Title: | Package for handling the import of dose-response data |
---|---|
Description: | The package is a part of the gDR suite. It helps to prepare raw drug response data for downstream processing. It mainly contains helper functions for importing/loading/validating dose-response data provided in different file formats. |
Authors: | Arkadiusz Gladki [aut, cre] , Bartosz Czech [aut] , Marc Hafner [aut] , Sergiu Mocanu [aut], Dariusz Scigocki [aut], Allison Vuong [aut], Luca Gerosa [aut] , Janina Smola [aut] |
Maintainer: | Arkadiusz Gladki <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.5.4 |
Built: | 2025-01-10 03:19:42 UTC |
Source: | https://github.com/bioc/gDRimport |
get sheets for given set of XLS files
.check_against_single_template_sheet(ts)
.check_against_single_template_sheet(ts)
ts |
list with template sheets info |
logical flag
are template sheet valid?
are_template_sheets_valid(ts)
are_template_sheets_valid(ts)
ts |
list with (per file) template sheets |
logical flag
get_xl_sheets
Check metadata against spaces
check_metadata_against_spaces(corrected_names, df_name)
check_metadata_against_spaces(corrected_names, df_name)
corrected_names |
a charvec with corrected colnames of df |
df_name |
a name of data.table ("" by default) |
a charvec with corrected colnames of df
Check metadata field names
check_metadata_field_names(corrected_names, df_name)
check_metadata_field_names(corrected_names, df_name)
corrected_names |
a charvec with corrected colnames of df |
df_name |
a name of data.table ("" by default) |
a charvec with corrected colnames of df
Check whether metadata headers are correct and make fixes if needed
check_metadata_headers(corrected_names, df_name)
check_metadata_headers(corrected_names, df_name)
corrected_names |
a charvec with corrected colnames of df |
df_name |
a name of data.table ("" by default) |
a charvec with corrected colnames of df
Check whether all metadata names are correct
check_metadata_names(col_df, df_name = "", df_type = NULL)
check_metadata_names(col_df, df_name = "", df_type = NULL)
col_df |
a character with colnames of df |
df_name |
a name of data.table ("" by default) |
df_type |
a type of a data.table (NULL by default) |
a charvec with corrected colnames of df
td <- get_test_data() m_file <- manifest_path(td) m_data <- read_excel_to_dt(m_file) result <- check_metadata_names(col_df = colnames(m_data))
td <- get_test_data() m_file <- manifest_path(td) m_data <- read_excel_to_dt(m_file) result <- check_metadata_names(col_df = colnames(m_data))
Check metadata for required column names
check_metadata_req_col_names(col_df, df_name, df_type)
check_metadata_req_col_names(col_df, df_name, df_type)
col_df |
a charvec with corrected colnames of df |
df_name |
a name of data.table ("" by default) |
df_type |
a type of a data.table (NULL by default) |
NULL
invisibly.
Load, convert and process the level 5 PRISM data into a gDR input
convert_LEVEL5_prism_to_gDR_input(prism_data_path, readout_min = 1.03)
convert_LEVEL5_prism_to_gDR_input(prism_data_path, readout_min = 1.03)
prism_data_path |
path to PRISM LEVEL5 csv file with data |
readout_min |
minimum ReadoutValue |
data.table
object with input data for gDR pipeline
prism_data <- system.file("testdata/prism_sa.csv", package = "gDRimport") convert_LEVEL5_prism_to_gDR_input(prism_data)
prism_data <- system.file("testdata/prism_sa.csv", package = "gDRimport") convert_LEVEL5_prism_to_gDR_input(prism_data)
Load, convert and process the level 6 PRISM data into a gDR input
convert_LEVEL6_prism_to_gDR_input( prism_data_path, cell_line_data_path, treatment_data_path, readout_min = 1.03 )
convert_LEVEL6_prism_to_gDR_input( prism_data_path, cell_line_data_path, treatment_data_path, readout_min = 1.03 )
prism_data_path |
path to PRISM LEVEL6 csv file with collapsed log fold change data |
cell_line_data_path |
path to cell line info data |
treatment_data_path |
path to collapsed treatment info data |
readout_min |
minimum ReadoutValue |
data.table
object with input data for gDR pipeline
prism_data_path <- system.file("testdata/prism_collapsed_LOGFC.csv", package = "gDRimport") cell_line_data_path <- system.file("testdata/prism_cell_lines.csv", package = "gDRimport") treatment_data_path <- system.file("testdata/prism_treatment.csv", package = "gDRimport") convert_LEVEL6_prism_to_gDR_input(prism_data_path, cell_line_data_path, treatment_data_path)
prism_data_path <- system.file("testdata/prism_collapsed_LOGFC.csv", package = "gDRimport") cell_line_data_path <- system.file("testdata/prism_cell_lines.csv", package = "gDRimport") treatment_data_path <- system.file("testdata/prism_treatment.csv", package = "gDRimport") convert_LEVEL6_prism_to_gDR_input(prism_data_path, cell_line_data_path, treatment_data_path)
This function converts a MultiAssayExperiment generated by gDR into a TreatmentResponseExperiment for use in the PharmacoGx package. The resulting PharmacoSet can be used for pharmacogenomic analysis of drug response.
