---
title: "mashr analysis after dreamlet"
subtitle: 'Borrowing information across genes and cell types'
author: "Developed by [Gabriel Hoffman](http://gabrielhoffman.github.io/)"
date: "Run on 2023-08-09 09:18:56.878897"
documentclass: article
vignette: >
%\VignetteIndexEntry{mashr analysis following dreamlet}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
%\usepackage[utf8]{inputenc}
output:
BiocStyle::html_document:
toc: true
toc_float: true
---
# Instroduction
[mashr](https://cran.r-project.org/web/packages/mashr/index.html) is a Bayesian statistical method to borrow information across genes and cell type [(Urbut, et al, 2019)](https://doi.org/10.1038%2Fs41588-018-0268-8). [mashr](https://cran.r-project.org/web/packages/mashr/index.html) takes estimated log fold changes and standard errors for each cell type and gene from `dreamlet`, and produces posterior estimates with more accuracy and precision then the original parameter estimates.
# Standard `dreamlet` analysis
## Preprocess data
Here single cell RNA-seq data is downloaded from [ExperimentHub](https://bioconductor.org/packages/ExperimentHub/)
```r
library(dreamlet)
library(muscat)
library(ExperimentHub)
library(zenith)
library(scater)
# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[,colData(sce)$multiplets == 'singlet']
# compute QC metrics
qc <- perCellQCMetrics(sce)
# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]
# compute normalized data
sce <- sce[rowSums(counts(sce) > 1) >= 10, ]
sce <- computeLibraryFactors(sce)
sce <- logNormCounts(sce)
# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus = sce$stim
```
## Aggregate to pseudobulk
```r
# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)
# Create pseudobulk data by specifying cluster_id and sample_id
# Count data for each cell type is then stored in the `assay` field
# assay: entry in assayNames(sce) storing raw counts
# cluster_id: variable in colData(sce) indicating cell clusters
# sample_id: variable in colData(sce) indicating sample id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
assay = "counts",
cluster_id = "cell",
sample_id = "id",
verbose = FALSE)
```
## `dreamlet` for pseudobulk
```r
# Normalize and apply voom/voomWithDreamWeights
res.proc = processAssays( pb, ~ StimStatus, min.count=5)
# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl = dreamlet( res.proc, ~ StimStatus)
```
# Run `mashr` analysis
```r
# run mashr model to borrow information across genes and
# cell types in estimating coefficients' posterior distribution
res_mash = run_mash(res.dl, coef='StimStatusstim')
```
### Summarize `mashr` results
Compute summary of mashr posterior distributions
```r
library(mashr)
# extract statistics from mashr model
# NA values indicate genes not sufficiently expressed
# in a given cell type
# original logFC
head(res_mash$logFC.original)[1:4, 1:4]
```
```
## B cells CD14+ Monocytes CD4 T cells CD8 T cells
## A1BG NA NA -0.73718671 NA
## AAAS NA NA -0.56991157 NA
## AAED1 NA 1.426001 0.07140051 NA
## AAK1 NA NA -0.91972740 NA
```
```r
# posterior mean for logFC
head(get_pm(res_mash$model))[1:4, 1:4]
```
```
## B cells CD14+ Monocytes CD4 T cells CD8 T cells
## A1BG NA NA -0.6327307 NA
## AAAS NA NA -0.4543872 NA
## AAED1 NA 1.378843 0.0201326 NA
## AAK1 NA NA -0.8578750 NA
```
