Package 'destiny'

Title: Creates diffusion maps
Description: Create and plot diffusion maps.
Authors: Philipp Angerer [cre, aut] , Laleh Haghverdi [ctb], Maren Büttner [ctb] , Fabian Theis [ctb] , Carsten Marr [ctb] , Florian Büttner [ctb]
Maintainer: Philipp Angerer <[email protected]>
License: GPL-3
Version: 3.21.0
Built: 2024-11-19 03:14:15 UTC
Source: https://github.com/bioc/destiny

Help Index


Coercion methods

Description

Convert a DiffusionMap or DPT object to other classes

Usage

## S4 method for signature 'DiffusionMap'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

fortify.DiffusionMap(model, data, ...)

## S4 method for signature 'DPT'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

fortify.DPT(model, data, ...)

## S4 method for signature 'DPT'
as.matrix(x, ...)

Arguments

x, model

A DiffusionMap or DPT object

row.names

NULL or a character vector giving the row names for the data frame. Missing values are not allowed.

optional

logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names) is optional.

...

Passed to as.data.frame

data

ignored

Details

fortify is a ggplot2 generic allowing a diffusion map to be used as data parameter in ggplot or qplot.

Value

An object of the desired class

See Also

DiffusionMap accession methods, Extraction methods, DiffusionMap methods for more

Examples

library(Biobase)
data(guo)
dm <- DiffusionMap(guo)
classes <- vapply(as.data.frame(dm), class, character(1L))
stopifnot(all(classes[paste0('DC', 1:20)] == 'numeric'))
stopifnot(all(classes[featureNames(guo) ] == 'numeric'))
stopifnot(all(classes[   varLabels(guo) ] == c('factor', 'integer')))

Color legend

Description

Creates a color legend for a vector used to color a plot. It will use the current palette() or the specified pal as reference.

Usage

colorlegend(
  col,
  pal = palette(),
  log = FALSE,
  posx = c(0.9, 0.93),
  posy = c(0.05, 0.9),
  main = NULL,
  cex_main = par("cex.sub"),
  cex_axis = par("cex.axis"),
  col_main = par("col.sub"),
  col_lab = par("col.lab"),
  steps = 5,
  steps_color = 100,
  digit = 2,
  left = FALSE,
  ...,
  cex.main = NULL,
  cex.axis = NULL,
  col.main = NULL,
  col.lab = NULL
)

Arguments

col

Vector of factor, integer, or double used to determine the ticks.

pal

If col is double, pal is used as a continuous palette, else as categorical one

log

Use logarithmic scale?

posx

Left and right borders of the color bar relative to plot area (Vector of length 2; 0-1)

posy

Bottom and top borders of color bar relative to plot area (Vector of length 2; 0-1)

main

Legend title

cex_main

Size of legend title font (default: subtitle font size par('cex.sub'))

cex_axis

Size of ticks/category labels (default: axis font size par('cex.axis'))

col_main

Color of legend title (default: subtitle color par('col.sub'))

col_lab

Color of tick or category labels (default: axis color par('col.lab'))

steps

Number of labels in case of a continuous axis. If 0 or FALSE, draw no ticks

steps_color

Number of gradient samples in case of continuous axis

digit

Number of digits for continuous axis labels

left

logical. If TRUE, invert posx

...

Additional parameters for the text call used for labels

cex.main, cex.axis, col.main, col.lab

For compatibility with par

Details

When passed a factor or integer vector, it will create a discrete legend, whereas a double vector will result in a continuous bar.

Value

This function is called for the side effect of adding a colorbar to a plot and returns nothing/NULL.

Examples

color_data <- 1:6
par(mar = par('mar') + c(0, 0, 0, 3))
plot(sample(6), col = color_data)
colorlegend(color_data)

Sequential color palette using the cube helix system

Description

Creates a perceptually monotonously decreasing (or increasing) lightness color palette with different tones. This was necessary in pre-viridis times, by now you can probably just use hcl.colors

Usage

cube_helix(
  n = 6,
  start = 0,
  r = 0.4,
  hue = 0.8,
  gamma = 1,
  light = 0.85,
  dark = 0.15,
  reverse = FALSE
)

scale_colour_cube_helix(
  ...,
  start = 0,
  r = 0.4,
  hue = 0.8,
  gamma = 1,
  light = 0.85,
  dark = 0.15,
  reverse = FALSE,
  discrete = TRUE,
  guide = if (discrete) "legend" else "colourbar"
)

scale_color_cube_helix(
  ...,
  start = 0,
  r = 0.4,
  hue = 0.8,
  gamma = 1,
  light = 0.85,
  dark = 0.15,
  reverse = FALSE,
  discrete = TRUE,
  guide = if (discrete) "legend" else "colourbar"
)

scale_fill_cube_helix(
  ...,
  start = 0,
  r = 0.4,
  hue = 0.8,
  gamma = 1,
  light = 0.85,
  dark = 0.15,
  reverse = FALSE,
  discrete = TRUE,
  guide = if (discrete) "legend" else "colourbar"
)

Arguments

n

Number of colors to return (default: 6)

start

Hue to start helix at (start[0,3]\textrm{start} \in [0,3], default: 0)

r

Number of rotations of the helix. Can be negative. (default: 0.4)

hue

Saturation. 0 means greyscale, 1 fully saturated colors (default: 0.8)

gamma

Emphasize darker (gamma < 1) or lighter (gamma > 1) colors (default: 1)

light

Lightest lightness (default: 0.85)

dark

Darkest lightness (default: 0.15)

reverse

logical. If TRUE, reverse lightness (default: FALSE)

...

parameters passed to discrete_scale or continuous_scale

discrete

If TRUE, return a discrete scale, if FALSE a continuous one (default: TRUE)

guide

Type of scale guide to use. See guides

Value

A character vector of hex colors with length n

Examples

palette(cube_helix())
image(matrix(1:6), col = 1:6, pch = 19, axes = FALSE)

cr <- scales::colour_ramp(cube_helix(12, r = 3))
r <- runif(100)
plot(1:100, r, col = cr(r), type = 'b', pch = 20)

Create and plot diffusion maps

Description

The main function is DiffusionMap, which returns an object you can plot (plot.DiffusionMap is then called).