convert_MAE_to_PSet(mae, pset_name)
convert_MAE_to_PSet(mae, pset_name)
mae |
A MultiAssayExperiment object generated by gDR. |
pset_name |
A character string specifying the name of the resulting PharmacoSet object. |
A PharmacoSet object.
# Convert a MultiAssayExperiment object to a PharmacoSet object m <- 20 n <- 10 rnames <- LETTERS[1:m] cnames <- letters[1:n] ref_gr_value <- matrix(runif(m * n), nrow = m, ncol = n, dimnames = list(rnames, cnames)) se <- SummarizedExperiment::SummarizedExperiment(assays = list(RefGRvalue = ref_gr_value), rowData = S4Vectors::DataFrame(rnames), colData = S4Vectors::DataFrame(cnames)) mae <- MultiAssayExperiment::MultiAssayExperiment(experiments = list("single-agent" = se)) convert_MAE_to_PSet(mae, "my_pset")
# Convert a MultiAssayExperiment object to a PharmacoSet object m <- 20 n <- 10 rnames <- LETTERS[1:m] cnames <- letters[1:n] ref_gr_value <- matrix(runif(m * n), nrow = m, ncol = n, dimnames = list(rnames, cnames)) se <- SummarizedExperiment::SummarizedExperiment(assays = list(RefGRvalue = ref_gr_value), rowData = S4Vectors::DataFrame(rnames), colData = S4Vectors::DataFrame(cnames)) mae <- MultiAssayExperiment::MultiAssayExperiment(experiments = list("single-agent" = se)) convert_MAE_to_PSet(mae, "my_pset")
Convert a PharmacoSet to a data.table that is prepare for input into gDR pipeline
convert_pset_to_df(pharmacoset, run_parallel = TRUE, workers = 2L)
convert_pset_to_df(pharmacoset, run_parallel = TRUE, workers = 2L)
pharmacoset |
PharmacoSet object |
run_parallel |
logical, TRUE (default) if to run functions in Parallel, FALSE to run in serial |
workers |
integer, number of workers defaults to 2L if run_parallel is TRUE |
data.table of PharmacoSet's dose response data with column names aligned with gDR standard
Jermiah Joseph – collaboration with BHKLab
pset <- suppressMessages(getPSet( "Tavor_2020", psetDir = system.file("extdata/pset", package = "gDRimport"), use_local_PSets_list = TRUE )) dt <- convert_pset_to_df(pset) gDRutils::reset_env_identifiers()
pset <- suppressMessages(getPSet( "Tavor_2020", psetDir = system.file("extdata/pset", package = "gDRimport"), use_local_PSets_list = TRUE )) dt <- convert_pset_to_df(pset) gDRutils::reset_env_identifiers()
Correct names of the template sheets (if required)
correct_template_sheets(tfiles)
correct_template_sheets(tfiles)
tfiles |
charvec with paths to template files |
charvec with paths to corrected sheet names
Detect format of results data
detect_file_format(results_file)
detect_file_format(results_file)
results_file |
path to results data |
string of the detected file format
td2 <- get_test_Tecan_data() detect_file_format(td2$r_files[1])
td2 <- get_test_Tecan_data() detect_file_format(td2$r_files[1])
Enhance raw edited EnVision data.table
enhance_raw_edited_EnVision_df(df, barcode_col, headers)
enhance_raw_edited_EnVision_df(df, barcode_col, headers)
df |
raw data.table |
barcode_col |
column number for barcode data |
headers |
list with the headersa |
data.table derived from EnVision data
Fix typos using reference data Evaluate given list of ids and try to update them
fix_typos_with_reference( data, ref, method = c("exact", "grepl", "adist"), fix_underscores = FALSE )
fix_typos_with_reference( data, ref, method = c("exact", "grepl", "adist"), fix_underscores = FALSE )
data |
list of charvec(s) or charvec with data |
ref |
charvec with reference data |
method |
charvec type of the method to be used 'exact' is used to find identical entries from 'ref' in the data (after corrections and uppercase'ing) 'grepl' is used to find entries from 'ref' that might be somehow pre- or post- fixed |
fix_underscores |
logical flag fix the issues with underscores in data identfiers? |
list or charvec with corrected data
Object class gdr_test_data
is build by function get_test_data()
object class gdr_test_data
with primary test data
manifest_path
character, path to manifest file
result_path
