Package 'doubletrouble'

Title: Identification and classification of duplicated genes
Description: doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD (retrotransposon-derived duplication) and dTRD (DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks.
Authors: Fabrício Almeida-Silva [aut, cre] , Yves Van de Peer [aut]
Maintainer: Fabrício Almeida-Silva <[email protected]>
License: GPL-3
Version: 1.7.0
Built: 2024-12-29 06:55:26 UTC
Source: https://github.com/bioc/doubletrouble

Help Index


Coding sequences (CDS) of S. cerevisiae

Description

Data were obtained from Ensembl Fungi, and only CDS of primary transcripts were included.

Usage

data(cds_scerevisiae)

Format

A DNAStringSet object with CDS of S. cerevisiae.

Examples

data(cds_scerevisiae)

Classify duplicate gene pairs based on their modes of duplication

Description

Classify duplicate gene pairs based on their modes of duplication

Usage

classify_gene_pairs(
  annotation = NULL,
  blast_list = NULL,
  scheme = "standard",
  blast_inter = NULL,
  intron_counts,
  evalue = 1e-10,
  anchors = 5,
  max_gaps = 25,
  proximal_max = 10,
  collinearity_dir = NULL,
  outgroup_coverage = 70
)

Arguments

annotation

A processed GRangesList or CompressedGRangesList object as returned by syntenet::process_input().

blast_list

A list of data frames containing BLAST tabular output for intraspecies comparisons. Each list element corresponds to the BLAST output for a given species, and names of list elements must match the names of list elements in annotation. BLASTp, DIAMOND or simular programs must be run on processed sequence data as returned by process_input().

scheme

Character indicating which classification scheme to use. One of "binary", "standard", "extended", or "full". See details below for information on what each scheme means. Default: "standard".

blast_inter

(Only valid if scheme == "extended" or "full"). A list of data frames containing BLAST tabular output for the comparison between target species and outgroups. Names of list elements must match the names of list elements in annotation. BLASTp, DIAMOND or simular programs must be run on processed sequence data as returned by process_input().

intron_counts

(Only valid if scheme == "full"). A list of 2-column data frames with the number of introns per gene as returned by get_intron_counts(). Names of list elements must match names of annotation.

evalue

Numeric scalar indicating the E-value threshold. Default: 1e-10.

anchors

Numeric indicating the minimum required number of genes to call a syntenic block, as in syntenet::infer_syntenet. Default: 5.

max_gaps

Numeric indicating the number of upstream and downstream genes to search for anchors, as in syntenet::infer_syntenet. Default: 25.

proximal_max

Numeric scalar with the maximum distance (in number of genes) between two genes to consider them as proximal duplicates. Default: 10.

collinearity_dir

Character indicating the path to the directory where .collinearity files will be stored. If NULL, files will be stored in a subdirectory of tempdir(). Default: NULL.

outgroup_coverage

Numeric indicating the minimum percentage of outgroup species to use to consider genes as transposed duplicates. Only valid if multiple outgroup species are present (see details below). Values should range from 0 to 100. Default: 70.

Details

The classification schemes increase in complexity (number of classes) in the order 'binary', 'standard', 'extended', and 'full'.

For classification scheme "binary", duplicates are classified into one of 'SD' (segmental duplications) or 'SSD' (small-scale duplications).

For classification scheme "standard" (default), duplicates are classified into 'SD' (segmental duplication), 'TD' (tandem duplication), 'PD' (proximal duplication), and 'DD' (dispersed duplication).

For classification scheme "extended", duplicates are classified into 'SD' (segmental duplication), 'TD' (tandem duplication), 'PD' (proximal duplication), 'TRD' (transposon-derived duplication), and 'DD' (dispersed duplication).

Finally, for classification scheme "full", duplicates are classified into 'SD' (segmental duplication), 'TD' (tandem duplication), 'PD' (proximal duplication), 'rTRD' (retrotransposon-derived duplication), 'dTRD' (DNA transposon-derived duplication), and 'DD' (dispersed duplication).