Author(s)

Maintainer: Philipp Angerer [email protected] (ORCID)

Other contributors:

See Also

Useful links:

Examples

demo(destiny, ask = FALSE)

destiny generics

Description

destiny provides several generic methods and implements them for the DiffusionMap and Sigmas classes.

Usage

eigenvalues(object)

eigenvalues(object) <- value

eigenvectors(object)

eigenvectors(object) <- value

sigmas(object)

sigmas(object) <- value

dataset(object)

dataset(object) <- value

distance(object)

distance(object) <- value

optimal_sigma(object)

Arguments

object

Object from which to extract or to which to assign a value

value

Value to assign within an object

Value

eigenvalues retrieves the numeric eigenvalues

eigenvectors retrieves the eigenvectors matrix

sigmas retrieves the Sigmas from an object utilizing it as kernel width

dataset retrieves the data the object was created from

distance retrieves the distance metric used to create the object, e.g. euclidean

optimal_sigma retrieves the numeric value of the optimal sigma or local sigmas

See Also

DiffusionMap methods and Sigmas class for implementations

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
eigenvalues(dm)
eigenvectors(dm)
sigmas(dm)
optimal_sigma(dm)
dataset(dm)
distance(dm)

DiffusionMap accession methods

Description

Get and set eigenvalues, eigenvectors, and sigma(s) of a DiffusionMap object.

Usage

## S4 method for signature 'DiffusionMap'
eigenvalues(object)

## S4 replacement method for signature 'DiffusionMap'
eigenvalues(object) <- value

## S4 method for signature 'DiffusionMap'
eigenvectors(object)

## S4 replacement method for signature 'DiffusionMap'
eigenvectors(object) <- value

## S4 method for signature 'DiffusionMap'
sigmas(object)

## S4 replacement method for signature 'DiffusionMap'
sigmas(object) <- value

## S4 method for signature 'DiffusionMap'
dataset(object)

## S4 replacement method for signature 'DiffusionMap'
dataset(object) <- value

## S4 method for signature 'DiffusionMap'
distance(object)

## S4 replacement method for signature 'DiffusionMap'
distance(object) <- value

## S4 method for signature 'DiffusionMap'
optimal_sigma(object)

Arguments

object

A DiffusionMap

value

Vector of eigenvalues or matrix of eigenvectors to get/set

Value

The assigned or retrieved value

See Also

Extraction methods, DiffusionMap methods, Coercion methods for more

Examples

data(guo)
dm <- DiffusionMap(guo)
eigenvalues(dm)
eigenvectors(dm)
sigmas(dm)
dataset(dm)
optimal_sigma(dm)

DiffusionMap methods

Description

Methods for external operations on diffusion maps

Usage

## S4 method for signature 'DiffusionMap'
print(x)

## S4 method for signature 'DiffusionMap'
show(object)

Arguments

x, object

A DiffusionMap

Value

The DiffusionMap object (print), or NULL (show), invisibly

See Also

DiffusionMap accession methods, Extraction methods, Coercion methods for more

Examples

data(guo)
dm <- DiffusionMap(guo)
print(dm)
show(dm)

Create a diffusion map of cells

Description

The provided data can be a double matrix of expression data or a data.frame with all non-integer (double) columns being treated as expression data features (and the others ignored), an ExpressionSet, or a SingleCellExperiment.

Usage

DiffusionMap(
  data = stopifnot_distmatrix(distance),
  sigma = "local",
  k = find_dm_k(dataset_n_observations(data, distance) - 1L),
  n_eigs = min(20L, dataset_n_observations(data, distance) - 2L),
  density_norm = TRUE,
  ...,
  distance = c("euclidean", "cosine", "rankcor", "l2"),
  n_pcs = NULL,
  n_local = seq(to = min(k, 7L), length.out = min(k, 3L)),
  rotate = FALSE,
  censor_val = NULL,
  censor_range = NULL,
  missing_range = NULL,
  vars = NULL,
  knn_params = list(),
  verbose = !is.null(censor_range),
  suppress_dpt = FALSE
)

Arguments

data

Expression data to be analyzed and covariates. Provide vars to select specific columns other than the default: all double value columns. If distance is a distance matrix, data has to be a data.frame with covariates only.

sigma

Diffusion scale parameter of the Gaussian kernel. One of 'local', 'global', a (numeric) global sigma or a Sigmas object. When choosing 'global', a global sigma will be calculated using find_sigmas. (Optional. default: 'local') A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrix

k

Number of nearest neighbors to consider (default: a guess betweeen 100 and n1n - 1. See find_dm_k).

n_eigs

Number of eigenvectors/values to return (default: 20)

density_norm

logical. If TRUE, use density normalisation

...

