Title: | f-divergence Cutoff Index for Differential Expression Analysis in Transcriptomics and Proteomics |
---|---|
Description: | (f-divergence Cutoff Index), is to find DEGs in the transcriptomic & proteomic data, and identify DEGs by computing the difference between the distribution of fold-changes for the control-control and remaining (non-differential) case-control gene expression ratio data. fCI provides several advantages compared to existing methods. |
Authors: | Shaojun Tang |
Maintainer: | Shaojun Tang <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.37.0 |
Built: | 2024-11-05 05:59:17 UTC |
Source: | https://github.com/bioc/fCI |
the s4 class function
call.npci(.Object)
call.npci(.Object)
.Object |
the fCI object |
The S4 method will compute DEGs and save the results to the original s4 object .Object
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
call.npci
~~~~ Methods for function call.npci
~~
signature(.Object = "NPCI")
the generic function 'compute' for s4 class
compute(.Object)
compute(.Object)
.Object |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
compute
~~~~ Methods for function compute
~~
signature(.Object = "NPCI")
find targets that have a consistent fold change in the same direction
deg.pairwise.fold.change(pairwise.wt.up.down.fold, pairwise.df.up.down.fold, d = 1, min.fold = 1.2)
deg.pairwise.fold.change(pairwise.wt.up.down.fold, pairwise.df.up.down.fold, d = 1, min.fold = 1.2)
pairwise.wt.up.down.fold |
a list of numeric values representing the fold changes between control replicates for every gene |
pairwise.df.up.down.fold |
a list of numeric values representing the fold changes between case and control replicates for every gene |
d |
the dimensionality of the database, if the dataset is from proteogenomics, then d=2 |
min.fold |
minimum fold change to declare a gene to be dysregulated, by default, min.fold=2 |
TBD
expression ratio |
a dataframe of fCI gene expression ratios (folds) with none zero values defined by given control-control index (i.e. 1 & 2) and control-case index (i.e. 3&4) |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
wt.fold.changes=list(c(1.2,1.3,1.5,1.6)) df.fold.changes=list(c(1.1,1.3,1.4,1.6)) deg.pairwise.fold.change(wt.fold.changes,df.fold.changes)
wt.fold.changes=list(c(1.2,1.3,1.5,1.6)) df.fold.changes=list(c(1.1,1.3,1.4,1.6)) deg.pairwise.fold.change(wt.fold.changes,df.fold.changes)
given expression matrix, find targets and their detailed expression changes
deg.up.down.info(wt.index.in.list, df.index.in.list, npci, use.normalization = FALSE, target.ratio = 0.5)
deg.up.down.info(wt.index.in.list, df.index.in.list, npci, use.normalization = FALSE, target.ratio = 0.5)
wt.index.in.list |
a list of numeric values representing the column indexes for control samples |
df.index.in.list |
a list of numeric values representing the column indexes for experimental samples |
npci |
the object npci |
use.normalization |
a boolean value indicating if the normalization will be applied or not |
target.ratio |
a numeric value indicating the expected fold changes, i.e, 1.5 |
TBD
expression ratio |
a dataframe of fCI gene expression ratios (folds) defined by control-control index and control-case index |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("TBC")
print("TBC")
normalize expression matrix by first replicate's median gene expression values
deseq.median.ratio.normalization(npci.data)
deseq.median.ratio.normalization(npci.data)
npci.data |
a data frame containing non-zero numeric values (the data frame must contain more than one row and one column) |
TBD
data.frame |
a new dataframe with each column having the same median value |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
udata=data.frame(matrix(sample(3:100, 6*4), 6,4)) normalized.udata=deseq.median.ratio.normalization(udata)
udata=data.frame(matrix(sample(3:100, 6*4), 6,4)) normalized.udata=deseq.median.ratio.normalization(udata)
estimate fCI divergence for given samples of aritrary dimensions
divergence.multivariate.distributions(null.data, diff.data, choice = 2)
divergence.multivariate.distributions(null.data, diff.data, choice = 2)
null.data |
the empirical null dataset (a dataframe of none-zero ratio values) |
diff.data |
the case-control dataset (a dataframe of none-zero ratio values) |
choice |
choice=1 => cross entropy choice=2 => Helligan distance choice=3 => KL distance |
TBD
divergences |
The estimated divergence given control-control and case- control expression ratios |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
null.data=data.frame(matrix(sample(seq(from=0.1,to=10, by=0.01), 100), 100,1)) diff.data=data.frame(matrix(sample(seq(from=0.1,to=10, by=0.01), 100), 100,1)) divergence.multivariate.distributions(null.data, diff.data, choice = 2)
null.data=data.frame(matrix(sample(seq(from=0.1,to=10, by=0.01), 100), 100,1)) diff.data=data.frame(matrix(sample(seq(from=0.1,to=10, by=0.01), 100), 100,1)) divergence.multivariate.distributions(null.data, diff.data, choice = 2)
"fCI"
The main Class that defines the slots values
Objects can be created by calls of the form new("fCI", ...)
