Non-linear dimensionality reduction techniques such as t-SNE (Maaten and Hinton 2008) and UMAP (McInnes, Healy, and Melville 2020) produce a
low-dimensional embedding that summarises the global structure of
high-dimensional data. These techniques can be particularly useful when
visualising high-dimensional data in a biological setting. However,
these embeddings may not accurately represent the local density of data
in the original space, resulting in misleading visualisations where the
space given to clusters of data does not represent the fraction of the
high dimensional space that they occupy. densvis
implements
the density-preserving objective function described by (Narayan, Berger, and Cho 2020) which aims to
address this deficiency by including a density-preserving term in the
t-SNE and UMAP optimisation procedures. This can enable the creation of
visualisations that accurately capture differing degrees of
transcriptional heterogeneity within different cell subpopulations in
scRNAseq experiments, for example.
We will illustrate the use of densvis using simulated data. We will
first load the densvis
and Rtsne
libraries and
set a random seed to ensure the t-SNE visualisation is reproducible
(note: it is good practice to ensure that a t-SNE embedding is robust by
running the algorithm multiple times).
library("densvis")
library("Rtsne")
library("uwot")
library("ggplot2")
theme_set(theme_bw())
set.seed(14)
data <- data.frame(
x = c(rnorm(1000, 5), rnorm(1000, 0, 0.2)),
y = c(rnorm(1000, 5), rnorm(1000, 0, 0.2)),
class = c(rep("Class 1", 1000), rep("Class 2", 1000))
)
ggplot() +
aes(data[, 1], data[, 2], colour = data$class) +
geom_point(pch = 19) +
scale_colour_discrete(name = "Cluster") +
ggtitle("Original co-ordinates")
Density-preserving t-SNE can be generated using the
densne
function. This function returns a matrix of t-SNE
co-ordinates. We set dens_frac
(the fraction of
optimisation steps that consider the density preservation) and
dens_lambda
(the weight given to density preservation
relative to the standard t-SNE objective) each to 0.5.
fit1 <- densne(data[, 1:2], dens_frac = 0.5, dens_lambda = 0.5)
ggplot() +
aes(fit1[, 1], fit1[, 2], colour = data$class) +
geom_point(pch = 19) +
scale_colour_discrete(name = "Class") +
ggtitle("Density-preserving t-SNE") +
labs(x = "t-SNE 1", y = "t-SNE 2")
If we run t-SNE on the same data, we can see that the density-preserving objective better represents the density of the data,
A density-preserving UMAP embedding can be generated using the
densmap
function. This function returns a matrix of UMAP
co-ordinates. As with t-SNE, we set dens_frac
(the fraction
of optimisation steps that consider the density preservation) and
dens_lambda
(the weight given to density preservation
relative to the standard t-SNE objective) each to 0.5.
fit1 <- densmap(data[, 1:2], dens_frac = 0.5, dens_lambda = 0.5)
ggplot() +
aes(fit1[, 1], fit1[, 2], colour = data$class) +
geom_point(pch = 19) +
scale_colour_discrete(name = "Class") +
ggtitle("Density-preserving t-SNE") +
labs(x = "t-SNE 1", y = "t-SNE 2")
If we run UMAP on the same data, we can see that the density-preserving objective better represents the density of the data,
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.5.1 uwot_0.2.2 Matrix_1.7-1 Rtsne_0.17
#> [5] densvis_1.17.0 BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.6 jsonlite_1.8.9 compiler_4.4.2
#> [4] BiocManager_1.30.25 filelock_1.0.3 Rcpp_1.0.13-1
#> [7] FNN_1.1.4.1 parallel_4.4.2 assertthat_0.2.1
#> [10] jquerylib_0.1.4 scales_1.3.0 png_0.1-8
#> [13] yaml_2.3.10 fastmap_1.2.0 reticulate_1.40.0
#> [16] lattice_0.22-6 R6_2.5.1 labeling_0.4.3
#> [19] knitr_1.49 tibble_3.2.1 maketools_1.3.1
#> [22] munsell_0.5.1 pillar_1.9.0 bslib_0.8.0
#> [25] rlang_1.1.4 utf8_1.2.4 cachem_1.1.0
#> [28] dir.expiry_1.15.0 xfun_0.49 sass_0.4.9
#> [31] sys_3.4.3 cli_3.6.3 withr_3.0.2
#> [34] magrittr_2.0.3 digest_0.6.37 grid_4.4.2
#> [37] basilisk_1.19.0 lifecycle_1.0.4 vctrs_0.6.5
#> [40] evaluate_1.0.1 glue_1.8.0 farver_2.1.2
#> [43] buildtools_1.0.0 fansi_1.0.6 colorspace_2.1-1
#> [46] rmarkdown_2.29 pkgconfig_2.0.3 basilisk.utils_1.19.0
#> [49] tools_4.4.2 htmltools_0.5.8.1