--- title: "mashr analysis after dreamlet" subtitle: 'Borrowing information across genes and cell types' author: "Developed by [Gabriel Hoffman](http://gabrielhoffman.github.io/)" date: "Run on 2023-08-09 09:18:56.878897" documentclass: article vignette: > %\VignetteIndexEntry{mashr analysis following dreamlet} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} %\usepackage[utf8]{inputenc} output: BiocStyle::html_document: toc: true toc_float: true --- # Instroduction [mashr](https://cran.r-project.org/web/packages/mashr/index.html) is a Bayesian statistical method to borrow information across genes and cell type [(Urbut, et al, 2019)](https://doi.org/10.1038%2Fs41588-018-0268-8). [mashr](https://cran.r-project.org/web/packages/mashr/index.html) takes estimated log fold changes and standard errors for each cell type and gene from `dreamlet`, and produces posterior estimates with more accuracy and precision then the original parameter estimates. # Standard `dreamlet` analysis ## Preprocess data Here single cell RNA-seq data is downloaded from [ExperimentHub](https://bioconductor.org/packages/ExperimentHub/) ```r library(dreamlet) library(muscat) library(ExperimentHub) library(zenith) library(scater) # Download data, specifying EH2259 for the Kang, et al study eh <- ExperimentHub() sce <- eh[["EH2259"]] # only keep singlet cells with sufficient reads sce <- sce[rowSums(counts(sce) > 0) > 0, ] sce <- sce[,colData(sce)$multiplets == 'singlet'] # compute QC metrics qc <- perCellQCMetrics(sce) # remove cells with few or many detected genes ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE) sce <- sce[, !ol] # compute normalized data sce <- sce[rowSums(counts(sce) > 1) >= 10, ] sce <- computeLibraryFactors(sce) sce <- logNormCounts(sce) # set variable indicating stimulated (stim) or control (ctrl) sce$StimStatus = sce$stim ``` ## Aggregate to pseudobulk ```r # Since 'ind' is the individual and 'StimStatus' is the stimulus status, # create unique identifier for each sample sce$id <- paste0(sce$StimStatus, sce$ind) # Create pseudobulk data by specifying cluster_id and sample_id # Count data for each cell type is then stored in the `assay` field # assay: entry in assayNames(sce) storing raw counts # cluster_id: variable in colData(sce) indicating cell clusters # sample_id: variable in colData(sce) indicating sample id for aggregating cells pb <- aggregateToPseudoBulk(sce, assay = "counts", cluster_id = "cell", sample_id = "id", verbose = FALSE) ``` ## `dreamlet` for pseudobulk ```r # Normalize and apply voom/voomWithDreamWeights res.proc = processAssays( pb, ~ StimStatus, min.count=5) # Differential expression analysis within each assay, # evaluated on the voom normalized data res.dl = dreamlet( res.proc, ~ StimStatus) ``` # Run `mashr` analysis ```r # run mashr model to borrow information across genes and # cell types in estimating coefficients' posterior distribution res_mash = run_mash(res.dl, coef='StimStatusstim') ``` ### Summarize `mashr` results Compute summary of mashr posterior distributions ```r library(mashr) # extract statistics from mashr model # NA values indicate genes not sufficiently expressed # in a given cell type # original logFC head(res_mash$logFC.original)[1:4, 1:4] ``` ``` ## B cells CD14+ Monocytes CD4 T cells CD8 T cells ## A1BG NA NA -0.73718671 NA ## AAAS NA NA -0.56991157 NA ## AAED1 NA 1.426001 0.07140051 NA ## AAK1 NA NA -0.91972740 NA ``` ```r # posterior mean for logFC