.
sample.data.file
:Object of class "character"
~~
distance.matrix
:Object of class "matrix"
~~
sample.data.normalized
:Object of class "data.frame"
~~
attr.info
:Object of class "data.frame"
~~
null.data.start
:Object of class "matrix"
~~
diff.data.start
:Object of class "matrix"
~~
expr.by.fold
:Object of class "matrix"
~~
fold.cutoff.list
:Object of class "list"
~~
rank.index.to.be.removed
:Object of class "list"
~~
diff.gene.ids
:Object of class "list"
~~
wt.index
:Object of class "numeric"
~~
df.index
:Object of class "numeric"
~~
ctr.indexes
:Object of class "numeric"
~~
trt.indexes
:Object of class "numeric"
~~
method.option
:Object of class "numeric"
~~
use.ratio
:Object of class "logical"
~~
percent.genes.to.scan
:Object of class "numeric"
~~
num.genes.to.skip.each
:Object of class "numeric"
~~
use.fold.change
:Object of class "logical"
~~
wt.comb
:Object of class "list"
~~
df.comb
:Object of class "list"
~~
diff.ids
:Object of class "list"
~~
result
:Object of class "numeric"
~~
indexes.reconsidered
:Object of class "numeric"
~~
center.by.gaussian.kernel
:Object of class "logical"
~~
symmetric.fold
:Object of class "logical"
~~
pairwise.diff.gene.ids
:Object of class "list"
~~
No methods defined with class "fCI" in the signature.
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
showClass("fCI")
showClass("fCI")
top level function call to find targets based on expression data and control & case indexes
fCI.call.by.index(wt.indexes, df.indexes, data.file, use.normalization = FALSE, npci=NULL, short.report=TRUE)
fCI.call.by.index(wt.indexes, df.indexes, data.file, use.normalization = FALSE, npci=NULL, short.report=TRUE)
wt.indexes |
The wild type sample column indexes in the matrix, i.e. 1,2 |
df.indexes |
The diseases type sample column indexes in the matrix, i.e. 3,4 |
data.file |
The expression matrix |
use.normalization |
boolean value whether you want the data to be normalized or not |
npci |
the fCI object |
short.report |
whether you want to have a report summary |
TBD
rtable |
A data frame of the detected targets |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
wt.indexes=1:2 df.indexes=3:4 data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) use.normalization=FALSE npci=NULL short.report=TRUE fCI.call.by.index(wt.indexes, df.indexes, data.file, use.normalization, npci, short.report)
wt.indexes=1:2 df.indexes=3:4 data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) use.normalization=FALSE npci=NULL short.report=TRUE fCI.call.by.index(wt.indexes, df.indexes, data.file, use.normalization, npci, short.report)
This data set gives the gene expression values for multiple control and case samples.
fci.data
fci.data
a matrix containing 1043 genes and 4 samples.