character, path(s) to results file
template_path
character, path(s) to data.table with template data
ref_m_df
character, data.table with manifest data
ref_r1_r2
character, path to reference file with raw data for treated & untreated
ref_r1
character, path to reference file with raw data for treated
ref_t1_t2
character, path to reference template file with treated & untreated data
ref_t1
character, path to reference template file with treated data
Get final results (as a data.table) from raw edited EnVision data.table
get_df_from_raw_edited_EnVision_df( df, barcode_idx, barcode_col, n_row, n_col, fname, sheet_name, headers )
get_df_from_raw_edited_EnVision_df( df, barcode_idx, barcode_col, n_row, n_col, fname, sheet_name, headers )
df |
raw data.table |
barcode_idx |
numeric vector with barcode indices |
barcode_col |
column number for barcode data |
n_row |
number of rows |
n_col |
number of columns |
fname |
file name |
sheet_name |
name of the Excel sheet |
headers |
list with the headersa |
data.table derived from EnVision data
Get final results (as a data.table) from raw unedited EnVision data.table
get_df_from_raw_unedited_EnVision_df(df, n_row, n_col, barcode_col)
get_df_from_raw_unedited_EnVision_df(df, n_row, n_col, barcode_col)
df |
raw data.table |
n_row |
number of rows |
n_col |
number of columns |
barcode_col |
column number for barcode data |
data.table derived from EnVision data
This function return properties of EnVision data
get_EnVision_properties(results.list, fname)
get_EnVision_properties(results.list, fname)
results.list |
list with EnVision data |
fname |
name of the input file |
list with EnVision propertiesa
get Excel sheets names for a charvec of files for non-Excel files return 0
get_excel_sheet_names(fls)
get_excel_sheet_names(fls)
fls |
charvec with file pathsa |
list with one element per file with sheet names or 0 (for non-Excel file)
get exception data
get_exception_data(status_code = NULL)
get_exception_data(status_code = NULL)
status_code |
A numeric value |
A data.table row with exception data or all exceptions
get_exception_data(1) get_exception_data()
get_exception_data(1) get_exception_data()
Get names of the sheets expected in templates xlsx
get_expected_template_sheets(type = c("all", "core", "optional"))
get_expected_template_sheets(type = c("all", "core", "optional"))
type |
charvec type of the sheets |
string with type of the sheets
Get plate info from template xlsx
get_plate_info_from_template_xlsx(template_file, Gnumber_idx, idx)
get_plate_info_from_template_xlsx(template_file, Gnumber_idx, idx)
template_file |
character, file path(s) to template(s) |
Gnumber_idx |
index with Gnumber data |
idx |
template file index |
list with plate info
get test D300 data
get_test_D300_data()
get_test_D300_data()
list with with input data (manifest/template/result paths) and related reference data (qs file paths)
get_test_D300_data()
get_test_D300_data()
get primary test data
get_test_data()
get_test_data()
object class "gdr_test_data" with with input data (manifest/template/result paths) and related reference data (qs file paths)
get_test_data()
get_test_data()
get test EnVision data
get_test_EnVision_data()
get_test_EnVision_data()
list with with input data (manifest/template/result paths) and related reference data (.qs file paths)
get_test_EnVision_data()
get_test_EnVision_data()
get test Tecan data
get_test_Tecan_data()
get_test_Tecan_data()
list with with input data (manifest/template/result paths) and related reference data (qs file paths)
get_test_Tecan_data()
get_test_Tecan_data()
get test tsv data
get_test_tsv_data()
get_test_tsv_data()
list with with input data (manifest/template/result paths) and related reference data (.qs file paths)
get_test_tsv_data()
get_test_tsv_data()
get sheets for given set of XLS files
get_xl_sheets(files)
get_xl_sheets(files)
files |
charvec with file paths |
named list where names are the excel filenames and the values are the sheets within each file