head(get_pm(res_mash$model))[1:4, 1:4] ``` ``` ## B cells CD14+ Monocytes CD4 T cells CD8 T cells ## A1BG NA NA -0.6327307 NA ## AAAS NA NA -0.4543872 NA ## AAED1 NA 1.378843 0.0201326 NA ## AAK1 NA NA -0.8578750 NA ``` ```r # how many gene-by-celltype tests are significant # i.e. if a gene is significant in 2 celltypes, it is counted twice table(get_lfsr(res_mash$model) < 0.05, useNA="ifany") ``` ``` ## ## FALSE TRUE ## 8089 6073 30134 ``` ```r # how many genes are significant in at least one cell type table( apply(get_lfsr(res_mash$model), 1, min, na.rm=TRUE) < 0.05) ``` ``` ## ## FALSE TRUE ## 2568 2969 ``` ```r # how many genes are significant in each cell type apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm=TRUE)) ``` ``` ## B cells CD14+ Monocytes CD4 T cells CD8 T cells ## 767 2086 1525 412 ## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells ## 52 566 36 629 ``` ```r # examine top set of genes # which genes are significant in at least 1 cell type sort(names(get_significant_results(res_mash$model)))[1:10] ``` ``` ## [1] "ACTB" "ACTG1_ENSG00000184009" "ARPC1B" ## [4] "ATP6V0E1" "B2M" "BTF3" ## [7] "BTG1" "CALM2" "CD74" ## [10] "CFL1" ``` ```r # There is a lot of variation in the raw logFC res_mash$logFC.original["ISG20",] ``` ``` ## B cells CD14+ Monocytes CD4 T cells CD8 T cells ## 3.200534 5.865638 3.060855 3.533391 ## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells ## 3.593594 4.370017 NA 3.577744 ``` ```r # posterior mean after borrowing across cell type and genes get_pm(res_mash$model)["ISG20",] ``` ``` ## B cells CD14+ Monocytes CD4 T cells CD8 T cells ## 3.201633 5.807546 3.063965 3.535864 ## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells ## 3.601904 4.350143 NA 3.577692 ``` ### Gene set analysis Perform gene set analysis with `zenith` using posterior mean for each coefficient ```r # gene set analysis using mashr results library(zenith) # Load Gene Ontology database # use gene 'SYMBOL', or 'ENSEMBL' id # use get_MSigDB() to load MSigDB go.gs = get_GeneOntology("CC", to="SYMBOL") # valid values for statistic: # "tstatistic", "abs(tstatistic)", "logFC", "abs(logFC)" df_gs = zenith_gsa(res_mash, go.gs) # Heatmap of results plotZenithResults(df_gs, 5, 1) ``` ![plot of chunk zenith](figure/zenith-1.png) ```r # forest plot based on mashr results plotForest(res_mash, "ISG20") ``` ![plot of chunk forest](figure/forest-1.png) Volcano plot based on local False Sign Rate (lFSR) estimated from the posterior distribution of each coefficient. ```r # volcano plot based on mashr results # yaxis uses local false sign rate (lfsr) plotVolcano(res_mash) ``` ![plot of chunk volcano](figure/volcano-1.png) # Session Info
``` ## R version 4.3.0 (2023-04-21) ## Platform: x86_64-apple-darwin22.4.0 (64-bit) ## Running under: macOS Ventura 13.5 ## ## Matrix products: default ## BLAS: /Users/gabrielhoffman/prog/R-4.3.0/lib/libRblas.dylib ## LAPACK: /usr/local/Cellar/r/4.3.0_1/lib/R/lib/libRlapack.dylib; LAPACK version 3.11.0 ## ## locale: ## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 ## ## time zone: America/New_York ## tzcode source: internal ## ## attached base packages: ## [1] stats4 stats graphics grDevices datasets utils methods ## [8] base ## ## other attached packages: ## [1] mashr_0.2.69 ashr_2.2-54 ## [3] muscData_1.14.0 scater_1.28.0 ## [5] scuttle_1.10.1 SingleCellExperiment_1.22.0 ## [7] SummarizedExperiment_1.30.1 Biobase_2.60.0 ## [9] GenomicRanges_1.52.0 GenomeInfoDb_1.36.1 ## [11] IRanges_2.34.1 