dataframe |
A data frame of expression values |
software.steen.org
http://software.steenlab.org/fCI/
generic function to draw figures of the current analysis
figures(.Object)
figures(.Object)
.Object |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
~~ Methods for function figures
~~
signature(.Object = "NPCI")
identify differentially expressed genes
find.fci.targets(.Object, wt.indexes, df.indexes, data.file, use.normalization)
find.fci.targets(.Object, wt.indexes, df.indexes, data.file, use.normalization)
.Object |
the fCI object |
wt.indexes |
The wild type sample column indexes in the matrix, i.e. 1,2 |
df.indexes |
The diseases type sample column indexes in the matrix, i.e. 3,4 |
data.file |
The expression matrix |
use.normalization |
boolean value whether you want the data to be normalized or not |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
fci=new("NPCI") fci.data=data.frame(matrix(sample(3:100, 1043*6, replace=TRUE), 1043,6)) targets=find.fci.targets(fci, c(1,2,3), c(4,5,6), fci.data) head(show.targets(targets))
fci=new("NPCI") fci.data=data.frame(matrix(sample(3:100, 1043*6, replace=TRUE), 1043,6)) targets=find.fci.targets(fci, c(1,2,3), c(4,5,6), fci.data) head(show.targets(targets))
find.fci.targets
~~~~ Methods for function find.fci
~~
signature(.Object = "NPCI")
the built-in method to compute fCI DEGs.
find the middle value of the density distribution
find.mid.point(Y)
find.mid.point(Y)
Y |
TBD
position |
The value the separates density into two halves |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
Y=density(sample(1:100, 50), bw=0.5) find.mid.point(Y)
Y=density(sample(1:100, 50), bw=0.5) find.mid.point(Y)
generate fold change cutoff with a large step of 0.5 fold
get.fold.large.step()
get.fold.large.step()
TBD
fold_values |
A vector of predefined fold changes for fCI computation |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
get.fold.large.step()
get.fold.large.step()
return a fCI object given the gene expression data
get.npci.data(sample.data.normalized, wt.index, df.index)
get.npci.data(sample.data.normalized, wt.index, df.index)
sample.data.normalized |
|
wt.index |
|
df.index |
TBD
expression ratio |
a dataframe of fCI gene expression ratios (folds) defined by control-control index and control-case index |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
sample.data.normalized=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) get.npci.data(sample.data.normalized, wt.index, df.index)
sample.data.normalized=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) get.npci.data(sample.data.normalized, wt.index, df.index)
generate the divergence estimation based of fold change cutoff values
get.npci.distance.matrix(npci.data, null.data.start, diff.data.start, choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes, use.intersect = FALSE, symmetric.fold = TRUE, fold.cutoff.list)
get.npci.distance.matrix(npci.data, null.data.start, diff.data.start, choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes, use.intersect = FALSE, symmetric.fold = TRUE, fold.cutoff.list)
npci.data |
|
null.data.start |
|
diff.data.start |
|
choice |
|
rank.index.to.be.removed |
|
expr.by.fold |
|
ctr.indexes |
|
trt.indexes |
|
use.intersect |
|
symmetric.fold |
|
fold.cutoff.list |
TBD
divergence |
A matrix of computed divergences |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") [email protected]=wt.index [email protected]=df.index [email protected]=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) [email protected] [email protected] choice=2 [email protected] [email protected] [email protected] [email protected] use.intersect=FALSE symmetric.fold=TRUE [email protected] get.npci.distance.matrix(npci.data, null.data.start, diff.data.start, choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes, use.intersect, symmetric.fold, fold.cutoff.list)