Value

A list of 3-column data frames of duplicated gene pairs (columns 1 and 2), and their modes of duplication (column 3).

Examples

# Load example data
data(diamond_intra)
data(diamond_inter)
data(yeast_annot)
data(yeast_seq)

# Get processed annotation data
annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation

# Get list of intron counts
library(txdbmaker)
txdb_list <- lapply(yeast_annot, txdbmaker::makeTxDbFromGRanges)
intron_counts <- lapply(txdb_list, get_intron_counts)

# Classify duplicates - full scheme
dup_class <- classify_gene_pairs(
    annotation = annotation, 
    blast_list = diamond_intra, 
    scheme = "full",
    blast_inter = diamond_inter, 
    intron_counts = intron_counts
)

# Check number of gene pairs per class
table(dup_class$Scerevisiae$type)

Classify genes into unique modes of duplication

Description

Classify genes into unique modes of duplication

Usage

classify_genes(gene_pairs_list = NULL)

Arguments

gene_pairs_list

List of classified gene pairs as returned by classify_gene_pairs().

Details

If a gene is present in pairs with different duplication modes, the gene is classified into a unique mode of duplication following the order of priority indicated in the levels of the factor type.

For scheme "binary", the order is SD > SSD. For scheme "standard", the order is SD > TD > PD > DD. For scheme "extended", the order is SD > TD > PD > TRD > DD. For scheme "full", the order is SD > TD > PD > rTRD > dTRD > DD.

Value

A list of 2-column data frames with variables gene and type representing gene ID and duplication type, respectively.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

cols <- c("dup1", "dup2", "type")
gene_pairs_list <- list(Scerevisiae = scerevisiae_kaks[, cols])

class_genes <- classify_genes(gene_pairs_list)

Interspecies DIAMOND output for yeast species

Description

This list contains a similarity search of S. cerevisiae against C. glabrata, and it was obtained with run_diamond().

Usage

data(diamond_inter)

Format

A list of data frames (length 1) containing the output of a DIAMOND search of S. cerevisiae against C. glabrata (outgroup).

Examples

data(diamond_inter)

Intraspecies DIAMOND output for S. cerevisiae

Description

List obtained with run_diamond().

Usage

data(diamond_intra)

Format

A list of data frames (length 1) containing the whole paranome of S. cerevisiae resulting from intragenome similarity searches.

Examples

data(diamond_intra)

Get a duplicate count matrix for each genome

Description

Get a duplicate count matrix for each genome

Usage

duplicates2counts(duplicate_list, shape = "long")

Arguments

duplicate_list

A list of data frames with the duplicated genes or gene pairs and their modes of duplication as returned by classify_gene_pairs() or classify_genes().

shape

Character specifying the shape of the output data frame. One of "long" (data frame in the long shape, in the tidyverse sense), or "wide" (data frame in the wide shape, in the tidyverse sense). Default: "long".

Value

If shape = "wide", a count matrix containing the frequency of duplicated genes (or gene pairs) by mode for each species, with species in rows and duplication modes in columns. If shape = "long", a data frame in long format with the following variables:

type

Factor, type of duplication.

n

Numeric, number of duplicates.

species

Character, species name

Examples

data(fungi_kaks)

# Get unique duplicates
duplicate_list <- classify_genes(fungi_kaks)

# Get count table
counts <- duplicates2counts(duplicate_list)

Find peaks in a Ks distribution with Gaussian Mixture Models

Description

Find peaks in a Ks distribution with Gaussian Mixture Models

Usage

find_ks_peaks(ks, npeaks = 2, min_ks = 0.01, max_ks = 4, verbose = FALSE)

Arguments

ks

A numeric vector of Ks values.

npeaks

Numeric scalar indicating the number of peaks in the Ks distribution. If you don't know how many peaks there are, you can include a range of values, and the number of peaks that produces the lowest BIC (Bayesian Information Criterion) will be selected as the optimal. Default: 2.

min_ks

Numeric scalar with the minimum Ks value. Removing very small Ks values is generally used to avoid the incorporation of allelic and/or splice variants and to prevent the fitting of a component to infinity. Default: 0.01.

max_ks

Numeric scalar indicating the maximum Ks value. Removing very large Ks values is usually performed to account for Ks saturation. Default: 4.

verbose

Logical indicating if messages should be printed on screen. Default: FALSE.

