
library(ggbio) head(mtcars) range(mtcars$mpg) p <- qplot(data = mtcars, x = mpg, y = disp, geom = "point") p.new <- rescale(p, xlim = c(20, 25)) p.new
In biology, lots of data are scaled to value around 0, and people like to show them as blue-white-red scale color, where negative value are blue, 0 is white and positive value is red, and they are scaled for continuous variables.
scale_fill_fold_change()
scale_fill_fold_change()
a list.
Tengfei Yin
p1 <- autoplot(volcano - 150) p1 p1 + scale_fill_fold_change()
p1 <- autoplot(volcano - 150) p1 p1 + scale_fill_fold_change()
scale filled color to customized giemsa color.
scale_fill_giemsa(fill = getOption("biovizBase")$cytobandColor)
scale_fill_giemsa(fill = getOption("biovizBase")$cytobandColor)
fill |
a character vector to indicate colors, and names of vector mapped to gieStain name. |
a list.
Tengfei Yin
getOption("biovizBase")$cytobandColor library(biovizBase) data(hg19IdeogramCyto) p1 <- autoplot(hg19IdeogramCyto, layout = "karyogram", aes(fill = gieStain)) p1 p1 + scale_fill_giemsa()
getOption("biovizBase")$cytobandColor library(biovizBase) data(hg19IdeogramCyto) p1 <- autoplot(hg19IdeogramCyto, layout = "karyogram", aes(fill = gieStain)) p1 p1 + scale_fill_giemsa()
scale x by unit 'Mb','kb', 'bp'.
scale_x_sequnit(unit = c("Mb", "kb", "bp"), append = NULL)
scale_x_sequnit(unit = c("Mb", "kb", "bp"), append = NULL)
unit |
unit to scale x. Default is Mb. |
append |
default |
'position_c'
Tengfei Yin
library(ggplot2) p <- qplot(x = seq(1, to = 10000, length.out = 40), y = rnorm(40), geom = "point") ## default mb p + scale_x_sequnit() p + scale_x_sequnit("kb") p + scale_x_sequnit("bp")
library(ggplot2) p <- qplot(x = seq(1, to = 10000, length.out = 40), y = rnorm(40), geom = "point") ## default mb p + scale_x_sequnit() p + scale_x_sequnit("kb") p + scale_x_sequnit("bp")
Generates summaries on the specified windows
## S4 method for signature 'GRanges' stat_aggregate(data, ..., xlab, ylab, main, by, FUN, maxgap=-1L, minoverlap=0L, type=c("any", "start", "end", "within", "equal"), select=c("all", "first", "last", "arbitrary"), y = NULL, window = NULL, facets = NULL, method = c("mean", "median","max", "min", "sum", "count", "identity"), geom = NULL)
## S4 method for signature 'GRanges' stat_aggregate(data, ..., xlab, ylab, main, by, FUN, maxgap=-1L, minoverlap=0L, type=c("any", "start", "end", "within", "equal"), select=c("all", "first", "last", "arbitrary"), y = NULL, window = NULL, facets = NULL, method = c("mean", "median","max", "min", "sum", "count", "identity"), geom = NULL)
data |
A |
... |
Arguments passed to plot function. such as aes() and color. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
by |
An object with 'start', 'end', and 'width' methods. Passed to |
FUN |
The function, found via 'match.fun', to be applied to each window of
'x'. Passed to |
maxgap , minoverlap , type
|
Used in the internal call to |
select |
It passed to When If |
y |
A character indicate the varialbe column for which aggregation is taken on, same as aes(y = ). |
window |
Integer value indicate window size. |
facets |
Faceting formula to use. |
method |
customized method for aggregating, if FUN is not provided. |
geom |
The geometric object to use display the data. |
A 'Layer'.
Tengfei Yin
library(GenomicRanges) set.seed(1) N <- 1000 ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_aggregate(aes(y = value)) ## or ## ggplot(gr) + stat_aggregate(y = "value") ggplot(gr) + stat_aggregate(aes(y = value), window = 36) ggplot(gr) + stat_aggregate(aes(y = value), select = "first") ## Not run: ## no hits ggplot(gr) + stat_aggregate(aes(y = value), select = "first", type = "within") ## End(Not run) ggplot(gr) + stat_aggregate(window = 30, aes(y = value),fill = "gray40", geom = "bar") ggplot(gr) + stat_aggregate(window = 100, fill = "gray40", aes(y = value), method = "max", geom = "bar") ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot") ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot", window = 60) ## now facets need to take place inside stat_* geom_* for an accurate computation ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot", window = 30, facets = sample ~ seqnames) ## FIXME: ## autoplot(gr, stat = "aggregate", aes(y = value), window = 36) ## autoplot(gr, stat = "aggregate", geom = "boxplot", aes(y = value), window = 36)
library(GenomicRanges) set.seed(1) N <- 1000 ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_aggregate(aes(y = value)) ## or ## ggplot(gr) + stat_aggregate(y = "value") ggplot(gr) + stat_aggregate(aes(y = value), window = 36) ggplot(gr) + stat_aggregate(aes(y = value), select = "first") ## Not run: ## no hits ggplot(gr) + stat_aggregate(aes(y = value), select = "first", type = "within") ## End(Not run) ggplot(gr) + stat_aggregate(window = 30, aes(y = value),fill = "gray40", geom = "bar") ggplot(gr) + stat_aggregate(window = 100, fill = "gray40", aes(y = value), method = "max", geom = "bar") ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot") ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot", window = 60) ## now facets need to take place inside stat_* geom_* for an accurate computation ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot", window = 30, facets = sample ~ seqnames) ## FIXME: ## autoplot(gr, stat = "aggregate", aes(y = value), window = 36) ## autoplot(gr, stat = "aggregate", geom = "boxplot", aes(y = value), window = 36)
Binning method especially for Rle
and RleList
, for
data.frame
it's just calling ggplot2::stat_bin
.