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") npci@wt.index=wt.index npci@df.index=df.index npci@sample.data.normalized=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) null.data.start=npci@null.data.start diff.data.start=npci@diff.data.start choice=2 rank.index.to.be.removed=npci@rank.index.to.be.removed expr.by.fold=npci@expr.by.fold ctr.indexes=npci@wt.index trt.indexes=npci@df.index use.intersect=FALSE symmetric.fold=TRUE fold.cutoff.list=npci@fold.cutoff.list get.npci.distance.matrix(npci.data, null.data.start, diff.data.start, choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes, use.intersect, symmetric.fold, fold.cutoff.list)
find the outline genes of a given distribution
get.outline.index(values)
get.outline.index(values)
values |
TBD
indexes |
remove the index of values that are outliners based on the t-test with alpha=0.05 |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
values=rnorm(100) get.outline.index(values)
values=rnorm(100) get.outline.index(values)
generate fold-change cutoff on proteomics data (with large steps of 0.2-0.5 fold)
get.protein.fold.step()
get.protein.fold.step()
TBD
folds |
returning a vector of recommended fold ratios for proteomic study |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
get.protein.fold.step()
get.protein.fold.step()
identify the fold change value indexes beyond the fCI estimation
get.rank.combinations(rank.index.to.be.removed, symmetric.fold)
get.rank.combinations(rank.index.to.be.removed, symmetric.fold)
rank.index.to.be.removed |
a list of integers representing the genes to be removed because it exceeds the predefined fold change, i.e 1.2 fold |
symmetric.fold |
a boolean value indicating the upregulation and downregulation are treatedly equally |
TBD
combinations |
a data frame of gene indexes |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
rank.index.to.be.removed=list(sample(1:100, 20)) symmetric.fold=TRUE get.rank.combinations(rank.index.to.be.removed, symmetric.fold)
rank.index.to.be.removed=list(sample(1:100, 20)) symmetric.fold=TRUE get.rank.combinations(rank.index.to.be.removed, symmetric.fold)
generate fCI fold-change cutoff values for typical RNA-Seq data
get.rna.fold.step()
get.rna.fold.step()
TBD
folds |
a vector of fold changes fCI used for divergence computation |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
get.rna.fold.step()
get.rna.fold.step()
initialize
~~~~ Methods for function initialize
~~
signature(.Object = "NPCI")
this s4 class generic method initialize the fCI object once it is made
find the common values of all vectors of a list
intersect.of.lists(vectorlist)
intersect.of.lists(vectorlist)
vectorlist |
a list of list values which we want to use to find common values |
TBD
intersects |
the common values of lists |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("this function will be disabled!")
print("this function will be disabled!")
test if a package is installed in the R library
is.installed(mypkg)
is.installed(mypkg)
mypkg |
a R library name, such as FNN |
TBD
installation |
boolean value indicating the installation |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
is.installed('fCI')
is.installed('fCI')
This data set gives the gene expression values for 14204 genes and the control and case samples were generated at two time points (bivariate data).
fci.data
fci.data
a matrix containing 14204 genes and 8 samples.
dataframe |
A data frame of expression values |
software.steen.org
http://software.steenlab.org/fCI/
generic function to normalize gene expression matrix
normalization(.Object)
normalization(.Object)
.Object |
the predefined class object (i.e fCI=new("NPCI")) |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
normalization
~~~~ Methods for function normalization
~~
signature(.Object = "NPCI")
the built-in method for fCI data normalization, by default, the data is normalized according to mean excluding the top 5 and bottom 5 percent.
"NPCI"
The main Class that defines the slots values
Objects can be created by calls of the form new("NPCI", ...)
.