```r
# how many gene-by-celltype tests are significant
# i.e. if a gene is significant in 2 celltypes, it is counted twice
table(get_lfsr(res_mash$model) < 0.05, useNA="ifany")
```
```
##
## FALSE TRUE
## 8089 6073 30134
```
```r
# how many genes are significant in at least one cell type
table( apply(get_lfsr(res_mash$model), 1, min, na.rm=TRUE) < 0.05)
```
```
##
## FALSE TRUE
## 2568 2969
```
```r
# how many genes are significant in each cell type
apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm=TRUE))
```
```
## B cells CD14+ Monocytes CD4 T cells CD8 T cells
## 767 2086 1525 412
## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells
## 52 566 36 629
```
```r
# examine top set of genes
# which genes are significant in at least 1 cell type
sort(names(get_significant_results(res_mash$model)))[1:10]
```
```
## [1] "ACTB" "ACTG1_ENSG00000184009" "ARPC1B"
## [4] "ATP6V0E1" "B2M" "BTF3"
## [7] "BTG1" "CALM2" "CD74"
## [10] "CFL1"
```
```r
# There is a lot of variation in the raw logFC
res_mash$logFC.original["ISG20",]
```
```
## B cells CD14+ Monocytes CD4 T cells CD8 T cells
## 3.200534 5.865638 3.060855 3.533391
## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells
## 3.593594 4.370017 NA 3.577744
```
```r
# posterior mean after borrowing across cell type and genes
get_pm(res_mash$model)["ISG20",]
```
```
## B cells CD14+ Monocytes CD4 T cells CD8 T cells
## 3.201633 5.807546 3.063965 3.535864
## Dendritic cells FCGR3A+ Monocytes Megakaryocytes NK cells
## 3.601904 4.350143 NA 3.577692
```
### Gene set analysis
Perform gene set analysis with `zenith` using posterior mean for each coefficient
```r
# gene set analysis using mashr results
library(zenith)
# Load Gene Ontology database
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_MSigDB() to load MSigDB
go.gs = get_GeneOntology("CC", to="SYMBOL")
# valid values for statistic:
# "tstatistic", "abs(tstatistic)", "logFC", "abs(logFC)"
df_gs = zenith_gsa(res_mash, go.gs)
# Heatmap of results
plotZenithResults(df_gs, 5, 1)
```
![plot of chunk zenith](figure/zenith-1.png)
```r
# forest plot based on mashr results
plotForest(res_mash, "ISG20")
```
![plot of chunk forest](figure/forest-1.png)
Volcano plot based on local False Sign Rate (lFSR) estimated from the posterior distribution of each coefficient.
```r
# volcano plot based on mashr results
# yaxis uses local false sign rate (lfsr)
plotVolcano(res_mash)
```
![plot of chunk volcano](figure/volcano-1.png)
# Session Info
```
## R version 4.3.0 (2023-04-21)
## Platform: x86_64-apple-darwin22.4.0 (64-bit)
## Running under: macOS Ventura 13.5
##
## Matrix products: default
## BLAS: /Users/gabrielhoffman/prog/R-4.3.0/lib/libRblas.dylib
## LAPACK: /usr/local/Cellar/r/4.3.0_1/lib/R/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices datasets utils methods
## [8] base
##
## other attached packages:
## [1] mashr_0.2.69 ashr_2.2-54
## [3] muscData_1.14.0 scater_1.28.0
## [5] scuttle_1.10.1 SingleCellExperiment_1.22.0
## [7] SummarizedExperiment_1.30.1 Biobase_2.60.0
## [9] GenomicRanges_1.52.0 GenomeInfoDb_1.36.1
## [11] IRanges_2.34.1 S4Vectors_0.38.1
## [13] MatrixGenerics_1.12.0 matrixStats_1.0.0
## [15] zenith_1.3.0 ExperimentHub_2.8.0
## [17] AnnotationHub_3.8.0 BiocFileCache_2.8.0
## [19] dbplyr_2.3.2 BiocGenerics_0.46.0
## [21] muscat_1.14.0 dreamlet_0.99.23
## [23] variancePartition_1.31.11 BiocParallel_1.34.2
## [25] limma_3.56.2 ggplot2_3.4.2
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 httr_1.4.6
