Compiled date: 2024-11-28
Last edited: 2022-01-12
License: GPL-3
Run the following code to install the Bioconductor version of the package.
fobitools
You can also load some additional packages that will be very useful in this vignette.
metaboliteUniverse
and metaboliteList
In microarrays, for example, we can study almost all the genes of an organism in our sample, so it makes sense to perform an over representation analysis (ORA) considering all the genes present in Gene Ontology (GO). Since most of the GO pathways would be represented by some gene in the microarray.
This is different in nutrimetabolomics. Targeted nutrimetabolomics studies sets of about 200-500 diet-related metabolites, so it would not make sense to use all known metabolites (for example in HMDB or CHEBI) in an ORA, as most of them would not have been quantified in the study.
In nutrimetabolomic studies it may be interesting to study enriched or over represented foods/food groups by the metabolites resulting from the study statistical analysis, rather than the enriched metabolic pathways, as would make more sense in genomics or other metabolomics studies.
The Food-Biomarker Ontology (FOBI) provides a biological knowledge for conducting these enrichment analyses in nutrimetabolomic studies, as FOBI provides the relationships between several foods and their associated dietary metabolites (Castellano-Escuder et al. 2020).
Accordingly, to perform an ORA with the fobitools
package, it is necessary to provide a metabolite universe (all
metabolites included in the statistical analysis) and a list of selected
metabolites (selected metabolites according to a statistical
criterion).
Here is an example:
# select 300 random metabolites from FOBI
idx_universe <- sample(nrow(fobitools::idmap), 300, replace = FALSE)
metaboliteUniverse <- fobitools::idmap %>%
dplyr::slice(idx_universe) %>%
pull(FOBI)
# select 10 random metabolites from metaboliteUniverse that are associated with 'Red meat' (FOBI:0193),
# 'Lean meat' (FOBI:0185) , 'egg food product' (FOODON:00001274),
# or 'grape (whole, raw)' (FOODON:03301702)
fobi_subset <- fobitools::fobi %>% # equivalent to `parse_fobi()`
filter(FOBI %in% metaboliteUniverse) %>%
filter(id_BiomarkerOf %in% c("FOBI:0193", "FOBI:0185", "FOODON:00001274", "FOODON:03301702")) %>%
dplyr::slice(sample(nrow(.), 10, replace = FALSE))
metaboliteList <- fobi_subset %>%
pull(FOBI)
fobitools::ora(metaboliteList = metaboliteList,
metaboliteUniverse = metaboliteUniverse,
subOntology = "food",
pvalCutoff = 0.01)
className | classSize | overlap | pval | padj | overlapMetabolites |
---|---|---|---|---|---|
grapefruit (whole, raw) | 14 | 6 | 0.0000006 | 0.0000486 | FOBI:030…. |
stem or spear vegetable | 4 | 4 | 0.0000006 | 0.0000486 | FOBI:030…. |
apple juice | 9 | 5 | 0.0000015 | 0.0000586 | FOBI:030…. |
orange juice | 9 | 5 | 0.0000015 | 0.0000586 | FOBI:030…. |
White fish | 5 | 4 | 0.0000031 | 0.0000597 | FOBI:030…. |
herb | 5 | 4 | 0.0000031 | 0.0000597 | FOBI:030…. |
white bread | 5 | 4 | 0.0000031 | 0.0000597 | FOBI:030…. |
white wine | 5 | 4 | 0.0000031 | 0.0000597 | FOBI:030…. |
vinegar | 6 | 4 | 0.0000092 | 0.0001410 | FOBI:030…. |
white sugar | 6 | 4 | 0.0000092 | 0.0001410 | FOBI:030…. |
Red meat | 13 | 5 | 0.0000148 | 0.0002054 | FOBI:030…. |