sample.data.file
:Object of class "character"
~~
distance.matrix
:Object of class "matrix"
~~
sample.data.normalized
:Object of class "data.frame"
~~
attr.info
:Object of class "data.frame"
~~
null.data.start
:Object of class "matrix"
~~
diff.data.start
:Object of class "matrix"
~~
expr.by.fold
:Object of class "matrix"
~~
fold.cutoff.list
:Object of class "list"
~~
rank.index.to.be.removed
:Object of class "list"
~~
diff.gene.ids
:Object of class "list"
~~
wt.index
:Object of class "numeric"
~~
df.index
:Object of class "numeric"
~~
ctr.indexes
:Object of class "numeric"
~~
trt.indexes
:Object of class "numeric"
~~
method.option
:Object of class "numeric"
~~
use.ratio
:Object of class "logical"
~~
percent.genes.to.scan
:Object of class "numeric"
~~
num.genes.to.skip.each
:Object of class "numeric"
~~
use.fold.change
:Object of class "logical"
~~
wt.comb
:Object of class "list"
~~
df.comb
:Object of class "list"
~~
diff.ids
:Object of class "list"
~~
result
:Object of class "numeric"
~~
indexes.reconsidered
:Object of class "numeric"
~~
center.by.gaussian.kernel
:Object of class "logical"
~~
symmetric.fold
:Object of class "logical"
~~
pairwise.diff.gene.ids
:Object of class "list"
~~
No methods defined with class "NPCI" in the signature.
TBD
Shaojun Tang
http://software.steenlab.org/NPCI/
TBD
showClass("NPCI")
showClass("NPCI")
identify the genes that change most significantly using inverse of log ratio the smaller the results, the more signficant the changes.
npci.gene.by.pvalues(npci.data, gene.indexes, ctr.indexes, trt.indexes)
npci.gene.by.pvalues(npci.data, gene.indexes, ctr.indexes, trt.indexes)
npci.data |
a data frame containing non-zero numeric values (the data frame must contain more than one row and one column) |
gene.indexes |
the row ids of genes used for p-value calculation |
ctr.indexes |
The wild type sample column indexes in the matrix, i.e. 1,2 |
trt.indexes |
The experimental sample column indexes in the matrix, i.e. 1,2 |
TBD
pvalues |
a vector of pvalues |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
npci.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) gene.indexes=sample(1:97, 25) ctr.indexes=c(1,2) trt.indexes=c(3,4) npci.gene.by.pvalues(npci.data, gene.indexes, ctr.indexes, trt.indexes)
npci.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) gene.indexes=sample(1:97, 25) ctr.indexes=c(1,2) trt.indexes=c(3,4) npci.gene.by.pvalues(npci.data, gene.indexes, ctr.indexes, trt.indexes)
the function will be depreciated
npci.index.reconsidered(npci.data, expr.by.fold, null.data.start, diff.data.start, gene.indexes, ctr.indexes, trt.indexes, left.fold, right.fold)
npci.index.reconsidered(npci.data, expr.by.fold, null.data.start, diff.data.start, gene.indexes, ctr.indexes, trt.indexes, left.fold, right.fold)
npci.data |
a data frame containing non-zero numeric values (the data frame must contain more than one row and one column) |
expr.by.fold |
a 1xN matrix of case-control fold changes for every gene of the total N genes |
null.data.start |
a Nx1 matrix of control-control fold changes |
diff.data.start |
a Nx1 matrix of case-control fold changes |
gene.indexes |
the genes used for differential expression analysis. |
ctr.indexes |
the control sample column indexes |
trt.indexes |
the case sample column indexes |
left.fold |
the minimum fold changes for downregulation |
right.fold |
the minimum fold changes for upregulation |
TBD
values |
genes wrongly considered as differentially expressed |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") [email protected]=wt.index [email protected]=df.index [email protected]=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) npci=compute(npci) npci=summarize(npci) [email protected] [email protected] [email protected] choice=2 [email protected] [email protected] ctr.indexes=1:2 trt.indexes=3:4 use.intersect=FALSE symmetric.fold=TRUE [email protected] [email protected] left.fold=2 right.fold=2
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") npci@wt.index=wt.index npci@df.index=df.index npci@sample.data.normalized=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) npci=compute(npci) npci=summarize(npci) npci.data=npci@sample.data.normalized null.data.start=npci@null.data.start diff.data.start=npci@diff.data.start choice=2 rank.index.to.be.removed=npci@rank.index.to.be.removed expr.by.fold=npci@expr.by.fold ctr.indexes=1:2 trt.indexes=3:4 use.intersect=FALSE symmetric.fold=TRUE fold.cutoff.list=npci@fold.cutoff.list gene.indexes=npci@diff.gene.ids left.fold=2 right.fold=2
This function will be depreciated.