Value

A list with the following elements:

mean

Numeric with the estimated means.

sd

Numeric with the estimated standard deviations.

lambda

Numeric with the estimated mixture weights.

ks

Numeric vector of filtered Ks distribution based on arguments passed to min_ks and max_ks.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae
ks <- scerevisiae_kaks$Ks

# Find 2 peaks in Ks distribution
peaks <- find_ks_peaks(ks, npeaks = 2)

# From 2 to 4 peaks, verbose = TRUE to show BIC values
peaks <- find_ks_peaks(ks, npeaks = c(2, 3, 4), verbose = TRUE)

Duplicate pairs and Ka, Ks, and Ka/Ks values for fungi species

Description

This data set was obtained with classify_gene_pairs() followed by pairs2kaks().

Usage

data(fungi_kaks)

Format

A list of data frame with elements named saccharomyces_cerevisiae, candida_glabrata, and schizosaccharomyces_pombe. Each data frame contains the following variables:

dup1

Character, duplicated gene 1.

dup2

Character, duplicated gene 2.

Ka

Numeric, Ka values.

Ks

Numeric, Ks values.

Ka_Ks

Numeric, Ka/Ks values.

type

Character, mode of duplication

Examples

data(fungi_kaks)

Get a list of anchor pairs for each species

Description

Get a list of anchor pairs for each species

Usage

get_anchors_list(
  blast_list = NULL,
  annotation = NULL,
  evalue = 1e-10,
  anchors = 5,
  max_gaps = 25,
  collinearity_dir = NULL
)

Arguments

blast_list

A list of data frames containing BLAST tabular output for intraspecies comparisons. Each list element corresponds to the BLAST output for a given species, and names of list elements must match the names of list elements in annotation. BLASTp, DIAMOND or simular programs must be run on processed sequence data as returned by process_input().

annotation

A processed GRangesList or CompressedGRangesList object as returned by syntenet::process_input().

evalue

Numeric scalar indicating the E-value threshold. Default: 1e-10.

anchors

Numeric indicating the minimum required number of genes to call a syntenic block, as in syntenet::infer_syntenet. Default: 5.

max_gaps

Numeric indicating the number of upstream and downstream genes to search for anchors, as in syntenet::infer_syntenet. Default: 25.

collinearity_dir

Character indicating the path to the directory where .collinearity files will be stored. If NULL, files will be stored in a subdirectory of tempdir(). Default: NULL.

Value

A list of data frames representing intraspecies anchor pairs.

Examples

data(diamond_intra)
data(yeast_annot)
data(yeast_seq)
blast_list <- diamond_intra

# Get processed annotation for S. cerevisiae
annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation

# Get list of intraspecies anchor pairs
anchorpairs <- get_anchors_list(blast_list, annotation)

Get a data frame of intron counts per gene

Description

Get a data frame of intron counts per gene

Usage

get_intron_counts(txdb)

Arguments

txdb

A TxDb object with transcript annotations. See details below for examples on how to create TxDb objects from different kinds of input.

Details

The family of functions makeTxDbFrom* from the txdbmaker package can be used to create TxDb objects from a variety of input data types. You can create TxDb objects from e.g., GRanges objects (makeTxDbFromGRanges()), GFF files (makeTxDbFromGFF()), an Ensembl database (makeTxDbFromEnsembl), and a Biomart database (makeTxDbFromBiomart).

Value

A data frame with intron counts per gene, with variables:

gene

Character with gene IDs.

introns

Numeric with number of introns per gene.

