Title: | Normalization Procedure for Infinium HumanMethylation450 BeadChip Kit |
---|---|
Description: | Provides a function to normalize Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K), correcting for tissue and/or cell type. |
Authors: | Celia Greenwood <[email protected]>,Stepan Grinek <[email protected]>, Maxime Turgeon <[email protected]>, Kathleen Klein <[email protected]> |
Maintainer: | Kathleen Klein <[email protected]> |
License: | GPL-3 |
Version: | 1.31.0 |
Built: | 2024-10-30 07:58:08 UTC |
Source: | https://github.com/bioc/funtooNorm |
The funtooNorm Package provides a normalization method for data arising from the Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K), including explicit considerations of differences between tissues or cell types. This method should only be used when the data set contains samples fom multiple different tissues or cell types.
Package: | funtooNorm |
Type: | Package |
License: | GPL-3 |
Celia Greenwood, Stepan Grinek, Raphael Poujol, Maxime Turgeon, Kathleen Oros Klein
Function to measure intra-replicate agreement for methylation data.
agreement(Beta, individualID)
agreement(Beta, individualID)
Beta |
: Matrix with beta-values, rows corresponding to probes, columns corresponding to samples. |
individualID |
: a vector where 2 replicates have the exact same value for two technical replicates. Order of samples should nmatch the samples (columns) in Beta |
We expect that the values returned by the agreement function after normalization by funtooNorm to be smaller than before.
The average value of the square distance between replicates: a measure of agreement between replicates in methylation data.
agreement(cbind(rnorm(n = 10),rnorm(n = 10),rnorm(n = 10)),c(1,1,1))
agreement(cbind(rnorm(n = 10),rnorm(n = 10),rnorm(n = 10)),c(1,1,1))
Creates a S4 object of class 'SampleSet' from GenomeStudio files
fromGenStudFiles(controlProbeFile, signalFile, cell_type)
fromGenStudFiles(controlProbeFile, signalFile, cell_type)
controlProbeFile |
The control probe file exported from GenomeStudio |
signalFile |
The signals exported from GenomeStudio samples must be in same order as the control probe File |
cell_type |
A vector of cell types, names must match control probes and signal files. |
An object of class 'SampleSet'.
Creates a object of class SampleSet from the raw unprocessed data in RGChannelSet
fromRGChannelSet(myRGChannelSet)
fromRGChannelSet(myRGChannelSet)
myRGChannelSet |
: RGChannelSet, from minfi package, should contain a cell_type vector in pData |
An object of class 'SampleSet'
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx)
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx)
funtooNorm
Returns the normalized signals to the SampleSet object
funtooNorm(object, type.fits = "PCR", ncmp = 4, force = FALSE, sex = NULL) ## S4 method for signature 'SampleSet' funtooNorm(object, type.fits = "PCR", ncmp = 4, force = FALSE, sex = NULL)
funtooNorm(object, type.fits = "PCR", ncmp = 4, force = FALSE, sex = NULL) ## S4 method for signature 'SampleSet' funtooNorm(object, type.fits = "PCR", ncmp = 4, force = FALSE, sex = NULL)
object |
Object of class SampleSet |
type.fits |
Choice between "PCR" or "PLS" (default="PCR") |
ncmp |
Number of components included in the analysis (default=4) |
force |
If set to TRUE, forces the normalization procedure to re-compute |
sex |
Boolean vector if male. if NULL Beta values from ChrY are used for classification. |
This is a generic function which applies to autosomes and the X chromosome. Chromosome Y requires separate analysis as there are few probes on Y. We use a straightforward quantile normalization applied to males only.
a S4 object of class SampleSet containing the normalized signal
SampleSet
: The funtooNorm normalization function
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) mySampleSet=funtooNorm(mySampleSet)
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) mySampleSet=funtooNorm(mySampleSet)
Build GRange object of methylation probes
getGRanges(object) ## S4 method for signature 'SampleSet' getGRanges(object)
getGRanges(object) ## S4 method for signature 'SampleSet' getGRanges(object)
object |
Object of class SampleSet. |
A GRange object of the positions of each cpg.