## S4 method for signature 'ANY' stat_bin(data, ...) ## S4 method for signature 'Rle' stat_bin(data, ..., binwidth, nbin = 30, xlab, ylab, main, geom = c("bar", "heatmap"), type = c("viewSums","viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' stat_bin(data, ..., binwidth, nbin = 30, xlab, ylab, main, indName = "sample", geom = c("bar", "heatmap"), type = c("viewSums","viewMins", "viewMaxs", "viewMeans"))
## S4 method for signature 'ANY' stat_bin(data, ...) ## S4 method for signature 'Rle' stat_bin(data, ..., binwidth, nbin = 30, xlab, ylab, main, geom = c("bar", "heatmap"), type = c("viewSums","viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' stat_bin(data, ..., binwidth, nbin = 30, xlab, ylab, main, indName = "sample", geom = c("bar", "heatmap"), type = c("viewSums","viewMins", "viewMaxs", "viewMeans"))
data |
Typically a |
... |
arguments passed to aesthetics mapping. |
binwidth |
width of the bins. |
nbin |
number of bins. |
xlab |
x label. |
ylab |
y label. |
main |
title. |
indName |
when faceted by a |
geom |
geometric types. |
type |
statistical summary method used within bins, shown as bar height or heatmap colors. |
a ggplot object.
Tengfei Yin
library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot() + stat_bin(xRle) ggplot(xRle) + stat_bin() ggplot(xRle) + stat_bin(nbin = 100) ggplot(xRle) + stat_bin(binwidth = 200) p1 <- ggplot(xRle) + stat_bin(type = "viewMeans") p2 <- ggplot(xRle) + stat_bin(type = "viewSums") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRle) + stat_bin(geom = "heatmap") ggplot(xRle) + stat_bin(nbin = 100, geom = "heatmap") ggplot(xRle) + stat_bin(binwidth = 200, geom = "heatmap") ## for RleList ggplot(xRleList) + stat_bin() ggplot(xRleList) + stat_bin(nbin = 100) ggplot(xRleList) + stat_bin(binwidth = 200) p1 <- ggplot(xRleList) + stat_bin(type = "viewMeans") p2 <- ggplot(xRleList) + stat_bin(type = "viewSums") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRleList) + stat_bin(geom = "heatmap") ggplot(xRleList) + stat_bin(nbin = 100, geom = "heatmap") ggplot(xRleList) + stat_bin(binwidth = 200, geom = "heatmap")
library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot() + stat_bin(xRle) ggplot(xRle) + stat_bin() ggplot(xRle) + stat_bin(nbin = 100) ggplot(xRle) + stat_bin(binwidth = 200) p1 <- ggplot(xRle) + stat_bin(type = "viewMeans") p2 <- ggplot(xRle) + stat_bin(type = "viewSums") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRle) + stat_bin(geom = "heatmap") ggplot(xRle) + stat_bin(nbin = 100, geom = "heatmap") ggplot(xRle) + stat_bin(binwidth = 200, geom = "heatmap") ## for RleList ggplot(xRleList) + stat_bin() ggplot(xRleList) + stat_bin(nbin = 100) ggplot(xRleList) + stat_bin(binwidth = 200) p1 <- ggplot(xRleList) + stat_bin(type = "viewMeans") p2 <- ggplot(xRleList) + stat_bin(type = "viewSums") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRleList) + stat_bin(geom = "heatmap") ggplot(xRleList) + stat_bin(nbin = 100, geom = "heatmap") ggplot(xRleList) + stat_bin(binwidth = 200, geom = "heatmap")
Calculate coverage.
# for GRanges ## S4 method for signature 'GRanges' stat_coverage(data, ..., xlim, xlab, ylab, main, facets = NULL, geom = NULL) # for GRangesList ## S4 method for signature 'GRangesList' stat_coverage(data, ..., xlim, xlab, ylab, main, facets = NULL, geom = NULL) # for Bamfile ## S4 method for signature 'BamFile' stat_coverage(data, ..., maxBinSize = 2^14, xlim, which, xlab, ylab, main, facets = NULL, geom = NULL, method = c("estimate", "raw"), space.skip = 0.1, coord = c("linear", "genome"))
# for GRanges ## S4 method for signature 'GRanges' stat_coverage(data, ..., xlim, xlab, ylab, main, facets = NULL, geom = NULL) # for GRangesList ## S4 method for signature 'GRangesList' stat_coverage(data, ..., xlim, xlab, ylab, main, facets = NULL, geom = NULL) # for Bamfile ## S4 method for signature 'BamFile' stat_coverage(data, ..., maxBinSize = 2^14, xlim, which, xlab, ylab, main, facets = NULL, geom = NULL, method = c("estimate", "raw"), space.skip = 0.1, coord = c("linear", "genome"))
data |
A |
... |
Extra parameters such as aes() passed to |
xlim |
Limits for x. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
geom |
The geometric object to use display the data. |
maxBinSize |
maxBinSize. |
method |
'estimate' for parsing estimated coverage(fast), 'raw' is slow and parse the accurate coverage. |
which |
|
space.skip |
used for coordinate genome, skip between chromosomes. |
coord |
coordinate system. |
A 'Layer'.