Examples

data(yeast_annot)

# Create TxDb object from GRanges
library(txdbmaker)
txdb <- txdbmaker::makeTxDbFromGRanges(yeast_annot[[1]])

# Get intron counts
intron_counts <- get_intron_counts(txdb)

Classify gene pairs derived from segmental duplications

Description

Classify gene pairs derived from segmental duplications

Usage

get_segmental(anchor_pairs = NULL, pairs = NULL)

Arguments

anchor_pairs

A 2-column data frame with anchor pairs in columns 1 and 2.

pairs

A 2-column data frame with all duplicate pairs. This is equivalent to the first 2 columns of the tabular output of BLAST-like programs.

Value

A 3-column data frame with the variables:

dup1

Character, duplicated gene 1

dup2

Character, duplicated gene 2

type

Factor indicating duplication types, with levels "SD" (segmental duplication) or "DD" (dispersed duplication).

Examples

data(diamond_intra)
data(yeast_annot)
data(yeast_seq)
blast_list <- diamond_intra

# Get processed annotation for S. cerevisiae
annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation[1]

# Get list of intraspecies anchor pairs
anchor_pairs <- get_anchors_list(blast_list, annotation)
anchor_pairs <- anchor_pairs[[1]][, c(1, 2)]

# Get duplicate pairs from DIAMOND output
duplicates <- diamond_intra[[1]][, c(1, 2)]
dups <- get_segmental(anchor_pairs, duplicates)

Classify gene pairs derived from tandem and proximal duplications

Description

Classify gene pairs derived from tandem and proximal duplications

Usage

get_tandem_proximal(pairs = NULL, annotation_granges = NULL, proximal_max = 10)

Arguments

pairs

A 3-column data frame with columns dup1, dup2, and type indicating duplicated gene 1, duplicated gene 2, and the mode of duplication associated with the pair. This data frame is returned by get_segmental().

annotation_granges

A processed GRanges object as in each element of the list returned by syntenet::process_input().

proximal_max

Numeric scalar with the maximum distance (in number of genes) between two genes to consider them as proximal duplicates. Default: 10.

Value

A 3-column data frame with the variables:

dup1

Character, duplicated gene 1.

dup2

Character, duplicated gene 2.

type

Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplication), "PD" (proximal duplication), and "DD" (dispersed duplication).

Examples

data(yeast_annot)
data(yeast_seq)
data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

# Get processed annotation for S. cerevisiae
pdata <- annotation <- syntenet::process_input(yeast_seq, yeast_annot)
annot <- pdata$annotation[[1]]

# Get duplicated pairs
pairs <- scerevisiae_kaks[, c("dup1", "dup2", "type")]
pairs$dup1 <- paste0("Sce_", pairs$dup1)
pairs$dup2 <- paste0("Sce_", pairs$dup2)

# Get tandem and proximal duplicates
td_pd_pairs <- get_tandem_proximal(pairs, annot)

Classify gene pairs originating from transposon-derived duplications

Description

Classify gene pairs originating from transposon-derived duplications

Usage

get_transposed(
  pairs,
  blast_inter,
  annotation,
  evalue = 1e-10,
  anchors = 5,
  max_gaps = 25,
  collinearity_dir = NULL,
  outgroup_coverage = 70
)

Arguments

pairs

A 3-column data frame with columns dup1, dup2, and type indicating duplicated gene 1, duplicated gene 2, and the mode of duplication associated with the pair. This data frame is returned by get_tandem_proximal().

blast_inter

A list of data frames of length 1 containing BLAST tabular output for the comparison between the target species and an outgroup. Names of list elements must match the names of list elements in annotation. BLASTp, DIAMOND or simular programs must be run on processed sequence data as returned by syntenet::process_input().

annotation

A processed GRangesList or CompressedGRangesList object as returned by syntenet::process_input().

evalue

Numeric scalar indicating the E-value threshold. Default: 1e-10.

anchors

Numeric indicating the minimum required number of genes to call a syntenic block, as in syntenet::infer_syntenet. Default: 5.

max_gaps

Numeric indicating the number of upstream and downstream genes to search for anchors, as in syntenet::infer_syntenet. Default: 25.

collinearity_dir

Character indicating the path to the directory where .collinearity files will be stored. If NULL, files will be stored in a subdirectory of tempdir(). Default: NULL.

outgroup_coverage

Numeric indicating the minimum percentage of outgroup species to use to consider genes as transposed duplicates. Only valid if multiple outgroup species are present (see details below). Values should range from 0 to 100. Default: 70.