SampleSet
: Build GRange object of methylation probes
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) gr=getGRanges(mySampleSet)
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) gr=getGRanges(mySampleSet)
Computes Beta values from normalized signals
getNormBeta(object, offset = 100) ## S4 method for signature 'SampleSet' getNormBeta(object, offset = 100)
getNormBeta(object, offset = 100) ## S4 method for signature 'SampleSet' getNormBeta(object, offset = 100)
object |
of type SampleSet |
offset |
default is 100 as Illumina standard |
a matrix containing beta after normalization value for each CpG position and each samples
SampleSet
: Computes Beta values from normalized signals
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) b=getNormBeta(funtooNorm(mySampleSet))
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) b=getNormBeta(funtooNorm(mySampleSet))
Computes M values,log2(Meth/Unmeth), from normalized signals
getNormM(object) ## S4 method for signature 'SampleSet' getNormM(object)
getNormM(object) ## S4 method for signature 'SampleSet' getNormM(object)
object |
An object of class SampleSet |
a matrix containing M values, log2(Meth/Unmeth), after normalization
SampleSet
: Computes M values, log2(Meth/Unmeth),
from normalized signals
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) m=getNormM(funtooNorm(mySampleSet))
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) m=getNormM(funtooNorm(mySampleSet))
Computes Beta value from raw signals
getRawBeta(object, offset = 100) ## S4 method for signature 'SampleSet' getRawBeta(object, offset = 100)
getRawBeta(object, offset = 100) ## S4 method for signature 'SampleSet' getRawBeta(object, offset = 100)
object |
object of class SampleSet |
offset |
default is 100 as Illumina standard |
a matrix containing the raw beta value for each position and each samples
SampleSet
: Computes Beta value from raw signals
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) r=getRawBeta(mySampleSet)
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) r=getRawBeta(mySampleSet)
Computes M values after normalization of SNP data.
getSnpM(object) ## S4 method for signature 'SampleSet' getSnpM(object)
getSnpM(object) ## S4 method for signature 'SampleSet' getSnpM(object)
object |
of class SampleSet |
a matrix containing M values, log2(Meth/Unmeth), after normalization for SNP data
SampleSet
: Computes M values, log2(Meth/Unmeth), for normalized
SNP data
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) snp=getSnpM(funtooNorm(mySampleSet))
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) snp=getSnpM(funtooNorm(mySampleSet))
Plots a series of graphs for each signal type, to determine the number of components to include in the normalization procedure.
plotValidationGraph(object, type.fits = "PCR", pdf.file = NULL) ## S4 method for signature 'SampleSet' plotValidationGraph(object, type.fits = "PCR", pdf.file = NULL)
plotValidationGraph(object, type.fits = "PCR", pdf.file = NULL) ## S4 method for signature 'SampleSet' plotValidationGraph(object, type.fits = "PCR", pdf.file = NULL)
object |
of class SampleSet |
type.fits |
can be "PCR" or "PLS" (default "PCR") |
pdf.file |
if no file name is provided print pdf file plotValidationGraph.pdf in working directory. |
No value is returned. The function prints the plots to a pdf file.
SampleSet
: Plots a series of graphs for each
signal type, to determine the number of components to include
in the normalization procedure.
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) plotValidationGraph(mySampleSet)
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) plotValidationGraph(mySampleSet)
SampleSet is an S4 class defined for the purpose of running the funtooNorm algorithm. They are lists containing signal data and different variables useful for funtooNorm. The data is separated into the 3 probes types, each having 2 channels (methylated and unmethylated ie : A and B) We then define then the 6 (2*3) labels: AIGrn BIGrn AIRed BIRed AII BII
a S4 object of class SampleSet
type
Character: is 'minfi' or 'GenomeStudio'
sampleNames
character vector: contain the list of sample names in order used
sampleSize
numeric: the number of samples
nPos
numeric: the number of positions in the ILLUMINA chip
annotation
character: the annotation object from minfi package
cell_type
factor: vector of the cell type for each sample as factors
qntllist
numeric: vector of ordered quantiles
quantiles
list: list of 6 quantiles tables for the 6 signal types
ctl.covmat
matrix: covariance matrix for the model fit
signal
list: list of the values for all 6 probe types.
names
list: list of probes for each type
predmat
list: list of the normalized values for all 6 probe types.
showClass("SampleSet")
showClass("SampleSet")
Display informations about the SampleSet object
## S4 method for signature 'SampleSet' show(object)
## S4 method for signature 'SampleSet' show(object)
object |
an object of class SampleSet |
... |
optional arguments passed to or from other methods. |
No value is returned. The function prints the summary of object of class SampleSet to screen
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) mySampleSet
require(minfiData) pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3) mySampleSet=fromRGChannelSet(RGsetEx) mySampleSet