S4Vectors_0.38.1 ## [13] MatrixGenerics_1.12.0 matrixStats_1.0.0 ## [15] zenith_1.3.0 ExperimentHub_2.8.0 ## [17] AnnotationHub_3.8.0 BiocFileCache_2.8.0 ## [19] dbplyr_2.3.2 BiocGenerics_0.46.0 ## [21] muscat_1.14.0 dreamlet_0.99.23 ## [23] variancePartition_1.31.11 BiocParallel_1.34.2 ## [25] limma_3.56.2 ggplot2_3.4.2 ## ## loaded via a namespace (and not attached): ## [1] bitops_1.0-7 httr_1.4.6 ## [3] RColorBrewer_1.1-3 doParallel_1.0.17 ## [5] Rgraphviz_2.44.0 numDeriv_2016.8-1.1 ## [7] tools_4.3.0 sctransform_0.3.5 ## [9] backports_1.4.1 utf8_1.2.3 ## [11] R6_2.5.1 GetoptLong_1.0.5 ## [13] withr_2.5.0 prettyunits_1.1.1 ## [15] gridExtra_2.3 cli_3.6.1 ## [17] labeling_0.4.2 KEGGgraph_1.60.0 ## [19] SQUAREM_2021.1 mvtnorm_1.2-2 ## [21] blme_1.0-5 mixsqp_0.3-48 ## [23] parallelly_1.36.0 invgamma_1.1 ## [25] RSQLite_2.3.1 generics_0.1.3 ## [27] shape_1.4.6 gtools_3.9.4 ## [29] dplyr_1.1.2 Matrix_1.5-4.1 ## [31] ggbeeswarm_0.7.2 fansi_1.0.4 ## [33] abind_1.4-5 lifecycle_1.0.3 ## [35] yaml_2.3.7 edgeR_3.42.4 ## [37] gplots_3.1.3 grid_4.3.0 ## [39] blob_1.2.4 promises_1.2.0.1 ## [41] crayon_1.5.2 lattice_0.21-8 ## [43] beachmat_2.16.0 msigdbr_7.5.1 ## [45] annotate_1.78.0 KEGGREST_1.40.0 ## [47] pillar_1.9.0 knitr_1.43 ## [49] ComplexHeatmap_2.16.0 rjson_0.2.21 ## [51] boot_1.3-28.1 corpcor_1.6.10 ## [53] future.apply_1.11.0 codetools_0.2-19 ## [55] glue_1.6.2 data.table_1.14.8 ## [57] vctrs_0.6.3 png_0.1-8 ## [59] Rdpack_2.4 gtable_0.3.3 ## [61] assertthat_0.2.1 cachem_1.0.8 ## [63] xfun_0.39 rbibutils_2.2.13 ## [65] S4Arrays_1.0.4 mime_0.12 ## [67] Rfast_2.0.7 iterators_1.0.14 ## [69] interactiveDisplayBase_1.38.0 ellipsis_0.3.2 ## [71] nlme_3.1-162 pbkrtest_0.5.2 ## [73] bit64_4.0.5 progress_1.2.2 ## [75] EnvStats_2.7.0 filelock_1.0.2 ## [77] TMB_1.9.4 irlba_2.3.5.1 ## [79] vipor_0.4.5 KernSmooth_2.23-21 ## [81] colorspace_2.1-0 rmeta_3.0 ## [83] DBI_1.1.3 DESeq2_1.40.1 ## [85] tidyselect_1.2.0 bit_4.0.5 ## [87] compiler_4.3.0 curl_5.0.0 ## [89] graph_1.78.0 BiocNeighbors_1.18.0 ## [91] DelayedArray_0.26.3 scales_1.2.1 ## [93] caTools_1.18.2 remaCor_0.0.17 ## [95] rappdirs_0.3.3 stringr_1.5.0 ## [97] digest_0.6.33 minqa_1.2.5 ## [99] aod_1.3.2 XVector_0.40.0 ## [101] RhpcBLASctl_0.23-42 htmltools_0.5.5 ## [103] pkgconfig_2.0.3 lme4_1.1-33 ## [105] sparseMatrixStats_1.12.0 highr_0.10 ## [107] fastmap_1.1.1 rlang_1.1.1 ## [109] GlobalOptions_0.1.2 shiny_1.7.4 ## [111] DelayedMatrixStats_1.22.0 farver_2.1.1 ## [113] BiocSingular_1.16.0 RCurl_1.98-1.12 ## [115] magrittr_2.0.3 GenomeInfoDbData_1.2.10 ## [117] munsell_0.5.0 Rcpp_1.0.11 ## [119] babelgene_22.9 viridis_0.6.3 ## [121] EnrichmentBrowser_2.30.1 RcppZiggurat_0.1.6 ## [123] stringi_1.7.12 zlibbioc_1.46.0 ## [125] MASS_7.3-60 plyr_1.8.8 ## [127] parallel_4.3.0 listenv_0.9.0 ## [129] ggrepel_0.9.3 Biostrings_2.68.1 ## [131] splines_4.3.0 hms_1.1.3 ## [133] circlize_0.4.15 locfit_1.5-9.7 ## [135] reshape2_1.4.4 ScaledMatrix_1.8.1 ## [137] BiocVersion_3.17.1 XML_3.99-0.14 ## [139] evaluate_0.21 BiocManager_1.30.20 ## [141] nloptr_2.0.3 foreach_1.5.2 ## [143] httpuv_1.6.11 tidyr_1.3.0 ## [145] purrr_1.0.1 future_1.32.0 ## [147] clue_0.3-64 scattermore_1.1 ## [149] rsvd_1.0.5 broom_1.0.5 ## [151] xtable_1.8-4 fANCOVA_0.6-1 ## [153] later_1.3.1 viridisLite_0.4.2 ## [155] truncnorm_1.0-9 tibble_3.2.1 ## [157] lmerTest_3.1-3 glmmTMB_1.1.7 ## [159] memoise_2.0.1 beeswarm_0.4.0 ## [161] AnnotationDbi_1.62.1 cluster_2.1.4 ## [163] globals_0.16.2 GSEABase_1.62.0 ```