Details

If the list of interspecies DIAMOND tables contain comparisons of the same species to multiple outgroups (e.g., 'speciesA_speciesB', 'speciesA_speciesC'), this function will check if gene pairs are classified as transposed (i.e., only one gene is an ancestral locus) in each of the outgroup species, and then calculate the percentage of outgroup species in which each pair is considered 'transposed'. For instance, gene pair 1 is transposed based on 30\ on 100\ based on 0\ Parameter outgroup_coverage lets you choose a minimum percentage cut-off to classify pairs as transposed.

Value

A 3-column data frame with the following variables:

dup1

Character, duplicated gene 1.

dup2

Character, duplicated gene 2.

type

Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplication), "PD" (proximal duplication), "TRD" (transposon-derived duplication), and "DD" (dispersed duplication).

Examples

data(diamond_inter)
data(diamond_intra)
data(yeast_seq)
data(yeast_annot)
data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

# Get processed annotation
pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annotation <- pdata$annotation

# Get duplicated pairs
pairs <- scerevisiae_kaks[, c("dup1", "dup2", "type")]
pairs$dup1 <- paste0("Sce_", pairs$dup1)
pairs$dup2 <- paste0("Sce_", pairs$dup2)

# Classify pairs
trd <- get_transposed(pairs, diamond_inter, annotation)

annotation <- c(annotation, list(Cglabrata2 = annotation$Cglabrata))
blast_inter <- c(diamond_inter, list(Scerevisiae_Cglabrata2 = diamond_inter[[1]]))

Classify TRD genes as derived from either DNA transposons or retrotransposons

Description

Classify TRD genes as derived from either DNA transposons or retrotransposons

Usage

get_transposed_classes(pairs, intron_counts)

Arguments

pairs

A 3-column data frame with columns dup1, dup2, and type indicating duplicated gene 1, duplicated gene 2, and the mode of duplication associated with the pair. This data frame is returned by get_transposed().

intron_counts

A 2-column data frame with columns gene and introns indicating the number of introns for each gene, as returned by get_intron_counts.

Value

A 3-column data frame with the following variables:

dup1

Character, duplicated gene 1.

dup2

Character, duplicated gene 2.

type

Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplication), "PD" (proximal duplication), "dTRD" (DNA transposon-derived duplication), "rTRD" (retrotransposon-derived duplication), and "DD" (dispersed duplication).

Examples

data(diamond_inter)
data(diamond_intra)
data(yeast_seq)
data(yeast_annot)
data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

# Get processed annotation
pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annotation <- pdata$annotation

# Get duplicated pairs
pairs <- scerevisiae_kaks[, c("dup1", "dup2", "type")]
pairs$dup1 <- paste0("Sce_", pairs$dup1)
pairs$dup2 <- paste0("Sce_", pairs$dup2)

# Classify pairs
trd <- get_transposed(pairs, diamond_inter, annotation)

# Create TxDb object from GRanges
library(txdbmaker)
txdb <- txdbmaker::makeTxDbFromGRanges(yeast_annot[[1]])

# Get intron counts
intron_counts <- get_intron_counts(txdb)

# Get TRD classes
trd_classes <- get_transposed_classes(trd, intron_counts)

Duplicate pairs and Ks values for Glycine max

Description

This data set was obtained with classify_gene_pairs() followed by pairs2kaks().

Usage

data(gmax_ks)

Format

A data frame with the following variables:

dup1

Character, duplicated gene 1.

dup2

Character, duplicated gene 2.

Ks

Numeric, Ks values.

type

Factor, duplication mode.