npci.index.to.be.removed(expr.by.fold, d, symmetric.fold, max.rank, l.max.rank, r.max.rank)
npci.index.to.be.removed(expr.by.fold, d, symmetric.fold, max.rank, l.max.rank, r.max.rank)
expr.by.fold |
a 1xN matrix of fold change between case and control for every genes in N genes |
d |
the dimension of the data, if RNA-Seq or LC-MS/MS data, d=1 |
symmetric.fold |
a booleam valuable indicating whether to use the same fold change cutoff for upregulation and downregulation |
max.rank |
the maximum fold change, i.e 3 fold |
l.max.rank |
the maximum fold change for downregulation, i.e 1.5 fold |
r.max.rank |
the maximum fold change for upregulation, i.e 1.5 fold |
TBD
indexes |
gene (indexes) considered as differentially expressed |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("Function to be discarded!")
print("Function to be discarded!")
plot the overlap differentially expressed genes by pairwise fCI analysis
npci.venn.diagram(diff.gene.ids, i = 1, k = 1)
npci.venn.diagram(diff.gene.ids, i = 1, k = 1)
diff.gene.ids |
gene ids for genes that are differentially expressed |
i |
number of comparisons for fCI analysis, i,e 1 or 2 |
k |
number of genes for fCI analysis |
TBD
figure |
the venn diagram plot |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
targets.run1=c(2:10) targets.run2=c(1:8) targets.run3=c(6:12) diff.gene.ids=list(targets.run1, targets.run2, targets.run3) npci.venn.diagram(diff.gene.ids)
targets.run1=c(2:10) targets.run2=c(1:8) targets.run3=c(6:12) diff.gene.ids=list(targets.run1, targets.run2, targets.run3) npci.venn.diagram(diff.gene.ids)
find the targets whose fold changes occur consistently (upregulated or downregulated) in all fCI analysis
pairwise.change.occupancy(common.ids, pairwise.index, pairwise.up.down, target.ratio)
pairwise.change.occupancy(common.ids, pairwise.index, pairwise.up.down, target.ratio)
common.ids |
the gene ids that are differentially expressed |
pairwise.index |
a list of the genes ids that differentially expressed in each of the fCI analysis |
pairwise.up.down |
a list of up regulatio (+1) or downregulation (-1) for each gene in fCI analysis |
target.ratio |
the expected fold changes |
TBD
consistent targets |
Gene (indexes) that are consistently changed in fCI pairwise analysis |
direction |
Gene (indexes) that are consistently upregulated (if < 0) or upregulated (if > 0) |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
common.ids=6:13 pairwise.index=list(c(4:13), c(6:15)) pairwise.up.down=list(c(sample(c(-1,1), 10, replace=TRUE)), c(sample(c(-1,1), 10, replace=TRUE))) target.ratio=0.5 pairwise.change.occupancy(common.ids, pairwise.index, pairwise.up.down, target.ratio)
common.ids=6:13 pairwise.index=list(c(4:13), c(6:15)) pairwise.up.down=list(c(sample(c(-1,1), 10, replace=TRUE)), c(sample(c(-1,1), 10, replace=TRUE))) target.ratio=0.5 pairwise.change.occupancy(common.ids, pairwise.index, pairwise.up.down, target.ratio)
generic function to populate the fCI object based on provided data
populate(.Object)
populate(.Object)
.Object |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
populate
~~~~ Methods for function populate
~~
signature(.Object = "NPCI")
after fCI object is initialized, popular the slot values for the object
generate the results (gene ids) in the data frame
report.target.summary(pairwise.diff.gene.ids)
report.target.summary(pairwise.diff.gene.ids)
pairwise.diff.gene.ids |
a list of the the differentially expression genes (its index) for each pairwise fCI analysis. |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
the generic function 'setfCI' for s4 class
setfCI(.Object, wt.index, df.index, fold.cutoff.list, center.distribution)
setfCI(.Object, wt.index, df.index, fold.cutoff.list, center.distribution)
.Object |
the fCI object |
wt.index |
the control sample column ids, such as c(1,2) |
df.index |
the case sample column ids, such as c(1,2) |
fold.cutoff.list |
the predefined fold change cut-off such as list(seq(from=1.1, to=3.0, by=0.1)) |
center.distribution |