Unused. All parameters to the right of the ... have to be specified by name (e.g. DiffusionMap(data, distance = 'cosine'))

distance

Distance measurement method applied to data or a distance matrix/dist. For the allowed values, see find_knn. If this is a sparseMatrix, zeros are interpreted as "not a close neighbors", which allows the use of kNN-sparsified matrices (see the return value of find_knn.

n_pcs

Number of principal components to compute to base calculations on. Using e.g. 50 DCs results in more regular looking diffusion maps. The default NULL will not compute principal components, but use reducedDims(data, 'pca') if present. Set to NA to suppress using PCs.

n_local

If sigma == 'local', the n_localth nearest neighbor(s) determine(s) the local sigma

rotate

logical. If TRUE, rotate the eigenvalues to get a slimmer diffusion map

censor_val

Value regarded as uncertain. Either a single value or one for every dimension (Optional, default: censor_val)

censor_range

Uncertainity range for censoring (Optional, default: none). A length-2-vector of certainty range start and end. TODO: also allow 2×G2\times G matrix

missing_range

Whole data range for missing value model. Has to be specified if NAs are in the data

vars

Variables (columns) of the data to use. Specifying NULL will select all columns (default: All floating point value columns)

knn_params

Parameters passed to find_knn

verbose

Show a progressbar and other progress information (default: do it if censoring is enabled)

suppress_dpt

Specify TRUE to skip calculation of necessary (but spacious) information for DPT in the returned object (default: FALSE)

Value

A DiffusionMap object:

Slots

eigenvalues

Eigenvalues ranking the eigenvectors

eigenvectors

Eigenvectors mapping the datapoints to n_eigs dimensions

sigmas

Sigmas object with either information about the find_sigmas heuristic run or just local or optimal_sigma.

data_env

Environment referencing the data used to create the diffusion map

eigenvec0

First (constant) eigenvector not included as diffusion component.

transitions

Transition probabilities. Can be NULL

d

Density vector of transition probability matrix

d_norm

Density vector of normalized transition probability matrix

k

The k parameter for kNN

n_pcs

Number of principal components used in kNN computation (NA if raw data was used)

n_local

The n_localth nearest neighbor(s) is/are used to determine local kernel density

density_norm

Was density normalization used?

rotate

Were the eigenvectors rotated?

distance

Distance measurement method used

censor_val

Censoring value

censor_range

Censoring range

missing_range

Whole data range for missing value model

vars

Vars parameter used to extract the part of the data used for diffusion map creation

knn_params

Parameters passed to find_knn

See Also

DiffusionMap methods to get and set the slots. find_sigmas to pre-calculate a fitting global sigma parameter

Examples

data(guo)
DiffusionMap(guo)
DiffusionMap(guo, 13, censor_val = 15, censor_range = c(15, 40), verbose = TRUE)

covars <- data.frame(covar1 = letters[1:100])
dists <- dist(matrix(rnorm(100*10), 100))
DiffusionMap(covars, distance = dists)

Predict new data points using an existing DiffusionMap. The resulting matrix can be used in the plot method for the DiffusionMap

Description

Predict new data points using an existing DiffusionMap. The resulting matrix can be used in the plot method for the DiffusionMap

Usage

dm_predict(dm, new_data, ..., verbose = FALSE)

Arguments

dm

A DiffusionMap object.

new_data

New data points to project into the diffusion map. Can be a matrix, data.frame, ExpressionSet, or SingleCellExperiment.

...

Passed to proxy::dist(new_data, data, dm@distance, ...).

verbose

Show progress messages?

Value

A nrow(new_data)×ncol(eigenvectors(dif))nrow(new\_data) \times ncol(eigenvectors(dif)) matrix of projected diffusion components for the new data.

Examples

data(guo)
g1 <- guo[, guo$num_cells != 32L]
g2 <- guo[, guo$num_cells == 32L]
dm <- DiffusionMap(g1)
dc2 <- dm_predict(dm, g2)
plot(dm, new_dcs = dc2)

DPT Matrix methods

Description

Treat DPT object as a matrix of cell-by-cell DPT distances.

Usage

## S4 method for signature 'DPT,index,index,logicalOrMissing'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'DPT,index,missing,logicalOrMissing'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'DPT,missing,index,logicalOrMissing'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'DPT,missing,missing,logicalOrMissing'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'DPT,index,index'
x[[i, j, ...]]

## S4 method for signature 'DPT'
nrow(x)

## S4 method for signature 'DPT'
ncol(x)

## S4 method for signature 'DPT'
dim(x)

Arguments

x

DPT object.

i, j

Numeric or logical index.

...

ignored

drop

If TRUE, coerce result to a vector if it would otherwise have 1 %in% dim(result).

Value

[ returns a dense matrix or (if applicable and isTRUE(drop)) a vector.

[[ returns single distance value

nrow and ncol return the number of cells

dim returns c(n_cells, n_cells)

See Also

as.matrix.DPT

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
dpt <- DPT(dm)
set.seed(1)
plot(dpt[random_root(dpt), ], Biobase::exprs(guo_norm)['DppaI', ])

DPT methods

Description

Methods for the DPT class. branch_divide subdivides branches for plotting (see the examples).

Usage

branch_divide(dpt, divide = integer(0L))

tips(dpt)

## S4 method for signature 'DPT'
dataset(object)

## S4 replacement method for signature 'DPT'
dataset(object) <- value

Arguments

dpt, object

DPT object

divide

Vector of branch numbers to use for division

value

Value of slot to set

Value

branch_divide and dataset<- return the changed object, dataset the extracted data, and tips the tip indices.

See Also

plot.DPT uses branch_divide for its divide argument.

Examples

data(guo_norm)
dpt <- DPT(DiffusionMap(guo_norm))
dpt_9_branches <- branch_divide(dpt, 1:3)
plot(dpt_9_branches, col_by = 'branch')

Diffusion Pseudo Time

Description

Create pseudotime ordering and assigns cell to one of three branches

Usage

DPT(dm, tips = random_root(dm), ..., w_width = 0.1)

Arguments

dm

A DiffusionMap object. Its transition probabilities will be used to calculate the DPT

tips

The cell index/indices from which to calculate the DPT(s) (integer of length 1-3)

...