Examples

data(gmax_ks)

Calculate Ka, Ks, and Ka/Ks from duplicate gene pairs

Description

Calculate Ka, Ks, and Ka/Ks from duplicate gene pairs

Usage

pairs2kaks(gene_pairs_list, cds, model = "MYN", threads = 1, verbose = FALSE)

Arguments

gene_pairs_list

List of data frames containing duplicated gene pairs as returned by classify_gene_pairs().

cds

List of DNAStringSet objects containing the coding sequences of each gene.

model

Character scalar indicating which codon model to use. Possible values are "Li", "NG86", "NG", "LWL", "LPB", "MLWL", "MLPB", "GY", "YN", "MYN", "MS", "MA", "GNG", "GLWL", "GLPB", "GMLWL", "GMLPB", "GYN", and "GMYN". Default: "MYN".

threads

Numeric indicating the number of threads to use. Default: 1.

verbose

Logical indicating whether progress messages should be printed on screen. Default: FALSE.

Value

A list of data frames containing gene pairs and their Ka, Ks, and Ka/Ks values.

Examples

data(diamond_intra)
data(diamond_inter)
data(yeast_annot)
data(yeast_seq)
data(cds_scerevisiae)
blast_list <- diamond_intra
blast_inter <- diamond_inter

pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annot <- pdata$annotation["Scerevisiae"]

# Binary classification scheme
pairs <- classify_gene_pairs(annot, blast_list)
td_pairs <- pairs[[1]][pairs[[1]]$type == "TD", ]
gene_pairs_list <- list(
    Scerevisiae = td_pairs[seq(1, 3, by = 1), ]
)

cds <- list(Scerevisiae = cds_scerevisiae)

kaks <- pairs2kaks(gene_pairs_list, cds)

Plot frequency of duplicates per mode for each species

Description

Plot frequency of duplicates per mode for each species

Usage

plot_duplicate_freqs(dup_counts, plot_type = "facet", remove_zero = TRUE)

Arguments

dup_counts

A data frame in long format with the number of duplicates per mode for each species, as returned by the function duplicates2counts.

plot_type

Character indicating how to plot frequencies. One of 'facet' (facets for each level of the variable type), 'stack' (levels of the variable type as stacked bars), or 'stack_percent' (levels of the variable type as stacked bars, with x-axis representing relative frequencies). Default: 'facet'.

remove_zero

Logical indicating whether or not to remove rows with zero values. Default: TRUE.

Value

A ggplot object.

Examples

data(fungi_kaks)

# Get unique duplicates
duplicate_list <- classify_genes(fungi_kaks)

# Get count table
dup_counts <- duplicates2counts(duplicate_list)

# Plot counts
plot_duplicate_freqs(dup_counts, plot_type = "stack_percent")

Plot distribution of synonymous substitution rates (Ks)

Description

Plot distribution of synonymous substitution rates (Ks)

Usage

plot_ks_distro(
  ks_df,
  min_ks = 0.01,
  max_ks = 2,
  bytype = FALSE,
  type_levels = NULL,
  plot_type = "histogram",
  binwidth = 0.03
)

Arguments

ks_df

A data frame with Ks values for each gene pair as returned by pairs2kaks().

min_ks

Numeric indicating the minimum Ks value to keep. Default: 0.01.

max_ks

Numeric indicating the maximum Ks value to keep. Default: 2.

bytype

Logical indicating whether or not to plot the distribution by type of duplication (requires a column named type).

type_levels

(Only valid if bytype is not NULL) Character indicating which levels of the variable specified in parameter group_by should be kept. By default, all levels are kept.

plot_type

Character indicating the type of plot to create. If bytype = TRUE, possible types are "histogram" or "violin". If bytype = FALSE, possible types are "histogram", "density", or "density_histogram". Default: "histogram".

binwidth

(Only valid if plot_type = "histogram") Numeric indicating the bin width. Default: 0.03.

Value

A ggplot object.