Get PharmacoSet
getPSet( pset_name, psetDir = getwd(), canonical = FALSE, timeout = 600, use_local_PSets_list = FALSE )
getPSet( pset_name, psetDir = getwd(), canonical = FALSE, timeout = 600, use_local_PSets_list = FALSE )
pset_name |
string with the name of the PharmacoSet |
psetDir |
string with the temporary directory for the PharmacoSet |
canonical |
logical flag indicating if the PSet canonical |
timeout |
maximum number of seconds allowed for PSet download |
use_local_PSets_list |
logical flag if PSets list should be used from local. If FALSE PSets list will be taken from web. |
PharmacoSet object
suppressMessages(getPSet( "Tavor_2020", psetDir = system.file("extdata/pset", package = "gDRimport"), use_local_PSets_list = TRUE ))
suppressMessages(getPSet( "Tavor_2020", psetDir = system.file("extdata/pset", package = "gDRimport"), use_local_PSets_list = TRUE ))
This functions takes a D300 file and generates corresponding template files
import_D300(D300_file, metadata_file, destination_path)
import_D300(D300_file, metadata_file, destination_path)
D300_file |
character, file path to D300 file |
metadata_file |
character, file path to file with mapping from D300 names to Gnumbers |
destination_path |
character, path to folder where template files will be generated |
For example, wells treated with 2 drugs in combination will result in 4 sheets per plate.
Sheet 1: Drug 1
Sheet 2: Conc of Drug 1
Sheet 3: Drug 2
Sheet 4: Conc of Drug 2
Create one Excel file per plate. Each sheet in each plate file describes the drugs and corrresponding concentrations of what was tested in each well.
td3 <- get_test_D300_data()[["f_96w"]] o_path <- file.path(tempdir(), "td3") dir.create(o_path) import_D300(td3$d300, td3$Gnum, o_path) list.files(o_path) unlink(o_path, recursive = TRUE)
td3 <- get_test_D300_data()[["f_96w"]] o_path <- file.path(tempdir(), "td3") dir.create(o_path) import_D300(td3$d300, td3$Gnum, o_path) list.files(o_path) unlink(o_path, recursive = TRUE)
is_readable_v Check if all paths in vector are readable
is_readable_v(paths)
is_readable_v(paths)
paths |
a character with path(s) |
NULL
invisibly.
td2 <- get_test_Tecan_data() is_readable_v(td2$r_files)
td2 <- get_test_Tecan_data() is_readable_v(td2$r_files)
This functions loads and checks the data file(s)
load_data( manifest_file, df_template_files, results_file, instrument = "EnVision" )
load_data( manifest_file, df_template_files, results_file, instrument = "EnVision" )
manifest_file |
character, file path(s) to manifest(s) |
df_template_files |
data.table, with datapaths and names of results file(s) or character with file path of templates file(s) |
results_file |
data.table, with datapaths and names of results file(s) or character with file path of results file(s) |
instrument |
character |
a list with three data.tables for manifest/treatment and results
td <- get_test_data() l_tbl <- load_data(manifest_path(td), template_path(td), result_path(td))
td <- get_test_data() l_tbl <- load_data(manifest_path(td), template_path(td), result_path(td))
This functions loads and checks the manifest file(s)
load_manifest(manifest_file)
load_manifest(manifest_file)
manifest_file |
character, file path(s) to manifest(s) |
list with manifest data.table and headers
td <- get_test_data() ml <- load_manifest(manifest_path(td))
td <- get_test_data() ml <- load_manifest(manifest_path(td))
This functions loads and checks the results file(s)
load_results( df_results_files, instrument = "EnVision", headers = gDRutils::get_env_identifiers() )
load_results( df_results_files, instrument = "EnVision", headers = gDRutils::get_env_identifiers() )
df_results_files |
data.table, with datapaths and names of results file(s) or character with file path of results file(s) |
instrument |
character |
headers |
list of headers identified in the manifest file |
data.table with results' data
td <- get_test_data() r_df <- load_results(result_path(td))