Unused. All parameters to the right of the ... have to be specified by name (e.g. DPT(dm, w_width = 0.2))

w_width

Window width to use for deciding the branch cutoff

Details

Treat it as a matrix of pseudotime by subsetting ([ dim nrow ncol as.matrix), and as a list of pseudodime, and expression vectors ($ [[ names as.data.frame).

Value

A DPT object:

Slots

branch

matrix (of integer) recursive branch labels for each cell (row); NA for undeceided. Use branch_divide to modify this.

tips

matrix (of logical) indicating if a cell (row) is a tip of the corresponding banch level (col)

dm

DiffusionMap used to create this DPT object

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
dpt <- DPT(dm)
str(dpt)

Fast eigen decomposition using eigs

Description

By default uses a random initialization vector that you can make deterministic using set.seed or override by specifying opts = list(initvec = ...).

Usage

eig_decomp(m, n_eigs, sym, ..., opts = list())

Arguments

m

A matrix (e.g. from the Matrix package) or a function (see eigs).

n_eigs

Number of eigenvectors to return.

sym

defunct and ignored.

...

Passed to eigs.

opts

Passed to eigs.

Value

see eigs.

Examples

eig_decomp(cbind(c(1,0,-1), c(0,1,0), c(-1,0,1)), 2)

Convert object to ExpressionSet or read it from a file

Description

These functions present quick way to create ExpressionSet objects.

Usage

as.ExpressionSet(x, ...)

## S4 method for signature 'data.frame'
as.ExpressionSet(x, annotation_cols = !sapply(x, is.double))

read.ExpressionSet(file, header = TRUE, ...)

Arguments

x

data.frame to convert to an ExpressionSet.

...

Additional parameters to read.table

annotation_cols

The data.frame columns used as annotations. All others are used as expressions. (Logical, character or numerical index array)

file

File path to read ASCII data from

header

Specifies if the file has a header row.

Details

They work by using all continuous (double) columns as expression data, and all others as observation annotations.

Value

an ExpressionSet object

See Also

read.table on which read.ExpressionSet is based, and ExpressionSet.

Examples

library(Biobase)
df <- data.frame(Time  = seq_len(3), #integer column
                 Actb  = c(0.05, 0.3, 0.8),
                 Gapdh = c(0.2, 0.03, 0.1))
set <- as.ExpressionSet(df)
rownames(exprs(set)) == c('Actb', 'Gapdh')
phenoData(set)$Time == 1:3

Extraction methods

Description

Extract common information from objects. Apart from the input data's branches, you can extract diffusion components via $DCx. From DPT objects, you can also extract the branch label via $Branch, or the diffusion pseudo time for a numbered cell via $DPTx.

Usage

## S4 method for signature 'DiffusionMap'
names(x)

## S4 method for signature 'DPT'
names(x)

## S4 method for signature 'DiffusionMap,character,missing'
x[[i, j, ...]]

## S4 method for signature 'DPT,character,missing'
x[[i, j, ...]]

## S4 method for signature 'DiffusionMap'
x$name

## S4 method for signature 'DPT'
x$name

Arguments

x

DiffusionMap or DPT object

i, name

Name of a diffusion component 'DCx', 'DPTx', 'Branch' or column from the data

j

N/A

...

ignored

Value

The names or data row, see respective generics.

See Also

Extract, names for the generics. DiffusionMap accession methods, DiffusionMap methods, Coercion methods for more

Examples

data(guo)
dm <- DiffusionMap(guo)
dm$DC1        # A diffusion component
dm$Actb       # A gene expression vector
dm$num_cells  # Phenotype metadata

dpt <- DPT(dm)
dm$Branch
dm$DPT1

Find a suitable k

Description

The k parameter for the k nearest neighbors used in DiffusionMap should be as big as possible while still being computationally feasible. This function approximates it depending on the size of the dataset n.

Usage

find_dm_k(n, min_k = 100L, small = 1000L, big = 10000L)

Arguments

n

Number of possible neighbors (nrow(dataset) - 1)

min_k

Minimum number of neighbors. Will be chosen for nbign \ge big

small

Number of neighbors considered small. If/where nsmalln \le small, n itself will be returned.

big

Number of neighbors considered big. If/where nbign \ge big, min_k will be returned.

Value

A vector of the same length as n that contains suitable k values for the respective n

Examples

curve(find_dm_k(n),     0, 13000, xname = 'n')
curve(find_dm_k(n) / n, 0, 13000, xname = 'n')

kNN search

Description

Approximate k nearest neighbor search with flexible distance function.

Usage

find_knn(
  data,
  k,
  ...,
  query = NULL,
  distance = c("euclidean", "cosine", "rankcor", "l2"),
  method = c("covertree", "hnsw"),
  sym = TRUE,
  verbose = FALSE
)

Arguments

data

Data matrix

k

Number of nearest neighbors

...

Parameters passed to hnsw_knn

query

Query matrix. Leave it out to use data as query

distance

Distance metric to use. Allowed measures: Euclidean distance (default), cosine distance (1corr(c1,c2)1-corr(c_1, c_2)) or rank correlation distance (1corr(rank(c1),rank(c2))1-corr(rank(c_1), rank(c_2)))

method

Method to use. 'hnsw' is tunable with ... but generally less exact than 'covertree' (default: 'covertree')

sym

Return a symmetric matrix (as long as query is NULL)?

verbose

Show a progressbar? (default: FALSE)

Value

A list with the entries:

index

A nrow(data)×knrow(data) \times k integer matrix containing the indices of the k nearest neighbors for each cell.

dist

A nrow(data)×knrow(data) \times k double matrix containing the distances to the k nearest neighbors for each cell.

dist_mat

A dgCMatrix if sym == TRUE, else a dsCMatrix (nrow(query)×nrow(data)nrow(query) \times nrow(data)). Any zero in the matrix (except for the diagonal) indicates that the cells in the corresponding pair are close neighbors.


