Package 'gINTomics'

Title: Multi-Omics data integration
Description: gINTomics is an R package for Multi-Omics data integration and visualization. gINTomics is designed to detect the association between the expression of a target and of its regulators, taking into account also their genomics modifications such as Copy Number Variations (CNV) and methylation. What is more, gINTomics allows integration results visualization via a Shiny-based interactive app.
Authors: Angelo Velle [cre, aut] , Francesco Patane' [aut] , Chiara Romualdi [aut]
Maintainer: Angelo Velle <[email protected]>
License: AGPL-3
Version: 1.3.0
Built: 2024-12-29 07:00:55 UTC
Source: https://github.com/bioc/gINTomics

Help Index


MultiAssayExperiment generation

Description

This function will generate a proper MultiAssayExperiment suitable for the run_multiomics function.

Usage

create_multiassay(
  methylation = NULL,
  cnv_data = NULL,
  gene_exp = NULL,
  miRNA_exp = NULL,
  miRNA_cnv_data = NULL,
  ...
)

Arguments

methylation

Matrix or SummarizedExperiment for Methylation data

cnv_data

Matrix or SummarizedExperiment for genes' Copy Number Variation data

gene_exp

Matrix or SummarizedExperiment for Gene expression data

miRNA_exp

Matrix or SummarizedExperiment for miRNA expression data

miRNA_cnv_data

Matrix or SummarizedExperiment for miRNA's Copy Number Variations data

...

Additional arguments to be passed to the function

Value

A MultiAssayExperiment object containing the provided assays.

Examples

# Example usage:
library(MultiAssayExperiment)
data('mmultiassay_ov')
gene_exp_matrix <- as.matrix(assay(mmultiassay_ov[['gene_exp']]))
miRNA_exp_matrix <- as.matrix(assay(mmultiassay_ov[['miRNA_exp']]))
meth_matrix <- as.matrix(assay(mmultiassay_ov[['methylation']]))
gene_cnv_matrix <- as.matrix(assay(mmultiassay_ov[['cnv_data']]))
miRNA_cnv_matrix <- as.matrix(assay(mmultiassay_ov[['miRNA_cnv_data']]))
create_multiassay(methylation=meth_matrix, cnv_data=gene_cnv_matrix,
 gene_exp=gene_exp_matrix, miRNA_exp=miRNA_exp_matrix,
 miRNA_cnv_data=miRNA_cnv_matrix)

plotting enrichment

Description

plotting enrichment

Usage

dot_plotly(
  enrich_result,
  title = NULL,
  showCategory = 10,
  width = 800,
  height = 700
)

Arguments

enrich_result

Enrichment analysis results.

title

Title of the plot.

showCategory

Number of categories to display.

width

Width of the plot.

height

Height of the plot.

Value

A plotly object containing the dot plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
#multiomics_integration <- run_multiomics(data = mmultiassay_ov)
#gen_enr <- run_genomic_enrich(multiomics_integration,
#                              qvalueCutoff = 1,
#                              pvalueCutoff = 0.05,
#                              pAdjustMethod = "none")
#dot_plotly(gen_enr, title = "Enrichment Analysis",showCategory = 10)

Setting method for extracting results

Description

Setting method for extracting results

Usage

extract_model_res(model_results, ...)

## S4 method for signature 'list'
extract_model_res(
  model_results,
  outliers = TRUE,
  species = "hsa",
  filters = c("hgnc_symbol", "ensembl_gene_id", "entrezgene_id"),
  genes_info = NULL,
  ...
)

## S4 method for signature 'MultiClass'
extract_model_res(
  model_results,
  outliers = TRUE,
  species = "hsa",
  filters = c("hgnc_symbol", "ensembl_gene_id", "entrezgene_id"),
  genes_info = NULL,
  ...
)

## S4 method for signature 'MultiOmics'
extract_model_res(
  model_results,
  outliers = TRUE,
  species = "hsa",
  filters = c("hgnc_symbol", "ensembl_gene_id", "entrezgene_id"),
  genes_info = NULL,
  ...
)

Arguments

model_results

The model results object from which to extract results.

...