black tea leaf (dry) | 7 | 4 | 0.0000212 | 0.0002490 | FOBI:030…. |
kale leaf (raw) | 7 | 4 | 0.0000212 | 0.0002490 | FOBI:030…. |
black coffee | 3 | 3 | 0.0000269 | 0.0002747 | FOBI:030…. |
black turtle bean (whole) | 3 | 3 | 0.0000269 | 0.0002747 | FOBI:030…. |
blueberry (whole, raw) | 8 | 4 | 0.0000416 | 0.0003746 | FOBI:030…. |
raspberry (whole, raw) | 8 | 4 | 0.0000416 | 0.0003746 | FOBI:030…. |
green tea leaf (dry) | 9 | 4 | 0.0000737 | 0.0005637 | FOBI:030…. |
red tea | 9 | 4 | 0.0000737 | 0.0005637 | FOBI:030…. |
red velvet | 9 | 4 | 0.0000737 | 0.0005637 | FOBI:030…. |
lemon (whole, raw) | 18 | 5 | 0.0000914 | 0.0006658 | FOBI:030…. |
carrot root (whole, raw) | 10 | 4 | 0.0001208 | 0.0007791 | FOBI:030…. |
dairy food product | 10 | 4 | 0.0001208 | 0.0007791 | FOBI:030…. |
wine (food product) | 19 | 5 | 0.0001222 | 0.0007791 | FOBI:030…. |
cherry (whole, raw) | 12 | 4 | 0.0002754 | 0.0015609 | FOBI:030…. |
grain plant | 12 | 4 | 0.0002754 | 0.0015609 | FOBI:030…. |
grain product | 12 | 4 | 0.0002754 | 0.0015609 | FOBI:030…. |
coffee (liquid drink) | 13 | 4 | 0.0003913 | 0.0020645 | FOBI:030…. |
strawberry (whole, raw) | 13 | 4 | 0.0003913 | 0.0020645 | FOBI:030…. |
soybean (whole) | 24 | 5 | 0.0004148 | 0.0021156 | FOBI:030…. |
black pepper food product | 6 | 3 | 0.0005106 | 0.0025201 | FOBI:030…. |
sweet potato vegetable food product | 14 | 4 | 0.0005388 | 0.0025760 | FOBI:030…. |
cumin seed (whole, dried) | 15 | 4 | 0.0007225 | 0.0032514 | FOBI:030…. |
tomato (whole, raw) | 15 | 4 | 0.0007225 | 0.0032514 | FOBI:030…. |
almond (whole, raw) | 7 | 3 | 0.0008777 | 0.0036294 | FOBI:030…. |
cocoa | 7 | 3 | 0.0008777 | 0.0036294 | FOBI:030…. |
egg food product | 7 | 3 | 0.0008777 | 0.0036294 | FOBI:030…. |
beer | 16 | 4 | 0.0009474 | 0.0038144 | FOBI:030…. |
ale | 8 | 3 | 0.0013793 | 0.0054112 | FOBI:030…. |
flour | 19 | 4 | 0.0019184 | 0.0070663 | FOBI:030…. |
blackberry (whole, raw) | 9 | 3 | 0.0020322 | 0.0070663 | FOBI:030…. |
bread food product | 9 | 3 | 0.0020322 | 0.0070663 | FOBI:030…. |
pear (whole, raw) | 9 | 3 | 0.0020322 | 0.0070663 | FOBI:030…. |
whole bread | 9 | 3 | 0.0020322 | 0.0070663 | FOBI:030…. |
black currant (whole, raw) | 10 | 3 | 0.0028513 | 0.0092305 | FOBI:030…. |
rye food product | 10 | 3 | 0.0028513 | 0.0092305 | FOBI:030…. |
lentil (whole) | 3 | 2 | 0.0029562 | 0.0092305 | FOBI:030…. |
soybean oil | 3 | 2 | 0.0029562 | 0.0092305 | FOBI:030…. |
turnip (whole, raw) | 3 | 2 | 0.0029562 | 0.0092305 | FOBI:030…. |
oregano (ground) | 11 | 3 | 0.0038505 | 0.0117826 | FOBI:030…. |
olive (whole, ripe) | 12 | 3 | 0.0050422 | 0.0148358 | FOBI:030…. |
tea food product | 12 | 3 | 0.0050422 | 0.0148358 | FOBI:030…. |
cauliflower (whole, raw) | 4 | 2 | 0.0058065 | 0.0161526 | FOBI:030…. |
pea (whole) | 4 | 2 | 0.0058065 | 0.0161526 | FOBI:030…. |
pomegranate (whole, raw) | 4 | 2 | 0.0058065 | 0.0161526 | FOBI:030…. |
grape (whole, raw) | 14 | 3 | 0.0080462 | 0.0219835 | FOBI:030…. |
eggplant (whole, raw) | 5 | 2 | 0.0095042 | 0.0250714 | FOBI:030…. |
rice grain food product | 5 | 2 | 0.0095042 | 0.0250714 | FOBI:030…. |
meat food product | 15 | 3 | 0.0098772 | 0.0256137 | FOBI:030…. |
metaboliteList
termsThen, with the fobi_graph
function we can visualize the
metaboliteList
terms with their corresponding FOBI
relationships.