a boolean value showing that if the users want to center the distribution or not |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
fci=new("NPCI") fci=setfCI(fci, 7:8, 11:12, seq(from=1.1,to=3,by=0.1), TRUE)
fci=new("NPCI") fci=setfCI(fci, 7:8, 11:12, seq(from=1.1,to=3,by=0.1), TRUE)
setfCI
~~~~ Methods for function setfCI
~~
signature(.Object = "NPCI")
display the gene ids that are identified to be differentially regulated
show.targets(.Object)
show.targets(.Object)
.Object |
the class object, for example, fCI=new("NPCI") |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
show.targets
~~~~ Methods for function show.targets
~~
signature(.Object = "NPCI")
the built-in method to show the fCI final DEGs.
summerize the result after fCI computation is done
summarize(.Object)
summarize(.Object)
.Object |
the class object, for exaple, fci = new("NPCI") |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") [email protected]=wt.index [email protected]=df.index [email protected]=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) npci=summarize(npci)
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) wt.index=c(1,2) df.index=c(1,3) npci=new("NPCI") npci@wt.index=wt.index npci@df.index=df.index npci@sample.data.normalized=data.file npci=initialize(npci) npci=normalization(npci) npci=populate(npci) npci=summarize(npci)
summerize the result after fCI computation is done
signature(.Object = "NPCI")
normalize the gene expression based on the library size (summation) of the first sample replicate
total.library.size.normalization(sample.data)
total.library.size.normalization(sample.data)
sample.data |
a data frame of gene expression (noen-zero) with columns being the sample and rows being genes |
TBD
dataframe |
a data frame where column values were normalized by total library size |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
sample.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) total.library.size.normalization(sample.data)
sample.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) total.library.size.normalization(sample.data)
normalize gene expression by exluding genes on the top 5 and bottom 5 percentage
trim.size.normalization(sample.data)
trim.size.normalization(sample.data)
sample.data |
a data frame of gene expression (noen-zero) with columns being the sample and rows being genes |
TBD
dataframe |
a data frame where column values were normalized by all genes except the top 5 percent and bottom 5 percent genes |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
sample.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) trim.size.normalization(sample.data)
sample.data=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4)) trim.size.normalization(sample.data)
compute the log ratios of two vectors
two.sample.log.ratio(a, b)
two.sample.log.ratio(a, b)
a |
a vector of numeric values (value must be greater than 0) |
b |
a vector of numeric values (value must be greater than 0) |
TBD
ratios |
the log ratios of two vectors |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
a=10 b=2 two.sample.log.ratio(a, b)
a=10 b=2 two.sample.log.ratio(a, b)
perform permuation test on two vectors
two.sample.permutation.test(a, b)
two.sample.permutation.test(a, b)
a |
a vector of numeric values (value must be greater than 0) |
b |
a vector of numeric values (value must be greater than 0) |
TBD
pvalue |
the pvalue of permutation test |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
two.sample.permutation.test(sample(1:100, 20), sample(5:104, 20))
two.sample.permutation.test(sample(1:100, 20), sample(5:104, 20))
generate a venn diagram to show the differentially expression summaries accross pairwise fCI analysis
venndiagram(.Object)
venndiagram(.Object)
.Object |
the class object, i.e, fci=new("NPCI") |
TBD
NA |
No values will be returned |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
print("See README")
print("See README")
venndiagram
~~~~ Methods for function venndiagram
~~
signature(.Object = "NPCI")
generate the venn diagram to show the targets that shared among different fCI analysis