Tengfei Yin
library(ggbio) ## ====================================================================== ## simmulated GRanges ## ====================================================================== set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_coverage() ggplot() + stat_coverage(gr) ggplot(gr) + stat_coverage(geom = "point") ggplot(gr) + stat_coverage(geom = "area") ggplot(gr) + stat_coverage(aes(y = ..coverage..), geom = "bar") ggplot(gr) + stat_coverage(aes(y = ..coverage..)) + geom_point() ## for bam file ## TBD
library(ggbio) ## ====================================================================== ## simmulated GRanges ## ====================================================================== set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_coverage() ggplot() + stat_coverage(gr) ggplot(gr) + stat_coverage(geom = "point") ggplot(gr) + stat_coverage(geom = "area") ggplot(gr) + stat_coverage(aes(y = ..coverage..), geom = "bar") ggplot(gr) + stat_coverage(aes(y = ..coverage..)) + geom_point() ## for bam file ## TBD
Calculate gene structure.
## S4 method for signature 'TxDb' stat_gene(data, ...)
## S4 method for signature 'TxDb' stat_gene(data, ...)
data |
A |
... |
Extra parameters such as aes() passed to |
A 'Layer'.
Tengfei Yin
## Not run: ## loading package ## Deprecated library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. p1 <- ggplot() + geom_alignment(txdb, which = genesymbol["RBM17"]) p1 <- ggplot() + stat_gene(txdb, which = genesymbol["RBM17"]) ## or p1 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"]) p1 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"]) p2 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], stat = "reduce") p2 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], stat = "reduce") ## ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) + stat_reduce() ## ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) tracks(full = p1, reduce = p2, heights = c(3, 1)) ## change y labels ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id") ## End(Not run)
## Not run: ## loading package ## Deprecated library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. p1 <- ggplot() + geom_alignment(txdb, which = genesymbol["RBM17"]) p1 <- ggplot() + stat_gene(txdb, which = genesymbol["RBM17"]) ## or p1 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"]) p1 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"]) p2 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], stat = "reduce") p2 <- ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], stat = "reduce") ## ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) + stat_reduce() ## ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"]) tracks(full = p1, reduce = p2, heights = c(3, 1)) ## change y labels ggplot(txdb) + stat_gene(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id") ## End(Not run)
Transform the data to a suitable data.frame and then one could use multiple geom or even stat to re-plot the data.
## S4 method for signature 'ANY' stat_identity(data, ...) ## S4 method for signature 'GRanges' stat_identity(data, ..., geom = NULL) ## S4 method for signature 'Rle' stat_identity(data, ..., xlab, ylab, main, geom = NULL) ## S4 method for signature 'RleList' stat_identity(data, ..., xlab, ylab, main, geom = NULL, indName = "sample")
## S4 method for signature 'ANY' stat_identity(data, ...) ## S4 method for signature 'GRanges' stat_identity(data, ..., geom = NULL) ## S4 method for signature 'Rle' stat_identity(data, ..., xlab, ylab, main, geom = NULL) ## S4 method for signature 'RleList' stat_identity(data, ..., xlab, ylab, main, geom = NULL, indName = "sample")
data |
Typically a |
... |
Extra parameters such as aes() passed to |
geom |
The geometric object to use display the data. |
xlab |
x label. |
ylab |
y label. |
main |
title of graphic.. |
indName |
sample name. |
A 'Layer'.
Tengfei Yin
## load set.seed(1) N <- 50 require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## geom_point_start ggplot() + stat_identity(gr, aes(x = start, y = value), geom = "point") ## or more formal ggplot(gr) + stat_identity(aes(x = start, y = value), geom = "point") ## geom_point_midpoint ggplot(gr) + stat_identity(aes(x = midpoint, y = value), geom = "point") ## geom_rect_all ggplot(gr) + stat_identity(aes(xmin = start, xmax = end, ymin = value - 0.5, ymax = value + 0.5), geom = "rect") ## geom_rect_y ggplot(gr) + stat_identity(aes(y = value), geom = "rect") ## geom_line ggplot(gr) + stat_identity(aes(x = start, y = value), geom = "line") ## geom_segment ggplot(gr) + stat_identity(aes(y = value), geom = "segment") ## Rle/RleList library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot(xRle) + stat_identity(geom = "point") ggplot(xRleList) + stat_identity(geom = "point")
## load set.seed(1) N <- 50 require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## geom_point_start ggplot() + stat_identity(gr, aes(x = start, y = value), geom = "point") ## or more formal ggplot(gr) + stat_identity(aes(x = start, y = value), geom = "point") ## geom_point_midpoint ggplot(gr) + stat_identity(aes(x = midpoint, y = value), geom = "point") ## geom_rect_all ggplot(gr) + stat_identity(aes(xmin = start, xmax = end, ymin = value - 0.5, ymax = value + 0.5), geom = "rect") ## geom_rect_y ggplot(gr) + stat_identity(aes(y = value), geom = "rect") ## geom_line ggplot(gr) + stat_identity(aes(x = start, y = value), geom = "line") ## geom_segment ggplot(gr) + stat_identity(aes(y = value), geom = "segment") ## Rle/RleList library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot(xRle) + stat_identity(geom = "point") ggplot(xRleList) + stat_identity(geom = "point")
Calculate mismatch summary
## for GRanges ## S4 method for signature 'GRanges' stat_mismatch(data, ..., bsgenome, xlab, ylab, main, geom = c("segment", "bar"), show.coverage = TRUE) ## for BamFile ## S4 method for signature 'BamFile' stat_mismatch(data, ..., bsgenome, which, xlab, ylab, main, geom = c("segment", "bar"), show.coverage = TRUE)
## for GRanges ## S4 method for signature 'GRanges' stat_mismatch(data, ..., bsgenome, xlab, ylab, main, geom = c("segment", "bar"), show.coverage = TRUE) ## for BamFile ## S4 method for signature 'BamFile' stat_mismatch(data, ..., bsgenome, which, xlab, ylab, main, geom = c("segment", "bar"), show.coverage = TRUE)
data |
A |
... |
Extra parameters such as aes() passed to |
bsgenome |
|
which |
|
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
geom |
The geometric object to use display the data. |
show.coverage |
whether to show coverage as background or not. |
A 'Layer'.