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] SummarizedExperiment_1.37.0 Biobase_2.67.0
#> [3] GenomicRanges_1.59.1 GenomeInfoDb_1.43.1
#> [5] IRanges_2.41.1 S4Vectors_0.45.2
#> [7] BiocGenerics_0.53.3 generics_0.1.3
#> [9] MatrixGenerics_1.19.0 matrixStats_1.4.1
#> [11] metabolomicsWorkbenchR_1.17.0 POMA_1.17.6
#> [13] ggrepel_0.9.6 rvest_1.0.4
#> [15] kableExtra_1.4.0 lubridate_1.9.3
#> [17] forcats_1.0.0 stringr_1.5.1
#> [19] dplyr_1.1.4 purrr_1.0.2
#> [21] readr_2.1.5 tidyr_1.3.1
#> [23] tibble_3.2.1 ggplot2_3.5.1
#> [25] tidyverse_2.0.0 fobitools_1.15.1
#> [27] BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] sys_3.4.3 rstudioapi_0.17.1
#> [3] jsonlite_1.8.9 MultiAssayExperiment_1.33.1
#> [5] magrittr_2.0.3 farver_2.1.2
#> [7] rmarkdown_2.29 zlibbioc_1.52.0
#> [9] vctrs_0.6.5 memoise_2.0.1
#> [11] S4Arrays_1.7.1 htmltools_0.5.8.1
#> [13] curl_6.0.1 qdapRegex_0.7.8
#> [15] tictoc_1.2.1 SparseArray_1.7.2
#> [17] sass_0.4.9 parallelly_1.39.0
#> [19] bslib_0.8.0 impute_1.81.0
#> [21] RecordLinkage_0.4-12.4 cachem_1.1.0
#> [23] buildtools_1.0.0 igraph_2.1.1
#> [25] lifecycle_1.0.4 pkgconfig_2.0.3
#> [27] Matrix_1.7-1 R6_2.5.1
#> [29] fastmap_1.2.0 GenomeInfoDbData_1.2.13
#> [31] future_1.34.0 selectr_0.4-2
#> [33] digest_0.6.37 syuzhet_1.0.7
#> [35] colorspace_2.1-1 RSQLite_2.3.8
#> [37] labeling_0.4.3 fansi_1.0.6
#> [39] timechange_0.3.0 abind_1.4-8
#> [41] httr_1.4.7 polyclip_1.10-7
#> [43] compiler_4.4.2 proxy_0.4-27
#> [45] bit64_4.5.2 withr_3.0.2
#> [47] BiocParallel_1.41.0 viridis_0.6.5
#> [49] DBI_1.2.3 ggforce_0.4.2
#> [51] MASS_7.3-61 lava_1.8.0
#> [53] DelayedArray_0.33.2 textclean_0.9.3
#> [55] tools_4.4.2 future.apply_1.11.3
#> [57] nnet_7.3-19 glue_1.8.0
#> [59] grid_4.4.2 fgsea_1.33.0
#> [61] gtable_0.3.6 lexicon_1.2.1
#> [63] tzdb_0.4.0 class_7.3-22
#> [65] data.table_1.16.2 hms_1.1.3
#> [67] tidygraph_1.3.1 xml2_1.3.6
#> [69] utf8_1.2.4 XVector_0.47.0
#> [71] pillar_1.9.0 limma_3.63.2
#> [73] vroom_1.6.5 splines_4.4.2
#> [75] tweenr_2.0.3 lattice_0.22-6
#> [77] survival_3.7-0 bit_4.5.0
#> [79] tidyselect_1.2.1 maketools_1.3.1
#> [81] knitr_1.49 gridExtra_2.3
#> [83] svglite_2.1.3 xfun_0.49
#> [85] graphlayouts_1.2.1 statmod_1.5.0
#> [87] stringi_1.8.4 UCSC.utils_1.3.0
#> [89] yaml_2.3.10 evaluate_1.0.1
#> [91] codetools_0.2-20 evd_2.3-7.1
#> [93] ggraph_2.2.1 BiocManager_1.30.25
#> [95] cli_3.6.3 ontologyIndex_2.12
#> [97] rpart_4.1.23 xtable_1.8-4
#> [99] systemfonts_1.1.0 struct_1.19.0
#> [101] munsell_0.5.1 jquerylib_0.1.4
#> [103] Rcpp_1.0.13-1 globals_0.16.3
#> [105] parallel_4.4.2 blob_1.2.4
#> [107] ff_4.5.0 listenv_0.9.1
#> [109] viridisLite_0.4.2 ipred_0.9-15
#> [111] scales_1.3.0 prodlim_2024.06.25
#> [113] e1071_1.7-16 crayon_1.5.3
#> [115] clisymbols_1.2.0 rlang_1.1.4
#> [117] ada_2.0-5 cowplot_1.1.3
#> [119] fastmatch_1.1-4