Additional arguments to be passed to specific methods.

outliers

if TRUE (by default), it removes outliers

species

species for the analysis

filters

Specific filters to apply

genes_info

genes info

Value

A dataframe containing the results of all the integration models provided

Examples

# example code
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
gene_cnv_matrix <- t(as.matrix(assay(mmultiassay_ov[["cnv_data"]])))
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
cnv_integration <- run_cnv_integration(
    expression = gene_exp_matrix,
    cnv_data = gene_cnv_matrix
)
data_table <- extract_model_res(cnv_integration)
head(data_table)

miRNA IDs. Dataset containing lastly definition of miRNAs (Names, Accessions, Sequences, Families and others) from different miRBase versions (From miRBase version 6 to version 22).

Description

miRNA IDs. Dataset containing lastly definition of miRNAs (Names, Accessions, Sequences, Families and others) from different miRBase versions (From miRBase version 6 to version 22).

Usage

data(mirna_hsa)
"mirna_hsa"

Value

An object of class data.frame.

Examples

# example code
data(mirna_hsa)
head(mirna_hsa)

Example data for a standard workflow. This is an example dataset containing a MultiAssayExperiment of 20 ovarian cancer (OVC) patients extracted from the Cancer Genome Atlas (TCGA) database. The object contains all the available input data types: Gene expression data, miRNA expression data, gene methylation data, gene Copy Number Variations and miRNA Copy Number Variations.

Description

Example data for a standard workflow. This is an example dataset containing a MultiAssayExperiment of 20 ovarian cancer (OVC) patients extracted from the Cancer Genome Atlas (TCGA) database. The object contains all the available input data types: Gene expression data, miRNA expression data, gene methylation data, gene Copy Number Variations and miRNA Copy Number Variations.

Usage

data(mmultiassay_ov)
"mmultiomics_ov"

Value

An object of class MultiAssayExperiment.

Examples

# example code
data(mmultiassay_ov)
mmultiassay_ov

MultiClass Class

Description

S4 class containing the output of a single integration integration, for which classes has been provided. It's a list in which each element represents the result of the integration for a given class. The length will be equal to the number of classes defined.

Value

MultiOmics Class


MultiOmics Class

Description

S4 class containing the output of a multiomics integration. It's a list in which each element represents the result of an integration. If all the available omics are provided, it will be a list of integrations: gene_genomic_res, mirna_cnv_res, tf_res, tf_mirna_res and mirna_target_res

Value

MultiOmics Class


plotting chr distribution

Description

plotting chr distribution

Usage

plot_chr_distribution(
  data_table,
  class = NULL,
  omics = NULL,
  cnv_met = NULL,
  pval = 0.05
)

Arguments

data_table

The data table containing information for plotting chromosome distribution.

class

Optional. The class of interactions to include in the plot.

omics

Optional. The type of omics data for the plot.

cnv_met

Optional. The type of copy number variation or methylation data.

pval

Optional. The p-value threshold for significance. Default is 0.05.

Value

A histogram plot showing chromosome distribution.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# data_table <- extract_model_res(multiomics_integration)
# plot_chr_distribution(data_table, omics = "gene_genomic_res")

plotting heatmap

Description

plotting heatmap

Usage

plot_heatmap(
  multiomics_integration,
  data_table,
  omics,
  scale = "none",
  genes_number = 50,
  samples_number = 50,
  class = NULL,
  pval = 0.05
)

Arguments

multiomics_integration

The multiomics integration object.

data_table

The data table containing information for the heatmap.

omics

The type of omics data for the heatmap.

scale

Optional. The scale type for the heatmap. Default is "none".

genes_number

Optional. The number of genes to include in the heatmap. Default is 50.

samples_number

Number of samples to include in the heatmap. If this number is inferior to the total number of samples, the n most variable samples will be selected

class

Optional. The class of interactions to include in the heatmap.

pval

Optional. The p-value threshold for significance in the heatmap. Default is 0.05.