## [3] RColorBrewer_1.1-3 doParallel_1.0.17
## [5] Rgraphviz_2.44.0 numDeriv_2016.8-1.1
## [7] tools_4.3.0 sctransform_0.3.5
## [9] backports_1.4.1 utf8_1.2.3
## [11] R6_2.5.1 GetoptLong_1.0.5
## [13] withr_2.5.0 prettyunits_1.1.1
## [15] gridExtra_2.3 cli_3.6.1
## [17] labeling_0.4.2 KEGGgraph_1.60.0
## [19] SQUAREM_2021.1 mvtnorm_1.2-2
## [21] blme_1.0-5 mixsqp_0.3-48
## [23] parallelly_1.36.0 invgamma_1.1
## [25] RSQLite_2.3.1 generics_0.1.3
## [27] shape_1.4.6 gtools_3.9.4
## [29] dplyr_1.1.2 Matrix_1.5-4.1
## [31] ggbeeswarm_0.7.2 fansi_1.0.4
## [33] abind_1.4-5 lifecycle_1.0.3
## [35] yaml_2.3.7 edgeR_3.42.4
## [37] gplots_3.1.3 grid_4.3.0
## [39] blob_1.2.4 promises_1.2.0.1
## [41] crayon_1.5.2 lattice_0.21-8
## [43] beachmat_2.16.0 msigdbr_7.5.1
## [45] annotate_1.78.0 KEGGREST_1.40.0
## [47] pillar_1.9.0 knitr_1.43
## [49] ComplexHeatmap_2.16.0 rjson_0.2.21
## [51] boot_1.3-28.1 corpcor_1.6.10
## [53] future.apply_1.11.0 codetools_0.2-19
## [55] glue_1.6.2 data.table_1.14.8
## [57] vctrs_0.6.3 png_0.1-8
## [59] Rdpack_2.4 gtable_0.3.3
## [61] assertthat_0.2.1 cachem_1.0.8
## [63] xfun_0.39 rbibutils_2.2.13
## [65] S4Arrays_1.0.4 mime_0.12
## [67] Rfast_2.0.7 iterators_1.0.14
## [69] interactiveDisplayBase_1.38.0 ellipsis_0.3.2
## [71] nlme_3.1-162 pbkrtest_0.5.2
## [73] bit64_4.0.5 progress_1.2.2
## [75] EnvStats_2.7.0 filelock_1.0.2
## [77] TMB_1.9.4 irlba_2.3.5.1
## [79] vipor_0.4.5 KernSmooth_2.23-21
## [81] colorspace_2.1-0 rmeta_3.0
## [83] DBI_1.1.3 DESeq2_1.40.1
## [85] tidyselect_1.2.0 bit_4.0.5
## [87] compiler_4.3.0 curl_5.0.0
## [89] graph_1.78.0 BiocNeighbors_1.18.0
## [91] DelayedArray_0.26.3 scales_1.2.1
## [93] caTools_1.18.2 remaCor_0.0.17
## [95] rappdirs_0.3.3 stringr_1.5.0
## [97] digest_0.6.33 minqa_1.2.5
## [99] aod_1.3.2 XVector_0.40.0
## [101] RhpcBLASctl_0.23-42 htmltools_0.5.5
## [103] pkgconfig_2.0.3 lme4_1.1-33
## [105] sparseMatrixStats_1.12.0 highr_0.10
## [107] fastmap_1.1.1 rlang_1.1.1
## [109] GlobalOptions_0.1.2 shiny_1.7.4
## [111] DelayedMatrixStats_1.22.0 farver_2.1.1
## [113] BiocSingular_1.16.0 RCurl_1.98-1.12
## [115] magrittr_2.0.3 GenomeInfoDbData_1.2.10
## [117] munsell_0.5.0 Rcpp_1.0.11
## [119] babelgene_22.9 viridis_0.6.3
## [121] EnrichmentBrowser_2.30.1 RcppZiggurat_0.1.6
## [123] stringi_1.7.12 zlibbioc_1.46.0
## [125] MASS_7.3-60 plyr_1.8.8
## [127] parallel_4.3.0 listenv_0.9.0
## [129] ggrepel_0.9.3 Biostrings_2.68.1
## [131] splines_4.3.0 hms_1.1.3
## [133] circlize_0.4.15 locfit_1.5-9.7
## [135] reshape2_1.4.4 ScaledMatrix_1.8.1
## [137] BiocVersion_3.17.1 XML_3.99-0.14
## [139] evaluate_0.21 BiocManager_1.30.20
## [141] nloptr_2.0.3 foreach_1.5.2
## [143] httpuv_1.6.11 tidyr_1.3.0
## [145] purrr_1.0.1 future_1.32.0
## [147] clue_0.3-64 scattermore_1.1
## [149] rsvd_1.0.5 broom_1.0.5
## [151] xtable_1.8-4 fANCOVA_0.6-1
## [153] later_1.3.1 viridisLite_0.4.2
## [155] truncnorm_1.0-9 tibble_3.2.1
## [157] lmerTest_3.1-3 glmmTMB_1.1.7
## [159] memoise_2.0.1 beeswarm_0.4.0
## [161] AnnotationDbi_1.62.1 cluster_2.1.4
## [163] globals_0.16.2 GSEABase_1.62.0
```