Tengfei Yin
Reduce GRanges
, IRanges
or TxDb
object.
## S4 method for signature 'GRanges' stat_reduce(data, ..., xlab, ylab, main, drop.empty.ranges = FALSE, min.gapwidth = 1L, facets = NULL, geom = NULL) ## S4 method for signature 'IRanges' stat_reduce(data, ..., xlab, ylab, main, drop.empty.ranges = FALSE, min.gapwidth = 1L, with.inframe.attrib=FALSE, facets = NULL, geom = NULL) ## S4 method for signature 'TxDbOREnsDb' stat_reduce(data, ...)
## S4 method for signature 'GRanges' stat_reduce(data, ..., xlab, ylab, main, drop.empty.ranges = FALSE, min.gapwidth = 1L, facets = NULL, geom = NULL) ## S4 method for signature 'IRanges' stat_reduce(data, ..., xlab, ylab, main, drop.empty.ranges = FALSE, min.gapwidth = 1L, with.inframe.attrib=FALSE, facets = NULL, geom = NULL) ## S4 method for signature 'TxDbOREnsDb' stat_reduce(data, ...)
data |
|
... |
passed to aesthetics mapping. |
xlab |
x label. |
ylab |
y label. |
main |
title. |
drop.empty.ranges |
pass to |
min.gapwidth |
pass to |
with.inframe.attrib |
pass to |
facets |
pass to |
geom |
geometric type. |
a ggplot object.
Tengfei Yin
set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_reduce() autoplot(gr, stat = "reduce") strand(gr) <- "*" ggplot(gr) + stat_reduce() library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. ggplot(txdb) + stat_reduce(which = genesymbol["RBM17"])
set.seed(1) N <- 1000 library(GenomicRanges) gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ggplot(gr) + stat_reduce() autoplot(gr, stat = "reduce") strand(gr) <- "*" ggplot(gr) + stat_reduce() library(TxDb.Hsapiens.UCSC.hg19.knownGene) data(genesymbol, package = "biovizBase") txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene ## made a track comparing full/reduce stat. ggplot(txdb) + stat_reduce(which = genesymbol["RBM17"])
Slice Rle/RleList to different view by set lower or other parameters, then view summary for all those viewed region.
## S4 method for signature 'Rle' stat_slice(data, ..., xlab, ylab, main, na.rm = FALSE, geom = NULL, lower=-Inf, upper=Inf, includeLower=TRUE, includeUpper=TRUE, rangesOnly = FALSE, type = c("viewSums","viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' stat_slice(data, ..., xlab, ylab, main, indName = "sample", na.rm = FALSE, geom = NULL, lower=-Inf, upper=Inf, includeLower=TRUE, includeUpper=TRUE, rangesOnly = FALSE, type = c("viewSums","viewMins", "viewMaxs", "viewMeans"))
## S4 method for signature 'Rle' stat_slice(data, ..., xlab, ylab, main, na.rm = FALSE, geom = NULL, lower=-Inf, upper=Inf, includeLower=TRUE, includeUpper=TRUE, rangesOnly = FALSE, type = c("viewSums","viewMins", "viewMaxs", "viewMeans")) ## S4 method for signature 'RleList' stat_slice(data, ..., xlab, ylab, main, indName = "sample", na.rm = FALSE, geom = NULL, lower=-Inf, upper=Inf, includeLower=TRUE, includeUpper=TRUE, rangesOnly = FALSE, type = c("viewSums","viewMins", "viewMaxs", "viewMeans"))
data |
a |
... |
arguments passed to aesthetics mapping. |
xlab |
x label. |
ylab |
y label. |
main |
title. |
indName |
when faceted by a |
geom |
geometric types. |
type |
statistical summary method used within bins, shown as bar height or heatmap colors. |
na.rm |
logical value, default |
lower |
passed to |
upper |
passed to |
includeLower |
passed to |
includeUpper |
passed to |
rangesOnly |
passed to |
a ggplot object.
Tengfei Yin
library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot(xRle) + stat_slice(lower = 5) ggplot(xRle) + stat_slice(lower = 5, geom = "bar") ggplot(xRle) + stat_slice(lower = 5, geom = "heatmap") p1 <- ggplot(xRle) + stat_slice(type = "viewMeans", lower = 5, geom = "bar") p2 <- ggplot(xRle) + stat_slice(type = "viewSums", lower = 5, geom = "bar") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRleList) + stat_slice(lower = 5) ggplot(xRleList) + stat_slice(lower = 5, geom = "bar") ggplot(xRleList) + stat_slice(lower = 5, geom = "heatmap") p1 <- ggplot(xRleList) + stat_slice(type = "viewMeans", lower = 5, geom = "bar") p2 <- ggplot(xRleList) + stat_slice(type = "viewSums", lower = 5, geom = "bar") ## y scale are different. tracks(viewMeans = p1, viewSums = p2)
library(IRanges) lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001, length = 500)) xVector <- rpois(1e4, lambda) xRle <- Rle(xVector) xRleList <- RleList(xRle, 2L * xRle) ggplot(xRle) + stat_slice(lower = 5) ggplot(xRle) + stat_slice(lower = 5, geom = "bar") ggplot(xRle) + stat_slice(lower = 5, geom = "heatmap") p1 <- ggplot(xRle) + stat_slice(type = "viewMeans", lower = 5, geom = "bar") p2 <- ggplot(xRle) + stat_slice(type = "viewSums", lower = 5, geom = "bar") ## y scale are different. tracks(viewMeans = p1, viewSums = p2) ggplot(xRleList) + stat_slice(lower = 5) ggplot(xRleList) + stat_slice(lower = 5, geom = "bar") ggplot(xRleList) + stat_slice(lower = 5, geom = "heatmap") p1 <- ggplot(xRleList) + stat_slice(type = "viewMeans", lower = 5, geom = "bar") p2 <- ggplot(xRleList) + stat_slice(type = "viewSums", lower = 5, geom = "bar") ## y scale are different. tracks(viewMeans = p1, viewSums = p2)
Calculate stepping levels.
