Title: | Frozen RMA and Barcode |
---|---|
Description: | Preprocessing and analysis for single microarrays and microarray batches. |
Authors: | Matthew N. McCall <[email protected]>, Rafael A. Irizarry <[email protected]>, with contributions from Terry Therneau |
Maintainer: | Matthew N. McCall <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.59.0 |
Built: | 2024-11-14 05:46:52 UTC |
Source: | https://github.com/bioc/frma |
This function converts expression values produced via fRMA to a gene expression barcode.
barcode(object, platform=NULL, mu=NULL, tau=NULL, cutoff=6.5, output="binary")
barcode(object, platform=NULL, mu=NULL, tau=NULL, cutoff=6.5, output="binary")
object |
a vector or matrix of expression values or an ExpressionSet or frmaExpressionSet produced by frma |
platform |
the platform of the input data. One of GPL96, GPL570, GPL571, GPL1261, GPL6244, GPL6246. Required if object is a vector or matrix and either mu or tau is NULL. |
mu |
the mean of the unexpressed distribution. If NULL then precomputed values are used if possible. |
tau |
the standard deviation of the unexpressed distribution. If NULL then precomputed values are used if possible. |
cutoff |
the lod score cutoff used if output is binary. |
output |
the desired values to be returned. Options are: p-value, z-score, lod, or binary. |
A matrix containing the type of output specified by the output parameter. The option binary creates a gene expression barcode where 1s denote expressed genes and 0s denote unexpressed genes. The option p-value returns the p-values for the expression values under the unexpressed distribution. The option lod returns the LOD scores for expression values under the unexpressed distribution. The option z-score returns the z-scores for the expression values under the unexpressed distribution.
Matthew N. McCall
library(frma) library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample) bc <- barcode(object)
library(frma) library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample) bc <- barcode(object)
This function preprocesses an AffyBatch, ExonFeatureSet, or GeneFeatureSet object using the fRMA method.
frma(object, background="rma", normalize="quantile", summarize="robust_weighted_average", target="probeset", input.vecs=NULL, output.param=NULL, verbose=FALSE)
frma(object, background="rma", normalize="quantile", summarize="robust_weighted_average", target="probeset", input.vecs=NULL, output.param=NULL, verbose=FALSE)
object |
an AffyBatch, ExonFeatureSet, or GeneFeatureSet |
background |
type of background correction to perform: either "none" or "rma". |
normalize |
type of normalization to perform: either "none" or "quantile". |
summarize |
type of summarization to perform: one of "median\_polish", "average", "median", "weighted\_average", "robust\_weighted\_average", "random\_effect". |
target |
summarization level for exon and gene arrays. Must be one of: probeset, core, full (exon only), extended (exon only). |
input.vecs |
a list of vectors to be used in preprocessing. If NULL, the correct package with pre-made vectors is loaded if it has been installed. These packages are of the form: <platform>frmavecs. |
output.param |
a vector of output elements to return. By default only the expression values and standard errors (if applicable) are returned. Additional options are: "residuals", "weights", "random_effects" |
verbose |
logical value. If TRUE then some messages are displayed while the function runs. |
The function returns an ExpressionSet if output.param=NULL or an frmaExpressionSet otherwise.
Matthew N. McCall
library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample)
library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample)
This is a class representation for fRMA-preprocessed expression
data. frmaExpressionSet
class is derived from
ExpressionSet
, and requires a matrix named exprs
and optionally matrices named se.exprs
, weights
, and residuals
.
Extends class ExpressionSet
.
new("frmaExpressionSet",
exprs = new("matrix"),
se.exprs = new("matrix"),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet
with assayData
implicitly created to contain exprs
and se.exprs
. The
only required named arguments is exprs
. Three optional named
matrices, weights
, residuals
, and randomeffects
can be added to the object.
new("frmaExpressionSet",
assayData = assayDataNew(exprs=new("matrix"),se.exprs=new("matrix")),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet
with assayData
provided
explicitly. In this form, the only required named argument is
assayData
. Three optional named matrices, weights
,
residuals
, and randomeffects
can be added to the object.
se.exprs
:standard errors for the expression estimates
weights
:weights used in the summarization step
residuals
:residuals from fitting the probe-level model
randomeffects
:random effect estimates from fitting the probe-level model using random effect summarization
Inherited from ExpressionSet
:
assayData
:Contains matrices with equal dimensions,
and with column number equal to
nrow(phenoData)
. assayData
must contain a matrix
exprs
with rows representing features and columns
representing samples. It may also contain a matrix se.exprs
containing standard errors.
phenoData
:See eSet
annotation
:See eSet
featureData
:See eSet
experimentData
:See eSet
Class-specific methods:
se.exprs(frmaExpressionSet)
Access elements named
se.exprs
in the AssayData-class
slot.
weights(frmaExpressionSet)
Access elements named
weights
residuals(frmaExpressionSet)
Access elements named
residuals
randomeffects(frmaExpressionSet)
Access elements named
randomeffects
For derived methods (see ExpressionSet
).
eSet-class
, ExpressionSet-class
, frma
.
# create an instance of frmaExpressionSet new("frmaExpressionSet")
# create an instance of frmaExpressionSet new("frmaExpressionSet")
Computes the generalized normalized unscaled standard error (a measure of microarray quality).
GNUSE(object, medianSE=NULL, type=c("plot", "values", "stats", "density"), ...)
GNUSE(object, medianSE=NULL, type=c("plot", "values", "stats", "density"), ...)
object |
an ExpressionSet or frmaExpressionSet containing standard errors produced by frma |
medianSE |
median standard errors to be used. If NULL, these are obtained from the correct frmavecs package. |
type |
the desired output |
... |
additional graphical parameters for types plot or density |
If type is plot, boxplots of GNUSE values are displayed. If type is values, the GNUSE values are returned. If type is stats, the median, IQR, 95th, and 99th percentiles are reported. If type is density, a density plots of GNUSE values are displayed.
Matthew N. McCall
library(frma) library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample) GNUSE(object, type="stats")
library(frma) library(frmaExampleData) data(AffyBatchExample) object <- frma(AffyBatchExample) GNUSE(object, type="stats")