Calculate the average dimensionality for m different gaussian kernel widths (σ\sigma).

Description

The sigma with the maximum value in average dimensionality is close to the ideal one. Increasing step number gets this nearer to the ideal one.

Usage

find_sigmas(
  data,
  step_size = 0.1,
  steps = 10L,
  start = NULL,
  sample_rows = 500L,
  early_exit = FALSE,
  ...,
  censor_val = NULL,
  censor_range = NULL,
  missing_range = NULL,
  vars = NULL,
  verbose = TRUE
)

Arguments

data

Data set with nn observations. Can be a data.frame, matrix, ExpressionSet or SingleCellExperiment.

step_size

Size of log-sigma steps

steps

Number of steps/calculations

start

Initial value to search from. (Optional. default: log10(min(dist(data)))\log_{10}(min(dist(data))))

sample_rows

Number of random rows to use for sigma estimation or vector of row indices/names to use. In the first case, only used if actually smaller than the number of available rows (Optional. default: 500)

early_exit

logical. If TRUE, return if the first local maximum is found, else keep running

...

Unused. All parameters to the right of the ... have to be specified by name (e.g. find_sigmas(data, verbose = FALSE))

censor_val

Value regarded as uncertain. Either a single value or one for every dimension

censor_range

Uncertainity range for censoring. A length-2-vector of certainty range start and end. TODO: also allow 2×G2\times G matrix

missing_range

Whole data range for missing value model. Has to be specified if NAs are in the data

vars

Variables (columns) of the data to use. Specifying TRUE will select all columns (default: All floating point value columns)

verbose

logical. If TRUE, show a progress bar and plot the output

Value

Object of class Sigmas

See Also

Sigmas, the class returned by this; DiffusionMap, the class this is used for

Examples

data(guo)
sigs <- find_sigmas(guo, verbose = TRUE)
DiffusionMap(guo, sigs)

Find tips in a DiffusionMap object

Description

Find tips in a DiffusionMap object

Usage

find_tips(dm_or_dpt, root = random_root(dm_or_dpt))

Arguments

dm_or_dpt

A DiffusionMap or DPT object

root

Root cell index from which to find tips. (default: random)

Value

An integer vector of length 3

Examples

data(guo)
dm <- DiffusionMap(guo)
is_tip <- l_which(find_tips(dm), len = ncol(guo))
plot(dm, col = factor(is_tip))

Gene Relevance methods

Description

featureNames <- ... can be used to set the gene names used for plotting (e.g. if the data contains hardly readably gene or transcript IDs). dataset gets the expressions used for the gene relevance calculations, and distance the distance measure.

Usage

## S4 method for signature 'GeneRelevance'
print(x)

## S4 method for signature 'GeneRelevance'
show(object)

## S4 method for signature 'GeneRelevance'
featureNames(object)

## S4 replacement method for signature 'GeneRelevance,characterOrFactor'
featureNames(object) <- value

## S4 method for signature 'GeneRelevance'
dataset(object)

## S4 replacement method for signature 'GeneRelevance'
dataset(object) <- value

## S4 method for signature 'GeneRelevance'
distance(object)

## S4 replacement method for signature 'GeneRelevance'
distance(object) <- value

Arguments

x, object

GeneRelevance object

value

A text vector (character or factor)

Value

dataset, distance, and featureNames return the stored properties. The other methods return a GeneRelevance object (print, ... <- ...), or NULL (show), invisibly

See Also

gene_relevance, Gene Relevance plotting

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
gr <- gene_relevance(dm)
stopifnot(distance(gr) == distance(dm))
featureNames(gr)[[37]] <- 'Id2 (suppresses differentiation)'
# now plot it with the changed gene name(s)

Gene relevances for entire data set

Description

The relevance map is cached insided of the DiffusionMap.

Usage

gene_relevance(
  coords,
  exprs,
  ...,
  k = 20L,
  dims = 1:2,
  distance = NULL,
  smooth = TRUE,
  remove_outliers = FALSE,
  verbose = FALSE
)

## S4 method for signature 'DiffusionMap,missing'
gene_relevance(
  coords,
  exprs,
  ...,
  k = 20L,
  dims = 1:2,
  distance = NULL,
  smooth = TRUE,
  remove_outliers = FALSE,
  verbose = FALSE
)

## S4 method for signature 'matrix,dMatrixOrMatrix'
gene_relevance(
  coords,
  exprs,
  ...,
  pcs = NULL,
  knn_params = list(),
  weights = 1,
  k,
  dims,
  distance,
  smooth,
  remove_outliers,
  verbose
)

Arguments

coords

A DiffusionMap object or a cells ×\times dims matrix.

exprs

An cells ×\times genes matrix. Only provide if coords is no DiffusionMap.

...

Unused. All parameters to the right of the ... have to be specified by name.

k

Number of nearest neighbors to use

dims

Index into columns of coord

distance

Distance measure to use for the nearest neighbor search.

smooth

Smoothing parameters c(window, alpha) (see smth.gaussian). Alternatively TRUE to use the smoother defaults or FALSE to skip smoothing,

remove_outliers

Remove cells that are only within one other cell's nearest neighbor, as they tend to get large norms.

verbose

If TRUE, log additional info to the console

pcs

A cell ×\times n_pcs matrix of principal components to use for the distances.

knn_params

A list of parameters for find_knn.

weights

Weights for the partial derivatives. A vector of the same length as dims.