## S4 method for signature 'GRanges' stat_stepping(data, ..., xlab, ylab, main, facets = NULL, geom = c("rect", "alignment", "segment"))
## S4 method for signature 'GRanges' stat_stepping(data, ..., xlab, ylab, main, facets = NULL, geom = c("rect", "alignment", "segment"))
data |
A |
... |
Extra parameters such as aes() passed to |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
geom |
The geometric object used to display the data. For 'stepping', could be one of 'rect', 'alignment', 'segment'. |
A 'Layer'.
Tengfei Yin
set.seed(1) N <- 50 require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## default ggplot(gr) + stat_stepping() ## or ggplot() + stat_stepping(gr) ## facet_aes ggplot(gr) + stat_stepping(aes(color = strand, fill = strand), facets = sample ~ seqnames) ## geom_segment ggplot(gr) + stat_stepping(aes(color = strand), geom = "segment", xlab = "Genomic coord", ylab = "y", main = "hello") ## geom_alignment ## ggplot(gr) + stat_stepping(geom = "alignment") ## geom_alignment_group ## ggplot(gr) + stat_stepping(aes(group = pair),geom = "alignment")
set.seed(1) N <- 50 require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) ## default ggplot(gr) + stat_stepping() ## or ggplot() + stat_stepping(gr) ## facet_aes ggplot(gr) + stat_stepping(aes(color = strand, fill = strand), facets = sample ~ seqnames) ## geom_segment ggplot(gr) + stat_stepping(aes(color = strand), geom = "segment", xlab = "Genomic coord", ylab = "y", main = "hello") ## geom_alignment ## ggplot(gr) + stat_stepping(geom = "alignment") ## geom_alignment_group ## ggplot(gr) + stat_stepping(aes(group = pair),geom = "alignment")
Tabulate a GRanges object
## S4 method for signature 'GRanges' stat_table(data, ..., xlab, ylab, main, geom = NULL,stat = NULL) ## S4 method for signature 'GRangesList' stat_table(data, ..., xlab, ylab, main, facets = NULL, geom = NULL)
## S4 method for signature 'GRanges' stat_table(data, ..., xlab, ylab, main, geom = NULL,stat = NULL) ## S4 method for signature 'GRangesList' stat_table(data, ..., xlab, ylab, main, facets = NULL, geom = NULL)
data |
A |
... |
Extra parameters such as aes() passed to |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
geom |
The geometric object to use display the data. |
stat |
The geometric object to use display the data. |
A 'Layer'.
Tengfei Yin
## load set.seed(1) N <- 100 require(ggbio) require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) gr <- c(gr[seqnames(gr) == "chr1"][sample(1:10, size = 1e4, replace = TRUE)],gr) ## default ggplot(gr) + stat_table() ggplot(gr) + stat_table(geom = "segment", aes(y = ..score.., color = ..score..)) ggplot(gr) + stat_table(aes(color = score))
## load set.seed(1) N <- 100 require(ggbio) require(GenomicRanges) ## simul ## ====================================================================== ## simmulated GRanges ## ====================================================================== gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), IRanges( start = sample(1:300, size = N, replace = TRUE), width = sample(70:75, size = N,replace = TRUE)), strand = sample(c("+", "-", "*"), size = N, replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE)) gr <- c(gr[seqnames(gr) == "chr1"][sample(1:10, size = 1e4, replace = TRUE)],gr) ## default ggplot(gr) + stat_table() ggplot(gr) + stat_table(geom = "segment", aes(y = ..score.., color = ..score..)) ggplot(gr) + stat_table(aes(color = score))
Theme defined in ggbio for plot or tracks.
theme_null() theme_noexpand() theme_alignment(ylabel = FALSE, base_size = 12, base_family = "", axis = TRUE, border = TRUE, grid = TRUE) theme_pack_panels(strip.bg = FALSE, strip.text.y = TRUE) theme_clear(grid.y = FALSE, grid.x.minor = FALSE, grid.x.major = FALSE, panel.background.fill = "white", panel.border.color = NA, axis.ticks.x = FALSE, axis.ticks.y = TRUE, grid.color = "gray95", axis.line.color = "gray80") theme_tracks_sunset(bg = "#fffedb", alpha = 1, ...) theme_genome()
theme_null() theme_noexpand() theme_alignment(ylabel = FALSE, base_size = 12, base_family = "", axis = TRUE, border = TRUE, grid = TRUE) theme_pack_panels(strip.bg = FALSE, strip.text.y = TRUE) theme_clear(grid.y = FALSE, grid.x.minor = FALSE, grid.x.major = FALSE, panel.background.fill = "white", panel.border.color = NA, axis.ticks.x = FALSE, axis.ticks.y = TRUE, grid.color = "gray95", axis.line.color = "gray80") theme_tracks_sunset(bg = "#fffedb", alpha = 1, ...) theme_genome()
alpha |
alpha blending from 0(transparent) to 1(solid). |
axis |
logical value, show axis or not. |
axis.line.color |
color for axis line . |
axis.ticks.x |
show x ticks or not. |
axis.ticks.y |
show y ticks or not. |
base_family |
family for font. |
base_size |
size for font. |
bg |
background color for tracks. |
border |
logical value, show border or not. |
grid |
logical value, show background grid or not. |
grid.color |
grid line color. |
grid.x.major |
show x major grid line or not. |
grid.x.minor |
show x minor grid line or not. |
grid.y |
show y grid or not. |
panel.background.fill |
panel background fill color. |
panel.border.color |
panel border color. |
strip.bg |
if strip background is removed. |
strip.text.y |
if strip text is removed. |
ylabel |
logical value. Show labels or not. |
... |
passed to |
Themes speciall designed for tracks, are named following naming schema theme_tracks_*
Return a theme.