Value

A heatmap plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# data_table <- extract_model_res(multiomics_integration)
# data_table <- data_table[!is.na(data_table$cnv_met),]
# plot_heatmap(multiomics_integration, data_table, omics = "gene_genomic_res")

Plotting network

Description

Plotting network

Usage

plot_network(data_table, num_interactions = 300, class = NULL, pval = 0.05)

Arguments

data_table

The data table containing network information.

num_interactions

The number of interactions to display in the network (default: 300).

class

Optional. The class of interactions to include in the plot.

pval

The p-value threshold for selecting interactions (default: 0.05).

Value

A network plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# data_table <- extract_model_res(multiomics_integration)
# plot_network(data_table)

plotting ridge

Description

plotting ridge

Usage

plot_ridge(data_table, class = NULL, omics = NULL, cnv_met = NULL)

Arguments

data_table

The data table containing information for the ridge plot.

class

Optional. The class of interactions to include in the ridge plot.

omics

Optional. The omics type for the ridge plot.

cnv_met

Optional. Indicates whether the ridge plot is for CNV or MET omics (only applicable if omics is specified).

Value

A ridge plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
gene_cnv_matrix <- t(as.matrix(assay(mmultiassay_ov[["cnv_data"]])))
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
cnv_integration <- run_cnv_integration(
    expression = gene_exp_matrix,
    cnv_data = gene_cnv_matrix
)
data_table <- extract_model_res(cnv_integration)
data_table <- data_table[data_table$cov!="(Intercept)",]
plot_ridge(data_table)

plotting TF distribution

Description

plotting TF distribution

Usage

plot_tf_distribution(data_table, class = NULL, pval = 0.05)

Arguments

data_table

The data table containing TF information.

class

Optional. The class of interactions to include in the distribution plot.

pval

Optional. The p-value threshold for significance in the distribution plot. Default is 0.05.

Value

A TF distribution plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# data_table <- extract_model_res(multiomics_integration)
# plot_tf_distribution(data_table, pval=0.5)

plotting venn

Description

plotting venn

Usage

plot_venn(data_table, class = NULL)

Arguments

data_table

The data table containing information for the Venn diagram.

class

Optional. The class of interactions to include in the Venn diagram.

Value

A Venn diagram plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# data_table <- extract_model_res(multiomics_integration)
# plot_venn(data_table)

plotting volcano

Description

plotting volcano

Usage

plot_volcano(data_table, class = NULL, omics = NULL, cnv_met = NULL)

Arguments

data_table

The data table containing information for the volcano plot.

class

Optional. The class of interactions to include in the volcano plot.

omics

Optional. The omics type for the volcano plot.

cnv_met

Optional. Indicates whether the volcano plot is for CNV or MET omics (only applicable if omics is specified).

Value

A volcano plot.

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
multiomics_integration <- run_multiomics(data = mmultiassay_ov)
data_table <- extract_model_res(multiomics_integration)
plot_volcano(data_table, omics = "gene_genomic_res", cnv_met = "cnv")

Integration of expression and Copy Number Variations

Description

This function will perform an integration of expression data and Copy Number Variations data

Usage

run_cnv_integration(
  expression,
  cnv_data,
  sequencing_data = TRUE,
  normalize = TRUE,
  norm_method = "TMM",
  class = NULL,
  run_deg = TRUE,
  BPPARAM = SerialParam(),
  ...
)

Arguments

expression

Matrix or data.frame containing the expression values for each model. Rows represent samples, while each column represents the different response variables of the models.

cnv_data

Matrix or data.frame containing the Copy Number variation status for the models. Rows represent samples, while columns represent the different covariates. If interactions are not provided, they will be automatically generated and for each gene contained in expression the model will look for the same gene in cnv_data

sequencing_data

logical. Are expression data obtained from RNA sequencing ? Default is set to TRUE

normalize

logical.Should expression data be normalized ? Default is set to TRUE

norm_method

Normalization method to be used for expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

class

Character vector specifying the classes for differential expression analysis.

run_deg

Logical. Should differential expression analysis be performed? Default is set to TRUE.

BPPARAM

A BiocParallelParam object specifying the parallel backend to be used.

...

Additional arguments to be passed to internal functions.

