Package 'diggit'

Title: Inference of Genetic Variants Driving Cellular Phenotypes
Description: Inference of Genetic Variants Driving Cellullar Phenotypes by the DIGGIT algorithm
Authors: Mariano J Alvarez <[email protected]>
Maintainer: Mariano J Alvarez <[email protected]>
License: file LICENSE
Version: 1.39.0
Built: 2024-10-30 05:48:00 UTC
Source: https://github.com/bioc/diggit

Help Index


Approximate empirical commulative distribution function

Description

This function generates an empirical null model that computes a normalized statistics and p-value

Usage

aecdf(dnull, symmetric = FALSE)

Arguments

dnull

Numerical vector representing the null model

symmetric

Logical, whether the distribution should be treated as symmetric around zero and only one tail should be approximated

Value

function with two parameters, x and alternative


Inference of aQTL

Description

This function infers aQTLs from F-CNVs and VIPER activity

Usage

aqtl(x, ...)

## S4 method for signature 'diggit'
aqtl(x, mr = 0.01, mr.adjust = c("none", "fdr",
  "bonferroni"), fcnv = 0.01, fcnv.adjust = c("none", "fdr", "bonferroni"),
  method = c("spearman", "mi", "pearson", "kendall"), mindy = FALSE,
  cores = 1, verbose = TRUE)

Arguments

x

Object of class diggit

...

Additional parameters to pass to the function

mr

Either a numerical value between 0 and 1 indicating the p-value threshold for the Master Regulator (MR) selection, or a vector of character strings listing the MRs

mr.adjust

Character string indicating the multiple hypothesis test correction for the MRs

fcnv

Either a numerical value between 0 and 1 indicating the p-value threshold for the F-CNV, or a vector of character strings listing the F-CNVs

fcnv.adjust

Character string indicating the multiple hypothesis test correction for the F-CNVs

method

Character string indicating the method for computing the association between F-CNV and regulator activity (aQTL analysis)

mindy

Logical, whether only post-translational modulators of each evaluated TF should be considered as putative genetic driver

cores

Integer indicating the number of cores to use (1 for Windows-based systems)

verbose

Logical, whether progress should be reported

Value

Updated diggit object with viper and aqtl slots

Examples

data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
dobj <- fCNV(dobj)
dobj <- aqtl(dobj, mr=c("CEBPD", "STAT3"), fcnv.adjust="fdr")
dobj
diggitAqtl(dobj)[, 1:4]

Conditional analysis of CNVs

Description

This function performs the conditional analysis of fCNVs

Usage

conditional(x, ...)

## S4 method for signature 'diggit'
conditional(x, pheno = "cond", group1, group2 = NULL,
  cnv = 0.2, mr = 0.01, mr.adjust = c("none", "fdr", "bonferroni"),
  modul = 0.01, modul.adjust = c("none", "fdr", "bonferroni"),
  fet.pval = 0.05, cores = 1, verbose = TRUE)

Arguments

x

Object of class diggit

...

Additional parameters to pass to the function

pheno

Character string indicating the feature for sample groups

group1

Character string indicating the treatment group

group2

Optional character string indicating the reference group

cnv

Single number or vector of two numbers indicating the thresholds for CNVs

mr

Either vector of character strings indicating the MR genes, or number indicating the corrected p-value threshold for selecting the MRs

mr.adjust

Character string indicating the multiple-hypothesis correction to apply to the MR p-values

modul

Number indicating the p-value threshold for a modulator to be considered associated with the MR activity

modul.adjust

Character string indicating the multiple-hypothesis correction to apply to the aQTL results

fet.pval

Number indicating the FET p-value threshold for the association between CNVs and sample groups

cores

Integer indicating the number of cores to use (1 for Windows-based systems)

verbose

Logical, whether progress should be reported

Value

Object of class diggit with conditional analysis results

Examples

data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
dobj <- fCNV(dobj)
dobj <- aqtl(dobj, mr=c("CEBPD", "STAT3"), fcnv.adjust="fdr", verbose=FALSE)
dobj <- conditional(dobj, pheno="subtype", group1="MES", group2="PN", mr="STAT3", verbose=FALSE)
dobj

Correlation test

Description

This function computes the correlation between x and y given both are numeric vectors, between the columns of x if it is a numeric matrix, or between the columns of x and y if both are numeric matrixes

Usage

correlation(x, y = NULL, method = c("pearson", "spearman", "kendall"),
  pairwise = FALSE)

Arguments

x

Numeric vector or matrix

y

Optional numeric vector or matrix

method

Character string indicating the correlation method

pairwise

Logical, wether columns of x and y should be compared in a pairwise manner. x and y must have the same number of columns

Details

This function computes correlation and associated p-values

Value

Numeric value, vector or matrix of results

Examples

x <- seq(0, 10, length=50)
y <- x+rnorm(length(x), sd=2)
correlation(x, y)

The diggit class

Description

This class stores parameters and results of the diggit algorithm

This function generates diggit class objects

Usage

diggitClass(expset = NULL, cnv = NULL, regulon = NULL, mindy = NULL,
  fcnv = NULL, mr = NULL, viper = NULL, aqtl = NULL,
  conditional = NULL)