td <- get_test_data() r_df <- load_results(result_path(td))
This functions loads and checks the results file(s)
load_results_EnVision(results_file, headers = gDRutils::get_env_identifiers())
load_results_EnVision(results_file, headers = gDRutils::get_env_identifiers())
results_file |
character vector containing file path(s) to results file(s) |
headers |
list of headers identified in the manifest |
data.table with results data
This functions loads and checks the results file
load_results_Tecan(results_file, headers = gDRutils::get_env_identifiers())
load_results_Tecan(results_file, headers = gDRutils::get_env_identifiers())
results_file |
string, file path to a result file |
headers |
list of headers identified in the manifest |
data.table derived from Tecan data
This functions loads and checks the results file(s)
load_results_tsv(results_file, headers)
load_results_tsv(results_file, headers)
results_file |
character, file path(s) to template(s) |
headers |
list of headers identified in the manifest |
data.table with results data
This functions loads and checks the template file(s)
load_templates(df_template_files)
load_templates(df_template_files)
df_template_files |
data.table, with datapaths and names of results file(s) or character with file path of templates file(s) |
data.table with templates data
td <- get_test_data() t_df <- load_templates(template_path(td))
td <- get_test_data() t_df <- load_templates(template_path(td))
This functions loads and checks the template file(s)
load_templates_tsv(template_file, template_filename = NULL)
load_templates_tsv(template_file, template_filename = NULL)
template_file |
character, file path(s) to template(s) |
template_filename |
character, file name(s) |
data.table with template data
This functions loads and checks the template file(s)
load_templates_xlsx(template_file, template_filename = NULL)
load_templates_xlsx(template_file, template_filename = NULL)
template_file |
character, file path(s) to template(s) |
template_filename |
character, file name(s) |
data.table with templates data
Method for object gdr_test_data - access to slot manifest_path
manifest_path(x) ## S4 method for signature 'gdr_test_data' manifest_path(x)
manifest_path(x) ## S4 method for signature 'gdr_test_data' manifest_path(x)
x |
object class gdr_test_data |
value of slot manifest_path
td <- get_test_data() manifest_file_path <- manifest_path(td)
td <- get_test_data() manifest_file_path <- manifest_path(td)
grep wrapper to support multiple patterns
mgrepl(patterns, x, do_unlist = TRUE, ...)
mgrepl(patterns, x, do_unlist = TRUE, ...)
patterns |
charvec with patterns to be checked |
x |
charvec with data |
do_unlist |
logical_flag unlist the final results? |
... |
additional argument |
list of charvec with grep output
This function parses a D300 *.tdd file (XML format) into a data.table
parse_D300_xml(D300_file)
parse_D300_xml(D300_file)
D300_file |
string, file path to D300 .tdd file |
data.table representing input D300_file
.
td3 <- get_test_D300_data() fs <- td3[["f_96w"]] dose_df <- parse_D300_xml(fs[["d300"]])
td3 <- get_test_D300_data() fs <- td3[["f_96w"]] dose_df <- parse_D300_xml(fs[["d300"]])
This function reads file from the EnVision Workstation
read_EnVision_delim(file, nrows = 10000, seps = c(",", "\t"))
read_EnVision_delim(file, nrows = 10000, seps = c(",", "\t"))
file |
string to path of input file from EnVision scanner |
nrows |
maximum number of file rows to be processed |
seps |
potential field separators of the input file |
a list containing the data table, n_col, n_row, and if is edited
Read in single xlsx data from EnVision
read_EnVision_xlsx(results_file, results_sheet)
read_EnVision_xlsx(results_file, results_sheet)
results_file |
character, file path(s) to results file(s) |
results_sheet |
results sheet names |
data.table with results data
Read excel file and transorm it into data.table object
read_excel_to_dt(path, ...)
read_excel_to_dt(path, ...)