Tengfei Yin
## load library(ggbio) p <- qplot(data = mtcars, x = mpg, y = wt, facets = cyl ~ .) p + theme_null() p + theme_clear() p + theme_pack_panels() p + theme_alignment() p1 <- qplot(data = mtcars, x = mpg, y = wt) tracks(p1 = p, p2 = p1) tracks(p1 = p, p2 = p1) + theme_tracks_sunset()
## load library(ggbio) p <- qplot(data = mtcars, x = mpg, y = wt, facets = cyl ~ .) p + theme_null() p + theme_clear() p + theme_pack_panels() p + theme_alignment() p1 <- qplot(data = mtcars, x = mpg, y = wt) tracks(p1 = p, p2 = p1) tracks(p1 = p, p2 = p1) + theme_tracks_sunset()
Create a tracked object, designed for tracks function.
Tracked(mutable = TRUE, fixed = FALSE, labeled = TRUE, hasAxis = FALSE, bgColor = "white", height = unit(1, "null"))
Tracked(mutable = TRUE, fixed = FALSE, labeled = TRUE, hasAxis = FALSE, bgColor = "white", height = unit(1, "null"))
mutable |
logical value, default |
fixed |
logical value, default |
labeled |
logical value, default |
hasAxis |
logical value, default |
bgColor |
character to control background color of a track. |
height |
unit, to control track height. |
a Tracked
object.
Tengfei Yin
tracks
is a conventient constructor for bindind graphics as trakcs. You dont' have
to worry about adjusting different graphics, tracks
did that for you. It's NOT
just limited to bind genomic tracks, you can use this function to bind any
tracks with the same defination of x axis, for example, sets of time series
plots you made.
Tracks view is most common way to viewing genome features and annotation data and widely used by most genome browsers. Our assumption is that, most graphics you made with ggbio or by yourself using ggplot2, are almost always sitting on the genomic coordinates or the same x axis. And to compare annotation information along with genome features, we need to align those plots on exactly the same x axis in order to form your hypothesis. This function leaves you the flexibility to construct each tracks separately with worrying your alignments later.
tracks(..., heights, xlim, xlab = NULL, main = NULL, title = NULL, theme = NULL, track.plot.color = NULL, track.bg.color = NULL, main.height = unit(1.5, "lines"), scale.height = unit(1, "lines"), xlab.height = unit(1.5, "lines"), padding = unit(-1, "lines"), label.bg.color = "white", label.bg.fill = "gray80", label.text.color = "black", label.text.cex = 1, label.text.angle = 90, label.width = unit(2.5, "lines"))
tracks(..., heights, xlim, xlab = NULL, main = NULL, title = NULL, theme = NULL, track.plot.color = NULL, track.bg.color = NULL, main.height = unit(1.5, "lines"), scale.height = unit(1, "lines"), xlab.height = unit(1.5, "lines"), padding = unit(-1, "lines"), label.bg.color = "white", label.bg.fill = "gray80", label.text.color = "black", label.text.cex = 1, label.text.angle = 90, label.width = unit(2.5, "lines"))
... |
plots of class ggplot, generated from ggplot2 or ggbio. |
heights |
numeric vector of the same length of passed graphic object to indicate the ratio of each track. |
xlim |
|
xlab |
label for x axis. |
main |
title for the tracks. |
title |
title for the tracks, alias like main. |
theme |
theme object used for building tracks, this will set to default, which could be reseted later. |
track.plot.color |
Vector of characters of length 1 or the same length of passed plots, background color for each track, default is white. |
track.bg.color |
background color for the whole tracks. |
main.height |
unit. Height to control the title track height. |
scale.height |
unit. Height to control the scale track height. |
xlab.height |
unit. Height to control the xlab track height. |
padding |
single numeric value or unit, if numeric value, the unit would be "lines" by default. |
label.bg.color |
track labeling background rectangle border color. |
label.bg.fill |
track labeling background fill color. |
label.text.color |
track labeling text color. |
label.text.cex |
track labeling text size. |
label.text.angle |
angle to rotate the track labels. |
label.width |
track labeling size. |
tracks
did following modification for passed plots.
remove x-axis, ticks, xlab and tile for each track and add scales
at bottom. We suppose a new xlab and title would be provided by the
tracks
function for the whole tracks, but we still keep
individual's y axis.
align x-scale limits to make sure every plots sitting on exactly the same x scale.
squeezing plots together to some extent.
labeling tracks if names are provided, please check utilities section
about labeled
method.
return a track object. This would allow many features introduced in this manual.
A Tracks
object.
constructor tracks
will return a Tracks object, which has
following slots.
grobs
a ggplotGrobList
object contains a list of ggplot
object, which is our passed graphics.
backup
a backup of all the slots for holding the original tracks, so users
could edit it and reset it back at any time later, and backup
method will reset the backupped copy.
ylim
y limits for each plot.
labeled
vector of logical value indicates whether a track is labeled or not,
for labeled
attributes please check utilities section.
mutable
vector of logical value indicates whether a track is mutable for
theme editing or not, for mutable
attributes please check utilities section.
hasAxis
vector of logical value indicates whether a track has axis or not,
for hasAxis
attributes please check utilities section.
heights, xlim, xlab, main, title, theme, fixed, track.plot.color,
track.bg.color, main.height, scale.height, xlab.height, padding,
label.bg.color, label.bg.fill, label.text.color, label.text.cex, label.text.angle, label.width
those slots are described in arguments section for constructor.