Arguments

expset

ExpressionSet object or numeric matrix of expression data, with features in rows and samples in columns

cnv

Numeric matrix of CNV data

regulon

Regulon class object containing the transcriptional interactome

mindy

Regulon class object containing the post-translational interactome

fcnv

Vector of F-CNV p-values

mr

Vector of master regulator Z-score (NES)

viper

Numeric matrix of VIPER results

aqtl

Numeric matrix of aQTL p-values

conditional

List containing the conditional analysis results

Details

see diggit-methods for related methods

Value

Object of class diggit

Slots

expset:

ExpressionSet object containing the gene expression data

cnv:

Matrrix containing the CNV data

regulon:

Regulon object containing the transcriptional interactome

mindy:

Regulon object containing the post-translational interactome

fcnv:

Numeric vector containing the p-values for functional CNVs

mr:

Numeric vector of normalized enrichment scores for the MARINa analysis

viper:

Numeric matrix of normalized enrichment scores for the VIPER analysis

aqtl:

Numeric matrix of association p-values for the aQTL analysis

conditional:

List containing the conditional analysis results

Examples

data(gbm.expression, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, regulon=gbmTFregulon)
print(dobj)

Inference of functional CNVs

Description

This function infers functional CNVs by computing their association with gene expression

Usage

fCNV(x, ...)

## S4 method for signature 'diggit'
fCNV(x, expset = NULL, cnv = NULL,
  method = c("spearman", "mi", "pearson", "kendall"), cores = 1,
  verbose = TRUE)

## S4 method for signature 'ExpressionSet'
fCNV(x, cnv, method = c("spearman", "mi", "pearson",
  "kendall"), cores = 1, verbose = TRUE)

## S4 method for signature 'matrix'
fCNV(x, cnv, method = c("spearman", "mi", "pearson",
  "kendall"), cores = 1, verbose = TRUE)

## S4 method for signature 'data.frame'
fCNV(x, cnv, method = c("spearman", "mi", "pearson",
  "kendall"), cores = 1, verbose = TRUE)

Arguments

x

Object of class diggit, expressionSet object or numeric matrix of expression data, with features in rows and samples in columns

...

Additional arguments

expset

Optional numeric matrix of expression data

cnv

Optional numeric matrix of CNVs

method

Character string indicating the method for computing the association between CNVs and expression

cores

Integer indicating the number of cores to use (1 for Windows-based systems)

verbose

Logical, whether to report analysis progress

Value

Objet of class diggit with updated fCNV slot

Examples

data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
genes <- intersect(rownames(gbmExprs), rownames(gbmCNV))[1:100]
gbmCNV <- gbmCNV[match(genes, rownames(gbmCNV)), ]
dgo <- diggitClass(expset=gbmExprs, cnv=gbmCNV)

dgo <- fCNV(dgo)
dgo
diggitFcnv(dgo)[1:5]
dgo <- fCNV(gbmExprs, gbmCNV)
print(dgo)
diggitFcnv(dgo)[1:5]
dgo <- fCNV(exprs(gbmExprs), gbmCNV)
dgo
diggitFcnv(dgo)[1:5]
dgo <- fCNV(as.data.frame(exprs(gbmExprs)), gbmCNV)
dgo
diggitFcnv(dgo)[1:5]

Inference of Master Regulators

Description

This function infers the master regulators for the transition between two phenotypes

Usage

marina(x, ...)

## S4 method for signature 'matrix'
marina(x, y = NULL, mu = 0, regulon, per = 1000,
  cores = 1, verbose = TRUE)

## S4 method for signature 'ExpressionSet'
marina(x, pheno = "cond", group1, group2 = NULL,
  mu = 0, regulon, per = 1000, cores = 1, verbose = TRUE)

## S4 method for signature 'diggit'
marina(x, pheno, group1, group2 = NULL, mu = 0,
  regulon = NULL, per = 1000, cores = 1, verbose = TRUE)

Arguments

x

Object of class diggit, expressionSet object or numerical matrix containing the test samples

...

Additional arguments

y

Numerical matrix containing the control samples

mu

Number indicating the control mean when y is ommited

regulon

Transcriptional interactome

per

Interger indicating the number of permutations to compute the marina null model

cores

Integer indicating the number of cores to use (1 for Windows-based systems)

verbose

Logical, whether progress should be reported

pheno

Character string indicating the phenotype data to use

group1

Vector of character strings indicating the category from phenotype pheno to use as test group

group2

Vector of character strings indicating the category from phenotype pheno to use as control group

Value

Updated diggit object with Master Regulator results

Examples

cores <- 3*(Sys.info()[1] != "Windows")+1
data(gbm.expression, package="diggitdata")
data(gbm.aracne, package="diggitdata")

eset <- exprs(gbmExprs)
samples <- pData(gbmExprs)[["subtype"]]
x <- eset[, samples=="MES"]
y <- eset[, samples=="PN"]
dgo <- marina(x, y, regulon=gbmTFregulon, per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]
dgo <- marina(gbmExprs, pheno="subtype", group1="MES", group2="PN", regulon=gbmTFregulon, per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]
x <- diggitClass(expset=gbmExprs, regulon=gbmTFregulon)
dgo <- marina(x, pheno="subtype", group1="MES", group2="PN", per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]