path |
path to excel file |
... |
other arguments that should be passed into |
data.table object with read excel file
datasets <- readxl::readxl_example("datasets.xlsx") read_excel_to_dt(datasets)
datasets <- readxl::readxl_example("datasets.xlsx") read_excel_to_dt(datasets)
This function reads file from the EnVision Workstation
read_in_EnVision_file(file, nrows, seps)
read_in_EnVision_file(file, nrows, seps)
file |
input file from EnVision |
nrows |
maximum number of file rows to be processed |
seps |
potential field separators of the input file |
list with one element per EnVisoin input file
read manifest files
read_in_manifest_file(manifest_file, available_formats)
read_in_manifest_file(manifest_file, available_formats)
manifest_file |
character, file path(s) to manifest(s) |
available_formats |
charvec with available file formats |
a data.table with manifest data
Read in results files
read_in_result_files(results_file, results_filename, headers)
read_in_result_files(results_file, results_filename, headers)
results_file |
data.table, with datapaths and names of results file(s) or character with file path of results file(s) |
results_filename |
charvect with file names |
headers |
list of headers identified in the result files |
data.table with results data
read in Tecan data
read_in_results_Tecan(results_file, results_sheets, headers)
read_in_results_Tecan(results_file, results_sheets, headers)
results_file |
string, file path to a result file |
results_sheets |
template sheet names |
headers |
list of headers identified in the manifest |
data.table derived from Tecan data
Read in data from xlsx template sheet
read_in_template_sheet_xlsx(template_file, template_sheets, idx, plate_info)
read_in_template_sheet_xlsx(template_file, template_sheets, idx, plate_info)
template_file |
character, file path(s) to template(s) |
template_sheets |
template sheet names |
idx |
template file index |
plate_info |
list with plate info |
data.table with template data
Read in xlsx template files
read_in_template_xlsx(template_file, template_filename, template_sheets)
read_in_template_xlsx(template_file, template_filename, template_sheets)
template_file |
character, file path(s) to template(s) |
template_filename |
character, file name(s) |
template_sheets |
template sheet names |
data.table with templates data
read in tsv template files
read_in_tsv_template_files(template_file, template_filename, templates)
read_in_tsv_template_files(template_file, template_filename, templates)
template_file |
character, file path(s) to template(s) |
template_filename |
character, file name(s) |
templates |
list with templates data |
data.table with templates data
Read reference data
read_ref_data(inDir, prefix = "ref")
read_ref_data(inDir, prefix = "ref")
inDir |
a directory path of reference data |
prefix |
a prefix of reference file names ('ref' by default) |
a list of reference data
Method for object gdr_test_data - access to slot result_path
result_path(x) ## S4 method for signature 'gdr_test_data' result_path(x)
result_path(x) ## S4 method for signature 'gdr_test_data' result_path(x)
x |
object class gdr_test_data |
value of slot result_path
td <- get_test_data() result_file_path <- result_path(td)
td <- get_test_data() result_file_path <- result_path(td)
for each drug create a Gnumber and Concentration information for each well
save_drug_info_per_well(trt_info, trt_gnumber_conc, wb, idfs)
save_drug_info_per_well(trt_info, trt_gnumber_conc, wb, idfs)
trt_info |
list with treatment info |
trt_gnumber_conc |
list with treatment data |
wb |
pointer to xlsx workbook |
idfs |
charvec with identifiers |
NULL
invisibly.
Adjust environment variables to meet gDR standards
setEnvForPSet()
setEnvForPSet()
NULL
setEnvForPSet() gDRutils::reset_env_identifiers()
setEnvForPSet() gDRutils::reset_env_identifiers()
map values to a dictionary
standardize_record_values(x, dictionary = DICTIONARY)
standardize_record_values(x, dictionary = DICTIONARY)
x |
a named array |
dictionary |
a named array |
a named array with updated names
standardize_record_values(c("Vehicle", "vehcle"))
standardize_record_values(c("Vehicle", "vehcle"))
Method for object gdr_test_data - access to slot template_path
template_path(x) ## S4 method for signature 'gdr_test_data' template_path(x)
template_path(x) ## S4 method for signature 'gdr_test_data' template_path(x)
x |
object class gdr_test_data |
value of slot template_path
td <- get_test_data() template_file_path <- template_path(td)
td <- get_test_data() template_file_path <- template_path(td)
Validate template xlsx data
validate_template_xlsx(template_file, template_filename, template_sheets, idx)
validate_template_xlsx(template_file, template_filename, template_sheets, idx)
template_file |
character, file path(s) to template(s) |
template_filename |
character, file name(s) |
template_sheets |
template sheet names |
idx |
template file index |
NULL
invisibly.