Please check examples for usage.
summary(object)
summary information about tracks object.
fixed(x)
, fixed(x) <- value
x
is the
ggplot object, this controls if a track has a fixed x scale or not, if the fixed
attributes is TRUE
, then when you pass this plot to a
tracks, this plot won't be re-aligned with other tracks and will
keep the original x-axis, this allow you to pass some plot like
ideogram. fixed
function will return a logical value
labeled(x), labeled(x) <- value
x
is the
ggplot object, if you pass named graphics into tracks
, it will create the
labels on the left for you. Several ways supported to name it. You can
pass a list of graphics with names. Or you can use
tracks('name1' = p1, 'name 2' = p2, ...)
with quotes for
complicated words or simply tracks(part1 = p1, part = p2, ...)
.
mutable(x), mutable(x) <- value
x
is the ggplot object, this controls whether a plot in the
tracks mutable to theme changing or not, when you use +
method for Tracks object, add-on edit will only be applied to the
the mutable plots.
bgColor(x), bgColor(x) <- value
x
is the ggplot object, this change the background color
for single plot shown in the tracks.
xlim(x), xlim(x) <- value
when x
is the numeric value, it calls
ggplot2::coord_cartesian(xlim = ...) method, we doesn't use
ggplot2::xlim() for the reason it will cut data outside the range,
and we believe the best behavior would be zoom-in/out like
most browser. when x
is IRanges
,
GRanges
, it get the range and passed to
ggplot2::coord_cartesian function.
when x
is Tracks object, xlim(x)
will
return x limits for that tracks. xlim(x) <- value
replace method only works for Tracks object. value
could be
numeric
, IRanges
,
GRanges
object. This will change the x
limits associated with tracks.
+ xlim(obj)
:obj
is the numeric range, or IRanges
,
GRanges
object.
+ coord_cartesian()
:
please read manual in ggplot2, this controls both xlim an
ylim, only accept numerical range.
+
The most nice features about Tracks
object is
the one inherited from ggplot2's components additive features,
with +
method you can use any theme
object and
utilities in ggplot2 package, to add them on a
Tracks
object, for example, if x is our
Tracks
object, x + theme
would apply
theme to any plots in the tracks except those are immutable.
as(x, "grob")
Coerces a Tracks object to a grob for embedding in a larger figure.
obj
is the Tracks object, this reset the tracks back to
original or backuped version.
obj
is the Tracks object, this clear previous backup and
use current setting for a new backup.
Tengfei Yin
## make a simulated time series data set df1 <- data.frame(time = 1:100, score = sin((1:100)/20)*10) p1 <- qplot(data = df1, x = time, y = score, geom = "line") df2 <- data.frame(time = 30:120, score = sin((30:120)/20)*10, value = rnorm(120-30 + 1)) p2 <- ggplot(data = df2, aes(x = time, y = score)) + geom_line() + geom_point(size = 4, aes(color = value)) ## check p2 p1 ## check p2 p2 ## binding tracks(p1, p2) ## or tks <- tracks(p1, p2) tks ## combine c(tks, tks) tks + tks cbind(tks, tks) rbind(tks, tks) ## different wth c()! library(grid) x <- as(tks, "grob") grid.draw(cbind(x, x)) ## labeling: default labeling a named graphic ## simply pass a name with it tracks(time1 = p1, time2 = p2) ## or pass a named list with it lst <- list(time1 = p1, time2 = p2) tracks(lst) ## more complicated case please use quotes tracks(time1 = p1, "second time" = p2) ## set heights tracks(time1 = p1, time2 = p2, heights = c(1, 3)) ## if you want to disable label arbitrarily ## default label is always TRUE labeled(p2) labeled(p2) <- FALSE ## set labeled to FALSE, remove label even the plot has a name tracks(time1 = p1, time2 = p2) labeled(p2) <- TRUE ## fix a plot, not synchronize with other plots p3 <- p1 ## default is always FALSE fixed(p3) ## set to TRUE fixed(p3) <- TRUE fixed(p3) tracks(time1 = p1, time2 = p2, "time3(fixed)" = p3) fixed(p3) <- FALSE ## otherwise you could run ## control axis hasAxis(p1) hasAxis(p1) <- TRUE # ready for weird looking tracks(time1 = p1, time2 = p2) # set it back hasAxis(p1) <- FALSE ## mutable mutable(p1) tracks(time1 = p1, time2 = p2) + theme_bw() mutable(p1) <- FALSE # mutable for "+" method tracks(time1 = p1, time2 = p2) + theme_bw() mutable(p1) <- TRUE ## bgColor bgColor(p1) tracks(time1 = p1, time2 = p2) bgColor(p1) <- "brown" # mutable for "+" method tracks(time1 = p1, time2 = p2) # set it back bgColor(p1) <- "white" ## apply a theme to each track tks <- tracks(time1 = p1, time2 = p2) + theme_bw() tks reset(tks) ## store it with tracks tks <- tracks(time1 = p1, time2 = p2, theme = theme_bw()) tks tks <- tks + theme_gray() tks ## reset will be introduced later reset(tks) ## apply a pre-defiend theme for tracks! tracks(time1 = p1, time2 = p2) + theme_tracks_sunset() tracks(p1, p2) + theme_tracks_sunset() ## change limits tracks(time1 = p1, time2 = p2) + xlim(c(1, 40)) tracks(time1 = p1, time2 = p2) + xlim(1, 40) tracks(time1 = p1, time2 = p2) + coord_cartesian(xlim = c(1, 40)) # change y tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10) library(GenomicRanges) gr <- GRanges("chr", IRanges(1, 40)) # GRanges tracks(time1 = p1, time2 = p2) + xlim(gr) # IRanges tracks(time1 = p1, time2 = p2) + xlim(ranges(gr)) tks <- tracks(time1 = p1, time2 = p2) xlim(tks) xlim(tks) <- c(1, 35) xlim(tks) <- gr xlim(tks) <- ranges(gr) ## xlab, title tracks(time1 = p1, time2 = p2, xlab = "time") tracks(time1 = p1, time2 = p2, main = "title") tracks(time1 = p1, time2 = p2, title = "title") tracks(time1 = p1, time2 = p2, xlab = "time", title = "title") + theme_tracks_sunset() ## backup and restore tks <- tracks(time1 = p1, time2 = p2) tks tks <- tks + xlim(1, 40) tks reset(tks) tks <- tks + xlim(1, 40) tks tks <- backup(tks) tks <- tks + theme_bw() tks reset(tks) ## padding(need to be fixed for more delicate control) tracks(time1 = p1, time2 = p2, padding = 2) ## track color tracks(time1 = p1, time2 = p2, track.bg.color = "yellow") tracks(time1 = p1, time2 = p2, track.plot.color = c("yellow", "brown"))
## make a simulated time series data set df1 <- data.frame(time = 1:100, score = sin((1:100)/20)*10) p1 <- qplot(data = df1, x = time, y = score, geom = "line") df2 <- data.frame(time = 30:120, score = sin((30:120)/20)*10, value = rnorm(120-30 + 1)) p2 <- ggplot(data = df2, aes(x = time, y = score)) + geom_line() + geom_point(size = 4, aes(color = value)) ## check p2 p1 ## check p2 p2 ## binding tracks(p1, p2) ## or tks <- tracks(p1, p2) tks ## combine c(tks, tks) tks + tks cbind(tks, tks) rbind(tks, tks) ## different wth c()! library(grid) x <- as(tks, "grob") grid.draw(cbind(x, x)) ## labeling: default labeling a named graphic ## simply pass a name with it tracks(time1 = p1, time2 = p2) ## or pass a named list with it lst <- list(time1 = p1, time2 = p2) tracks(lst) ## more complicated case please use quotes tracks(time1 = p1, "second time" = p2) ## set heights tracks(time1 = p1, time2 = p2, heights = c(1, 3)) ## if you want to disable label arbitrarily ## default label is always TRUE labeled(p2) labeled(p2) <- FALSE ## set labeled to FALSE, remove label even the plot has a name tracks(time1 = p1, time2 = p2) labeled(p2) <- TRUE ## fix a plot, not synchronize with other plots p3 <- p1 ## default is always FALSE fixed(p3) ## set to TRUE fixed(p3) <- TRUE fixed(p3) tracks(time1 = p1, time2 = p2, "time3(fixed)" = p3) fixed(p3) <- FALSE ## otherwise you could run ## control axis hasAxis(p1) hasAxis(p1) <- TRUE # ready for weird looking tracks(time1 = p1, time2 = p2) # set it back hasAxis(p1) <- FALSE ## mutable mutable(p1) tracks(time1 = p1, time2 = p2) + theme_bw() mutable(p1) <- FALSE # mutable for "+" method tracks(time1 = p1, time2 = p2) + theme_bw() mutable(p1) <- TRUE ## bgColor bgColor(p1) tracks(time1 = p1, time2 = p2) bgColor(p1) <- "brown" # mutable for "+" method tracks(time1 = p1, time2 = p2) # set it back bgColor(p1) <- "white" ## apply a theme to each track tks <- tracks(time1 = p1, time2 = p2) + theme_bw() tks reset(tks) ## store it with tracks tks <- tracks(time1 = p1, time2 = p2, theme = theme_bw()) tks tks <- tks + theme_gray() tks ## reset will be introduced later reset(tks) ## apply a pre-defiend theme for tracks! tracks(time1 = p1, time2 = p2) + theme_tracks_sunset() tracks(p1, p2) + theme_tracks_sunset() ## change limits tracks(time1 = p1, time2 = p2) + xlim(c(1, 40)) tracks(time1 = p1, time2 = p2) + xlim(1, 40) tracks(time1 = p1, time2 = p2) + coord_cartesian(xlim = c(1, 40)) # change y tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10) library(GenomicRanges) gr <- GRanges("chr", IRanges(1, 40)) # GRanges tracks(time1 = p1, time2 = p2) + xlim(gr) # IRanges tracks(time1 = p1, time2 = p2) + xlim(ranges(gr)) tks <- tracks(time1 = p1, time2 = p2) xlim(tks) xlim(tks) <- c(1, 35) xlim(tks) <- gr xlim(tks) <- ranges(gr) ## xlab, title tracks(time1 = p1, time2 = p2, xlab = "time") tracks(time1 = p1, time2 = p2, main = "title") tracks(time1 = p1, time2 = p2, title = "title") tracks(time1 = p1, time2 = p2, xlab = "time", title = "title") + theme_tracks_sunset() ## backup and restore tks <- tracks(time1 = p1, time2 = p2) tks tks <- tks + xlim(1, 40) tks reset(tks) tks <- tks + xlim(1, 40) tks tks <- backup(tks) tks <- tks + theme_bw() tks reset(tks) ## padding(need to be fixed for more delicate control) tracks(time1 = p1, time2 = p2, padding = 2) ## track color tracks(time1 = p1, time2 = p2, track.bg.color = "yellow") tracks(time1 = p1, time2 = p2, track.plot.color = c("yellow", "brown"))