Value

A GeneRelevance object:

Slots

coords

A cells ×\times dims matrix or sparseMatrix of coordinates (e.g. diffusion components), reduced to the dimensions passed as dims

exprs

A cells ×\times genes matrix of expressions

partials

Array of partial derivatives wrt to considered dimensions in reduced space (genes ×\times cells ×\times dimensions)

partials_norm

Matrix with norm of aforementioned derivatives. (n\_genes ×\times cells)

nn_index

Matrix of k nearest neighbor indices. (cells ×\times k)

dims

Column index for plotted dimensions. Can character, numeric or logical

distance

Distance measure used in the nearest neighbor search. See find_knn

smooth_window

Smoothing window used (see smth.gaussian)

smooth_alpha

Smoothing kernel width used (see smth.gaussian)

See Also

Gene Relevance methods, Gene Relevance plotting: plot_differential_map/plot_gene_relevance

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
gr <- gene_relevance(dm)

m <- t(Biobase::exprs(guo_norm))
gr_pca <- gene_relevance(prcomp(m)$x, m)
# now plot them!

Guo at al. mouse embryonic stem cell qPCR data

Description

Gene expression data of 48 genes and an annotation column $num_cells containing the cell stage at which the embryos were harvested.

Usage

data(guo)
data(guo_norm)

Format

An ExpressionSet with 48 features, 428 observations and 2 phenoData annotations.

Details

The data is normalized using the mean of two housekeeping genes. The difference between guo and guo_norm is the LoD being set to 10 in the former, making it usable with the censor_val parameter of DiffusionMap.

Value

an ExpressionSet with 48 features and 428 observations containing qPCR Ct values and a "num.cells" observation annotation.

Author(s)

Guoji Guo, Mikael Huss, Guo Qing Tong, Chaoyang Wang, Li Li Sun, Neil D. Clarke, Paul Robson [email protected]

References

http://www.sciencedirect.com/science/article/pii/S1534580710001103


Logical which

Description

Inverse of which. Converts an array of numeric or character indices to a logical index array. This function is useful if you need to perform logical operation on an index array but are only given numeric indices.

Usage

l_which(idx, nms = seq_len(len), len = length(nms), useNames = TRUE)

Arguments

idx

Numeric or character indices.

nms

Array of names or a sequence. Required if idx is a character array

len

Length of output array. Alternative to nms if idx is numeric

useNames

Use the names of nms or idx

Details

Either nms or len has to be specified.

Value

Logical vector of length len or the same length as nms

Examples

all(l_which(2, len = 3L) == c(FALSE, TRUE, FALSE))
all(l_which(c('a', 'c'), letters[1:3]) == c(TRUE, FALSE, TRUE))

Plot gene relevance or differential map

Description

plot(gene_relevance, 'Gene') plots the differential map of this/these gene(s), plot(gene_relevance) a relevance map of a selection of genes. Alternatively, you can use plot_differential_map or plot_gene_relevance on a GeneRelevance or DiffusionMap object, or with two matrices.

Usage

plot_differential_map(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  pal = hcl.colors,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'matrix,matrix'
plot_differential_map(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  pal = hcl.colors,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'DiffusionMap,missing'
plot_differential_map(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  pal = hcl.colors,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'GeneRelevance,missing'
plot_differential_map(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  pal = hcl.colors,
  faceter = facet_wrap(~Gene)
)

plot_gene_relevance(
  coords,
  exprs,
  ...,
  iter_smooth = 2L,
  n_top = 10L,
  genes = NULL,
  dims = 1:2,
  pal = palette(),
  col_na = "grey",
  limit = TRUE
)

## S4 method for signature 'matrix,matrix'
plot_gene_relevance(
  coords,
  exprs,
  ...,
  iter_smooth = 2L,
  n_top = 10L,
  genes = NULL,
  dims = 1:2,
  pal = palette(),
  col_na = "grey",
  limit = TRUE
)

## S4 method for signature 'DiffusionMap,missing'
plot_gene_relevance(
  coords,
  exprs,
  ...,
  iter_smooth = 2L,
  n_top = 10L,
  genes = NULL,
  dims = 1:2,
  pal = palette(),
  col_na = "grey",
  limit = TRUE
)

## S4 method for signature 'GeneRelevance,missing'
plot_gene_relevance(
  coords,
  exprs,
  ...,
  iter_smooth = 2L,
  n_top = 10L,
  genes = NULL,
  dims = 1:2,
  pal = palette(),
  col_na = "grey",
  limit = TRUE
)

plot_gene_relevance_rank(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  n_top = 10L,
  pal = c("#3B99B1", "#F5191C"),
  bins = 10L,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'matrix,matrix'
plot_gene_relevance_rank(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  n_top = 10L,
  pal = c("#3B99B1", "#F5191C"),
  bins = 10L,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'DiffusionMap,missing'
plot_gene_relevance_rank(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  n_top = 10L,
  pal = c("#3B99B1", "#F5191C"),
  bins = 10L,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'GeneRelevance,missing'
plot_gene_relevance_rank(
  coords,
  exprs,
  ...,
  genes,
  dims = 1:2,
  n_top = 10L,
  pal = c("#3B99B1", "#F5191C"),
  bins = 10L,
  faceter = facet_wrap(~Gene)
)

## S4 method for signature 'GeneRelevance,character'
plot(x, y, ...)

## S4 method for signature 'GeneRelevance,numeric'
plot(x, y, ...)

## S4 method for signature 'GeneRelevance,missing'
plot(x, y, ...)

Arguments

coords

A DiffusionMap/GeneRelevance object or a cells ×\times dims matrix.

exprs

An cells ×\times genes matrix. Only provide if coords is a matrix.

...