Value

A list or a MultiClass object if class is provided containing the results of the CNV integration

Examples

# Example usage_multi:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
gene_cnv_matrix <- t(as.matrix(assay(mmultiassay_ov[["cnv_data"]])))
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
cnv_integration <- run_cnv_integration(
    expression = gene_exp_matrix,
    cnv_data = gene_cnv_matrix
)

Running genomic enrichment analysis

Description

Running genomic enrichment analysis

Usage

run_genomic_enrich(
  model_results,
  species = "hsa",
  pvalueCutoff = 0.1,
  pAdjustMethod = "BH",
  qvalueCutoff = 0.1,
  ont = "all",
  BPPARAM = BiocParallel::SerialParam(),
  extracted_data = NULL,
  ...
)

Arguments

model_results

Model integration results, typically a list containing different types of genomic results

species

Species to select for the enrichment analysis. Default is 'hsa' (Homo sapiens).

pvalueCutoff

P-value cutoff for significant enrichment. Default is 0.1.

pAdjustMethod

Method for adjusting p-values. Default is 'BH' (Benjamini & Hochberg).

qvalueCutoff

Q-value cutoff for significant enrichment. Default is 0.1.

ont

Ontology to use for the enrichment analysis. Default is 'all'.

BPPARAM

A BiocParallelParam object specifying parallelization options. Default is BiocParallel::SerialParam().

extracted_data

Pre-extracted data for enrichment analysis. If NULL, function will extract relevant data from model_results.

...

Additional arguments to be passed to the internal enrichment function.

Value

A list containing enrichment results. If CNV and methylation data are available, it returns a nested list with results for each data type.

Examples

# Example usage:
library(MultiAssayExperiment)
data(mmultiassay_ov)
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:200,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
#multiomics_integration <- run_multiomics(mmultiassay_ov)
#gen_enr <- run_genomic_enrich(multiomics_integration, qvalueCutoff = 1,
#pvalueCutoff = 0.05, pAdjustMethod = 'none')

Integration of expression, Copy Number Variations and methylation data

Description

This function will perform an integration of expression data and Copy Number Variations data

Usage

run_genomic_integration(
  expression,
  cnv_data,
  methylation,
  sequencing_data = TRUE,
  normalize = TRUE,
  norm_method = "TMM",
  interactions = NULL,
  class = NULL,
  scale = TRUE,
  run_deg = TRUE,
  BPPARAM = SerialParam(),
  ...
)

Arguments

expression

Matrix or data.frame containing the expression values for each model. Rows represent samples, while each column represents the different response variables of the models.

cnv_data

Matrix or data.frame containing the Copy Number variation status for the models. Rows represent samples, while columns represent the different covariates. If interactions are not provided, they will be automatically generated and for each gene contained in expression the model will look for the same gene in cnv_data

methylation

Matrix or data.frame containing the methylation values for the models. Rows represent samples, while columns represent the different covariates. If interactions are not provided, they will be automatically generated and for each gene contained in expression the model will look for the same gene in methylation

sequencing_data

logical. Are expression data obtained from RNA sequencing ? Default is set to TRUE

normalize

logical.Should expression data be normalized ? Default is set to TRUE

norm_method

Normalization method to be used for expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

interactions

A list of character vectors containing the interactions between response variable and covariates. The names of the list should match the response variables while the character contained in each element of the list should match the covariates. If NULL (default), the interactions will be automatically defined according to response variable's colnames.

class

Character vector specifying the classes for differential expression analysis.

scale

Logical. Should the data be scaled? Default is set to TRUE.

run_deg

Logical. Should differential expression analysis be performed? Default is set to TRUE.

BPPARAM

A BiocParallelParam object specifying the parallel backend to be used.

...

Additional arguments to be passed to internal functions.