Mutual information

Description

This function estimates the mutual information between x and y given both are numeric vectors, between the columns of x if it is a numeric matrix, or between the columns of x and y if both are numeric matrixes

Usage

mutualInfo(x, y = NULL, per = 0, pairwise = FALSE, bw = 100,
  cores = 1, verbose = TRUE)

Arguments

x

Numeric vector or matrix

y

Optional numeric vector or matrix

per

Integer indicating the number of permutations to compute p-values

pairwise

Logical, wether columns of x and y should be compared in a pairwise maner. x and y must have the same number of columns

bw

Integer indicating the grid size for integrating the joint probability density

cores

Integer indicating the number of cores to use (1 for Windows-based systems)

verbose

Logical, whether progression bars should be shown

Details

This function estimates the mutual information between continuous variables using a fix bandwidth implementation

Value

Numeric value, vector or matrix of results

Examples

x <- seq(0, pi, length=100)
y <- 5*sin(x)+rnorm(100)
cor.test(x, y)
mutualInfo(x, y, per=100)

Diggit plot

Description

This function generate plots for the diggit conditional analysis

Usage

## S4 method for signature 'diggit'
plot(x, mr = NULL, cluster = NULL, sub = NULL, ...)

Arguments

x

Diggit class object

mr

Optional vector of character strings indicating the MR names

cluster

Optional vector of cluster names

sub

Optional sub-title for the plot

...

Additional parameters to pass to the plot function

Value

Nothing, plots are generated in the default output device

Examples

data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
dobj <- fCNV(dobj)
dobj <- aqtl(dobj, mr=c("CEBPD", "STAT3"), fcnv.adjust="fdr", verbose=FALSE)
dobj <- conditional(dobj, pheno="subtype", group1="MES", group2="PN", mr="STAT3", verbose=FALSE)
plot(dobj, cluster="3")

Basic methods for class diggit

Description

This document lists a series of basic methods for the class diggit

Usage

## S4 method for signature 'diggit'
print(x, pval = 0.05)

## S4 method for signature 'diggit'
show(object)

## S4 method for signature 'diggit'
exprs(object)

## S4 method for signature 'diggit'
diggitCNV(x)

## S4 method for signature 'diggit'
diggitRegulon(x)

## S4 method for signature 'diggit'
diggitMindy(x)

## S4 method for signature 'diggit'
diggitFcnv(x)

## S4 method for signature 'diggit'
diggitMR(x)

## S4 method for signature 'diggit'
diggitViper(x)

## S4 method for signature 'diggit'
diggitAqtl(x)

## S4 method for signature 'diggit'
diggitConditional(x)

## S4 method for signature 'diggit'
summary(object)

## S4 method for signature 'diggit'
head(x, rows = 4, cols = 4)

## S4 method for signature 'diggit'
mindyFiltering(x, mr = 0.01, mr.adjust = c("none", "fdr",
  "bonferroni"))

Arguments

x

Object of class diggit

pval

P-value threshold for the conditional analysis

object

Object of class diggit

rows

Integer indicating the maximum number of rows to show

cols

Integer indicating the maximum number of columns to show

mr

Either a numerical value between 0 and 1 indicating the p-value threshold for the Master Regulator (MR) selection, or a vector of character strings listing the MRs

mr.adjust

Character string indicating the multiple hypothesis test correction for the MRs

Value

print returns summary information about the diggit object

show returns summary information about the object of class diggit

exprs returns the ExpressionSet object containing the expression profile data

diggitCNV returns a matrix containing the CNV data

diggitRegulon returns a regulon object containing the transcriptional interactome

diggitMindy returns a regulon object containing the post-translational interactome

diggitFcnv returns a vector of p-values for the F-CNVs

diggitMR returns a vector of master regulators NES

diggitViper returns a matrix of VIPER results

diggitAqtl returns a matrix of aQTLs (p-value)

diggitConditional returns a list containing the conditional analysis results

summary returns the integrated results from the conditional analysis

head returns a list containing a reduced view for an object of class diggit

mindyFiltering returns a diggit class object with CNV and aQTL slots filtered to contain only MINDy post-translational modulators of the MRs

Examples

data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
print(dobj)
show(dobj)
exprs(dobj)
diggitCNV(dobj)[1:3, 1:3]
diggitRegulon(dobj)
diggitMindy(dobj)
diggitFcnv(dobj)
diggitMR(dobj)
diggitViper(dobj)
diggitAqtl(dobj)
diggitConditional(dobj)
head(dobj)
data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.mindy, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, mindy=gbmMindy)
dobj <- fCNV(dobj)
dobj
dobj <- mindyFiltering(dobj, mr=c("STAT3", "CEBPD"))
dobj