Passed to plot_differential_map/plot_gene_relevance.

genes

Genes to base relevance map on (vector of strings). You can also pass an index into the gene names (vector of numbers or logicals with length > 1). The default NULL means all genes.

dims

Names or indices of dimensions to plot. When not plotting a GeneRelevance object, the relevance for the dimensions 1:max(dims) will be calculated.

pal

Palette. Either A colormap function or a list of colors.

faceter

A ggplot faceter like facet_wrap(~ Gene).

iter_smooth

Number of label smoothing iterations to perform on relevance map. The higher the more homogenous and the less local structure.

n_top

Number the top n genes per cell count towards the score defining which genes to return and plot in the relevance map.

col_na

Color for cells that end up with no most relevant gene.

limit

Limit the amount of displayed gene labels to the amount of available colors in pal?

bins

Number of hexagonal bins for plot_gene_relevance_rank.

x

GeneRelevance object.

y

Gene name(s) or index/indices to create differential map for. (integer or character)

Value

ggplot2 plot, when plotting a relevance map with a list member $ids containing the gene IDs used.

See Also

gene_relevance, Gene Relevance methods

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
gr <- gene_relevance(dm)
plot(gr)          # or plot_gene_relevance(dm)
plot(gr, 'Fgf4')  # or plot_differential_map(dm, 'Fgf4')

guo_norm_mat <- t(Biobase::exprs(guo_norm))
pca <- prcomp(guo_norm_mat)$x
plot_gene_relevance(pca, guo_norm_mat, dims = 2:3)
plot_differential_map(pca, guo_norm_mat, genes = c('Fgf4', 'Nanog'))

3D or 2D plot of diffusion map

Description

If you want to plot the eigenvalues, simply plot(eigenvalues(dm)[start:end], ...)

Usage

plot.DiffusionMap(
  x,
  dims = 1:3,
  new_dcs = if (!is.null(new_data)) dm_predict(x, new_data),
  new_data = NULL,
  col = NULL,
  col_by = NULL,
  col_limits = NULL,
  col_new = "red",
  pal = NULL,
  pal_new = NULL,
  ...,
  ticks = FALSE,
  axes = TRUE,
  box = FALSE,
  legend_main = col_by,
  legend_opts = list(),
  interactive = FALSE,
  draw_legend = !is.null(col_by) || (length(col) > 1 && !is.character(col)),
  consec_col = TRUE,
  col_na = "grey",
  plot_more = function(p, ..., rescale = NULL) p
)

## S4 method for signature 'DiffusionMap,numeric'
plot(x, y, ...)

## S4 method for signature 'DiffusionMap,missing'
plot(x, y, ...)

Arguments

x

A DiffusionMap

dims, y

Diffusion components (eigenvectors) to plot (default: first three components; 1:3)

new_dcs

An optional matrix also containing the rows specified with y and plotted. (default: no more points)

new_data

A data set in the same format as x that is used to create new_dcs <- dm_predict(dif, new_data)

col

Single color string or vector of discrete or categoric values to be mapped to colors. E.g. a column of the data matrix used for creation of the diffusion map. (default: cluster_louvain if igraph is installed)

col_by

Specify a dataset(x) or phenoData(dataset(x)) column to use as color

col_limits

If col is a continuous (=double) vector, this can be overridden to map the color range differently than from min to max (e.g. specify c(0, 1))

col_new

If new_dcs is given, it will take on this color. A vector is also possible. (default: red)

pal

Palette used to map the col vector to colors. (default: use hcl.colors for continuous and palette() for discrete data)

pal_new

Palette used to map the col_new vector to colors. (default: see pal argument)

...

Parameters passed to plot, scatterplot3d, or plot3d (if interactive == TRUE)

ticks

logical. If TRUE, show axis ticks (default: FALSE)

axes

logical. If TRUE, draw plot axes (default: Only if ticks is TRUE)

box

logical. If TRUE, draw plot frame (default: TRUE or the same as axes if specified)

legend_main

Title of legend. (default: nothing unless col_by is given)

legend_opts

Other colorlegend options (default: empty list)

interactive

Use plot3d to plot instead of scatterplot3d?

draw_legend

logical. If TRUE, draw color legend (default: TRUE if col_by is given or col is given and a vector to be mapped)

consec_col

If col or col_by refers to an integer column, with gaps (e.g. c(5,0,0,3)) use the palette color consecutively (e.g. c(3,1,1,2))

col_na

Color for NA in the data. specify NA to hide.

plot_more

Function that will be called while the plot margins are temporarily changed (its p argument is the rgl or scatterplot3d instance or NULL, its rescale argument is NULL, a list(from = c(a, b), to = c(c, d))), or an array of shape fromto×dims×minmaxfrom|to \times dims \times min|max, i.e. 2×length(dims)×22 \times length(dims) \times 2. In case of 2d plotting, it should take and return a ggplot2 object.

Details

If you specify negative numbers as diffusion components (e.g. plot(dm, c(-1,2))), then the corresponding components will be flipped.

Value

The return value of the underlying call is returned, i.e. a scatterplot3d or rgl object.

Examples

data(guo)
plot(DiffusionMap(guo))

Plot DPT

Description

Plots diffusion components from a Diffusion Map and the accompanying Diffusion Pseudo Time (DPT)

Usage

plot.DPT(
  x,
  root = NULL,
  paths_to = integer(0L),
  dcs = 1:2,
  divide = integer(0L),
  w_width = 0.1,
  col_by = "dpt",
  col_path = rev(palette()),
  col_tip = "red",
  ...,
  col = NULL,
  legend_main = col_by
)

## S4 method for signature 'DPT,numeric'
plot(x, y, ...)

## S4 method for signature 'DPT,missing'
plot(x, y, ...)

Arguments

x

A DPT object.

paths_to

Numeric Branch IDs. Are used as target(s) for the path(s) to draw.

dcs

The dimensions to use from the DiffusionMap

divide

If col_by = 'branch', this specifies which branches to divide. (see branch_divide)

w_width

Window width for smoothing the path (see smth.gaussian)

col_by

Color by 'dpt' (DPT starting at branches[[1]]), 'branch', or a veriable of the data.

col_path

Colors for the path or a function creating n colors

col_tip

Color for branch tips

...