Examples

data(fungi_kaks)
ks_df <- fungi_kaks$saccharomyces_cerevisiae

# Plot distro
plot_ks_distro(ks_df, bytype = TRUE)

Plot histogram of Ks distribution with peaks

Description

Plot histogram of Ks distribution with peaks

Usage

plot_ks_peaks(peaks = NULL, binwidth = 0.05)

Arguments

peaks

A list with elements mean, sd, lambda, and ks, as returned by the function fins_ks_peaks().

binwidth

Numeric scalar with binwidth for the histogram. Default: 0.05.

Value

A ggplot object with a histogram and lines for each Ks peak.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae
ks <- scerevisiae_kaks$Ks

# Find 2 peaks in Ks distribution
peaks <- find_ks_peaks(ks, npeaks = 2)

# Plot
plot_ks_peaks(peaks, binwidth = 0.05)

Plot distributions of substitution rates (Ka, Ks, or Ka/Ks) per species

Description

Plot distributions of substitution rates (Ka, Ks, or Ka/Ks) per species

Usage

plot_rates_by_species(
  kaks_list,
  rate_column = "Ks",
  bytype = FALSE,
  range = c(0, 2),
  fill = "deepskyblue3",
  color = "deepskyblue4"
)

Arguments

kaks_list

A list of data frames with substitution rates per gene pair in each species as returned by pairs2kaks().

rate_column

Character indicating the name of the column to plot. Default: "Ks".

bytype

Logical indicating whether or not to show distributions by type of duplication. Default: FALSE.

range

Numeric vector of length 2 indicating the minimum and maximum values to plot. Default: c(0, 2).

fill

Character with color to use for the fill aesthetic. Ignored if bytype = TRUE. Default: "deepskyblue3".

color

Character with color to use for the color aesthetic. Ignored if bytype = FALSE. Default: "deepskyblue4".

Details

Data will be plotted using the species order of the list. To change the order of the species to plot, reorder the list elements in kaks_list.

Value

A ggplot object.

Examples

data(fungi_kaks)

# Plot rates
plot_rates_by_species(fungi_kaks, rate_column = "Ka_Ks")

Split gene pairs based on their Ks peaks

Description

The purpose of this function is to classify gene pairs by age when there are 2+ Ks peaks. This way, newer gene pairs are found within a certain number of standard deviations from the highest peak, and older genes are found close within smaller peaks.

Usage

split_pairs_by_peak(ks_df, peaks, nsd = 2, binwidth = 0.05)

Arguments

ks_df

A 3-column data frame with gene pairs in columns 1 and 2, and Ks values for the gene pair in column 3.

peaks

A list with mean, standard deviation, and amplitude of Ks peaks as generated by find_ks_peaks.

nsd

Numeric with the number of standard deviations to consider for each peak.

binwidth

Numeric scalar with binwidth for the histogram. Default: 0.05.

Value

A list with the following elements:

pairs

A 4-column data frame with the variables dup1 (character), dup2 (character), ks (numeric), and peak (numeric), representing duplicate gene pair, Ks values, and peak ID, respectively.

plot

A ggplot object with Ks peaks as returned by plot_ks_peaks, but with dashed red lines indicating boundaries for each peak.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

# Create a data frame of duplicate pairs and Ks values
ks_df <- scerevisiae_kaks[, c("dup1", "dup2", "Ks")]

# Create list of peaks
peaks <- find_ks_peaks(ks_df$Ks, npeaks = 2)

# Split pairs
spairs <- split_pairs_by_peak(ks_df, peaks)

Genome annotation of the yeast species S. cerevisiae and C. glabrata

Description

Data obtained from Ensembl Fungi. Only annotation data protein-coding genes (with associated mRNA, exons, CDS, etc) are included.

Usage

data(yeast_annot)

Format

A CompressedGRangesList containing the elements Scerevisiae and Cglabrata.

Examples

data(yeast_annot)

Protein sequences of the yeast species S. cerevisiae and C. glabrata

Description

Data obtained from Ensembl Fungi. Only translated sequences of primary transcripts were included.

Usage

data(yeast_seq)

Format

A list of AAStringSet objects with the elements Scerevisiae and Cglabrata.

Examples

data(yeast_seq)