Value

A list or a MultiClass object if class is provided containing the results of the Genomic integration

Examples

# Example usage_multi:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
meth_matrix <- t(as.matrix(assay(mmultiassay_ov[["methylation"]])))
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
gene_cnv_matrix <- t(as.matrix(assay(mmultiassay_ov[["cnv_data"]])))
genomic_integration <- run_genomic_integration(
    expression = gene_exp_matrix,
    cnv_data = gene_cnv_matrix, methylation = meth_matrix
)

Integration of expression and methylation

Description

This function will perform an integration of expression data and methylation data

Usage

run_met_integration(
  expression,
  methylation,
  sequencing_data = TRUE,
  normalize = TRUE,
  norm_method = "TMM",
  class = NULL,
  run_deg = TRUE,
  BPPARAM = SerialParam(),
  ...
)

Arguments

expression

Matrix or data.frame containing the expression values for each model. Rows represent samples, while each column represents the different response variables of the models.

methylation

Matrix or data.frame containing the methylation values for the models. Rows represent samples, while columns represent the different covariates. If interactions are not provided, they will be automatically generated and for each gene contained in expression the model will look for the same gene in methylation

sequencing_data

logical. Are expression data obtained from RNA sequencing ? Default is set to TRUE

normalize

logical.Should expression data be normalized ? Default is set to TRUE

norm_method

Normalization method to be used for expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

class

Character vector specifying the classes for differential expression analysis.

run_deg

Logical. Should differential expression analysis be performed? Default is set to TRUE.

BPPARAM

A BiocParallelParam object specifying the parallel backend to be used.

...

Additional arguments to be passed to internal functions.

Value

A list or a MultiClass object if class is provided containing the results of the Methylation integration

Examples

# Example usage_multi:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
meth_matrix <- t(as.matrix(assay(mmultiassay_ov[["methylation"]])))
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
met_integration <- run_met_integration(
    expression = gene_exp_matrix,
    methylation = meth_matrix
)

Complete Multi-Omics integration

Description

This function will perform a complete Multi-Omics integration on a MultiAssayExperiment

Usage

run_multiomics(
  data,
  interactions_met = NULL,
  interactions_miRNA_target = NULL,
  interactions_tf = NULL,
  interactions_tf_miRNA = NULL,
  RNAseq = TRUE,
  miRNAseq = TRUE,
  normalize_miRNA_expr = TRUE,
  normalize_gene_expr = TRUE,
  norm_method_gene_expr = "TMM",
  norm_method_miRNA_expr = "TMM",
  class = NULL,
  BPPARAM = SerialParam()
)

Arguments

data

A MultiAssayExperiment. It can be generated exploiting the generate_multiassay function.

interactions_met

interactions as for run_met_integration

interactions_miRNA_target

miRNA-target interactions as requested by run_tf_integration

interactions_tf

TF-target interactions as requested by run_tf_integration

interactions_tf_miRNA

TF-target interactions as requested by run_tf_integration

RNAseq

logical. Are gene expression data obtained from RNA sequencing ? Default is set to TRUE

miRNAseq

logical. Are miRNA expression data obtained from miRNA sequencing ? Default is set to TRUE

normalize_miRNA_expr

logical.Should miRNA expression data be normalized ? Default is set to TRUE

normalize_gene_expr

logical.Should gene expression data be normalized ? Default is set to TRUE

norm_method_gene_expr

Normalization method to be used for gene expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

norm_method_miRNA_expr

Normalization method to be used for miRNA expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

class

Character vector specifying the classes for differential expression analysis.

BPPARAM

A BiocParallelParam object specifying the parallel backend to be used.

Value

A MultiOmics object containing the results of all the possible integration models

Examples

# Example usage_multiomics:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
multiomics_integration <- run_multiomics(data = mmultiassay_ov)

Start a Shiny application for integrated multi-omics data analysis.

Description

The run_shiny function launches an interactive Shiny application that allows users to explore and analyze integrated multi-omics data through various visualizations and analyses.

Usage

run_shiny(multiomics_integration)

Arguments

multiomics_integration

An object representing the integration of multi-omics data, compatible with the extract_model_res function.

Details

The run_shiny function extracts model results from multiomics_integration, performs preprocessing operations to prepare the data for the Shiny user interface, creates the user interface and server for the Shiny application.

Value

No return value. The function starts an interactive Shiny application.

References

Description of the multi-omics data model and integrated analysis techniques used.