Graphical parameters supplied to plot.DiffusionMap

col

See plot.DiffusionMap. This overrides col_by

legend_main

See plot.DiffusionMap.

y, root

Root branch ID. Will be used as the start of the DPT. (default: lowest branch ID) (If longer than size 1, will be interpreted as c(root, branches))

Value

The return value of the underlying call is returned, i.e. a scatterplot3d or rgl object for 3D plots.

Examples

data(guo_norm)
dm <- DiffusionMap(guo_norm)
dpt <- DPT(dm)
plot(dpt)
plot(dpt, 2L,      col_by = 'branch')
plot(dpt, 1L, 2:3, col_by = 'num_cells')
plot(dpt, col_by = 'DPT3')

Plot Sigmas object

Description

Plot Sigmas object

Usage

## S4 method for signature 'Sigmas,missing'
plot(
  x,
  col = par("fg"),
  col_highlight = "#E41A1C",
  col_line = "#999999",
  type = c("b", "b"),
  pch = c(par("pch"), 4L),
  only_dim = FALSE,
  ...,
  xlab = NULL,
  ylab = NULL,
  main = ""
)

Arguments

x

Sigmas object to plot

col

Vector of bar colors or single color for all bars

col_highlight

Color for highest bar. Overrides col

col_line

Color for the line and its axis

type

Plot type of both lines. Can be a vector of length 2 to specify both separately (default: 'b' aka “both lines and points”)

pch

Point identifier for both lines. Can be a vector of length 2 to specify both separately (default: par(pch) and 4 (a ‘×\times’))

only_dim

logical. If TRUE, only plot the derivative line

...

Options passed to the call to plot

xlab

X label. NULL to use default

ylab

Either one y label or y labels for both plots. NULL to use both defauts, a NULL in a list of length 2 to use one default.

main

Title of the plot

Value

This method plots a Sigma object to the current device and returns nothing/NULL

Examples

data(guo)
sigs <- find_sigmas(guo)
plot(sigs)

Projection distance

Description

Projection distance

Usage

projection_dist(dm, new_dcs = NULL, ..., new_data, verbose = FALSE)

Arguments

dm

A DiffusionMap object.

new_dcs

Diffusion component matrix of which to calculate the distance to the data.

...

Passed to proxy::dist if new_data was passed.

new_data

New data points to project into the diffusion map. Can be a matrix, data.frame, ExpressionSet, or SingleCellExperiment.

verbose

If TRUE, log additional info to the console.

Value

A vector of distances each new data point has to the existing data.

Examples

data(guo_norm)
g2_32 <- guo_norm[, guo_norm$num_cells < 64]
g64  <- guo_norm[, guo_norm$num_cells == 64]
dm <- DiffusionMap(g2_32)
d <- projection_dist(dm, new_data = g64)

Find a random root cell index

Description

Finds a cell that has the maximum DPT distance from a randomly selected one.

Usage

random_root(dm_or_dpt)

Arguments

dm_or_dpt

A DiffusionMap or DPT object

Value

A cell index

Examples

data(guo)
dm <- DiffusionMap(guo)
random_root(dm)

Sigmas Object

Description

Holds the information about how the sigma parameter for a DiffusionMap was obtained, and in this way provides a plotting function for the find_sigmas heuristic. You should not need to create a Sigmas object yourself. Provide sigma to DiffusionMap instead or use find_sigmas.

Usage

Sigmas(...)

## S4 method for signature 'Sigmas'
optimal_sigma(object)

## S4 method for signature 'Sigmas'
print(x)

## S4 method for signature 'Sigmas'
show(object)

Arguments

object, x

Sigmas object

...

See “Slots” below

Details

A Sigmas object is either created by find_sigmas or by specifying the sigma parameter to DiffusionMap.

In the second case, if the sigma parameter is just a number, the resulting Sigmas object has all slots except of optimal_sigma set to NULL.

Value

Sigmas creates an object of the same class

optimal_sigma retrieves the numeric value of the optimal sigma or local sigmas

Slots

log_sigmas

Vector of length mm containing the log10\log_{10} of the σ\sigmas

dim_norms

Vector of length m1m-1 containing the average dimensionality p\langle p \rangle for the respective kernel widths

optimal_sigma

Multiple local sigmas or the mean of the two global σ\sigmas around the highest p\langle p \rangle (c(optimal_idx, optimal_idx+1L))

optimal_idx

The index of the highest p\langle p \rangle.

avrd_norms

Vector of length mm containing the average dimensionality for the corresponding sigma.

See Also

find_sigmas, the function to determine a locally optimal sigma and returning this class

Examples

data(guo)
sigs <- find_sigmas(guo, verbose = FALSE)
optimal_sigma(sigs)
print(sigs)

Update old destiny objects to a newer version.

Description

Handles DiffusionMap, Sigmas, and GeneRelevance.

Usage

## S4 method for signature 'DiffusionMap'
updateObject(object, ..., verbose = FALSE)

## S4 method for signature 'Sigmas'
updateObject(object, ..., verbose = FALSE)

## S4 method for signature 'GeneRelevance'
updateObject(object, ..., verbose = FALSE)

Arguments

object

An object created with an older destiny release

...

ignored

verbose

tells what is being updated

Value

A DiffusionMap or Sigmas object that is valid when used with the current destiny release