See Also

extract_model_res

Examples

# Example usage:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
# multiomics_integration <- run_multiomics(data = mmultiassay_ov)
# app <- run_shiny(multiomics_integration)

Running TF enrichment analysis

Description

Running TF enrichment analysis

Usage

run_tf_enrich(
  model_results,
  species = "hsa",
  pvalueCutoff = 0.1,
  qvalueCutoff = 0.1,
  pAdjustMethod = "BH",
  ont = "all",
  BPPARAM = BiocParallel::SerialParam(),
  extracted_data = NULL,
  ...
)

Arguments

model_results

Model integration results, typically a list containing TF data.

species

Species to select for the enrichment analysis. Default is 'hsa' (Homo sapiens).

pvalueCutoff

P-value cutoff for significant enrichment. Default is 0.1.

qvalueCutoff

Q-value cutoff for significant enrichment. Default is 0.1.

pAdjustMethod

Method for adjusting p-values. Default is 'BH' (Benjamini & Hochberg).

ont

Ontology to use for the enrichment analysis. Default is 'all'.

BPPARAM

A BiocParallelParam object specifying parallelization options. Default is BiocParallel::SerialParam().

extracted_data

Pre-extracted data for enrichment analysis. If NULL, function will extract relevant data from model_results.

...

Additional arguments to be passed to the internal enrichment function.

Value

A list containing TF enrichment results.

Examples

# Example usage:
library(MultiAssayExperiment)
data(mmultiassay_ov)
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:200,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
#multiomics_integration <- run_multiomics(mmultiassay_ov)
#run_tf_enrich(multiomics_integration, qvalueCutoff = 1, pvalueCutoff = 0.05,
#pAdjustMethod = 'none')

Integration of expression and Transcription Factors / Generic Regulators

Description

This function will perform an integration of gene/miRNA expression data and Transcription Factors expression. Moreover, every type of regulator can be provided to the function as covariate through the tf_expression argument. Interactions for TF-target, miRNA-target and TF-miRNA integration will be automatically downloaded by the function as defined by the type argument. Other types of interactions should be provided through the interactions argument.

Usage

run_tf_integration(
  expression,
  tf_expression = expression,
  interactions = NULL,
  type = "none",
  sequencing_data = TRUE,
  species = "hsa",
  normalize = TRUE,
  norm_method = "TMM",
  normalize_cov = TRUE,
  norm_method_cov = "TMM",
  class = NULL,
  run_deg = TRUE,
  BPPARAM = SerialParam(),
  ...
)

Arguments

expression

Matrix or data.frame containing the expression values for each model. Rows represent samples, while each column represents the different response variables of the models.

tf_expression

Matrix or data.frame containing the expression values for the models. Rows represent samples, while columns represent the different covariates. If not provided, it will be set equal to expression.

interactions

A list of character vectors containing the interactions between response variable and covariates. The names of the list should match the response variables while the character contained in each element of the list should match the covariates. If NULL (default), the interactions will be automatically downloaded according to the type argument.

type

A character defining the type of regulation under analysis. Should be one of "tf_miRNA", "tf", "miRNA_target".

sequencing_data

logical. Are expression data obtained from RNA sequencing ? Default is set to TRUE

species

species information for interactions download. Fully supported species are "hsa" (default) and "mmu".

normalize

logical.Should expression data be normalized ? Default is set to TRUE

norm_method

Normalization method to be used for expression data. One of "TMM" (default), "TMMwsp", "RLE", "upperquartile", "none".

normalize_cov

Same as normalize but for covariates.

norm_method_cov

Same as norm_method but for covariates.

class

Character vector specifying the classes for differential expression analysis.

run_deg

Logical. Should differential expression analysis be performed? Default is set to TRUE.

BPPARAM

A BiocParallelParam object specifying the parallel backend to be used.

...

Additional arguments to be passed to internal functions.

Value

A list or a MultiClass object if class is provided containing the results of the transcriptional integration

Examples

# Example usage_multi:
library(MultiAssayExperiment)
data("mmultiassay_ov")
tmp <- lapply(experiments(mmultiassay_ov), function(x) x[1:20,])
mmultiassay_ov <- MultiAssayExperiment(experiments = tmp)
gene_exp_matrix <- t(as.matrix(assay(mmultiassay_ov[["gene_exp"]])))
tf_integration <- run_tf_integration(expression = gene_exp_matrix, type="tf")