Package 'debrowser'

Title: Interactive Differential Expresion Analysis Browser
Description: Bioinformatics platform containing interactive plots and tables for differential gene and region expression studies. Allows visualizing expression data much more deeply in an interactive and faster way. By changing the parameters, users can easily discover different parts of the data that like never have been done before. Manually creating and looking these plots takes time. With DEBrowser users can prepare plots without writing any code. Differential expression, PCA and clustering analysis are made on site and the results are shown in various plots such as scatter, bar, box, volcano, ma plots and Heatmaps.
Authors: Alper Kucukural <[email protected]>, Onur Yukselen <[email protected]>, Manuel Garber <[email protected]>
Maintainer: Alper Kucukural <[email protected]>
License: GPL-3 + file LICENSE
Version: 1.35.0
Built: 2024-10-30 05:43:59 UTC
Source: https://github.com/bioc/debrowser

Help Index


Buttons including Action Buttons and Event Buttons

Description

Creates an action button whose value is initially zero, and increments by one each time it is pressed.

Usage

actionButtonDE(
  inputId,
  label,
  styleclass = "",
  size = "",
  block = FALSE,
  icon = NULL,
  css.class = "",
  ...
)

Arguments

inputId

Specifies the input slot that will be used to access the value.

label

The contents of the button–usually a text label, but you could also use any other HTML, like an image.

styleclass

The Bootstrap styling class of the button–options are primary, info, success, warning, danger, inverse, link or blank

size

The size of the button–options are large, small, mini

block

Whehter the button should fill the block

icon

Display an icon for the button

css.class

Any additional CSS class one wishes to add to the action button

...

Other argument to feed into shiny::actionButton

Examples

actionButtonDE("goDE", "Go to DE Analysis")

addDataCols

Description

add aditional data columns to de results

Usage

addDataCols(data = NULL, de_res = NULL, cols = NULL, conds = NULL)

Arguments

data

loaded dataset

de_res

de results

cols

columns

conds

inputconds

Value

data

Examples

x <- addDataCols()

addID

Description

Adds an id to the data frame being used.

Usage

addID(data = NULL)

Arguments

data

loaded dataset

Value

data

Examples

x <- addID()

all2all

Description

Prepares all2all scatter plots for given datasets.

Usage

all2all(data, cex = 2)

Arguments

data

data that have the sample names in the header.

cex

text size

Value

all2all scatter plots

Examples

plot<-all2all(mtcars)

all2allControlsUI

Description

Generates the controls in the left menu for an all2all plot

Usage

all2allControlsUI(id)

Arguments

id

namespace id

Value

returns the controls for left menu

Note

all2allControlsUI

Examples

x <- all2allControlsUI("bar")

applyFilters

Description

Applies filters based on user selected parameters to be displayed within the DEBrowser.

Usage

applyFilters(filt_data = NULL, cols = NULL, conds = NULL, input = NULL)

Arguments

filt_data

loaded dataset

cols

selected samples

conds

seleced conditions

input

input parameters

Value

data

Examples

x <- applyFilters()

applyFiltersNew

Description

Apply filters based on foldChange cutoff and padj value. This function adds a "Legend" column with "Up", "Down" or "NS" values for visualization.

Usage

applyFiltersNew(data = NULL, input = NULL)

Arguments

data

loaded dataset

input

input parameters

Value

data

Examples

x <- applyFiltersNew()

applyFiltersToMergedComparison

Description

Gathers the merged comparison data to be used within the DEBrowser.

Usage

applyFiltersToMergedComparison(dc = NULL, nc = NULL, input = NULL)

Arguments

dc

all data

nc

the number of comparisons

input

input params

Value

data

Examples

x <- applyFiltersToMergedComparison()

barMainPlotControlsUI

Description

Generates the controls in the left menu for a bar main plot

Usage

barMainPlotControlsUI(id)

Arguments

id

namespace id

Value

returns the controls for left menu

Note

barMainPlotControlsUI

Examples

x <- barMainPlotControlsUI("bar")

batchEffectUI Creates a panel to coorect batch effect

Description

batchEffectUI Creates a panel to coorect batch effect

Usage

batchEffectUI(id)

Arguments

id

namespace id

Value

panel

Examples

x <- batchEffectUI("batcheffect")

batchMethod

Description

select batch effect method

Usage

batchMethod(id)

Arguments

id

namespace id

Value

radio control

Note

batchMethod

Examples

x <- batchMethod("batch")

BoxMainPlotControlsUI

Description

Generates the controls in the left menu for a Box main plot

Usage

BoxMainPlotControlsUI(id)

Arguments

id

namespace id

Value

returns the controls for left menu

Note

BoxMainPlotControlsUI

Examples

x <- BoxMainPlotControlsUI("box")

changeClusterOrder

Description

change order of K-means clusters

Usage

changeClusterOrder(order = NULL, cld = NULL)

Arguments

order

order

cld

data

Value

heatmap plot area

Note

changeClusterOrder

Examples

x <- changeClusterOrder()

checkCountData

Description

Returns if there is a problem in the count data.

Usage

checkCountData(input = NULL)

Arguments

input

inputs

Value

error if there is a problem about the loaded data

Note

checkCountData

Examples

x <- checkCountData()

checkMetaData

Description

Returns if there is a problem in the count data.

Usage

checkMetaData(input = NULL, counttable = NULL)

Arguments

input

input

counttable

counttable

Value

error if there is a problem about the loaded data

Note

checkMetaData

Examples

x <- checkMetaData()

clusterData

Description

Gathers the Cluster analysis data to be used within the GO Term plots.

Usage

clusterData(dat = NULL)

Arguments

dat

the data to cluster

Value

clustered data

Note

clusterData

Examples

mycluster <- clusterData()

clustFunParamsUI

Description

get cluster function parameter control

Usage

clustFunParamsUI()

Value

cluster params

Note

clustFunParamsUI

Examples

x <- clustFunParamsUI()

compareClust

Description

Compares the clustered data to be displayed within the GO Term plots.

Usage

compareClust(
  dat = NULL,
  ont = "CC",
  org = "org.Hs.eg.db",
  fun = "enrichGO",
  title = "Ontology Distribution Comparison",
  pvalueCutoff = 0.01
)

Arguments

dat

data to compare clusters

ont

the ontology to use

org

the organism used

fun

fun

title

title of the comparison

pvalueCutoff

pvalueCutoff

Value

compared cluster

Note

compareClust

Examples

x <- compareClust()

condSelectUI Creates a panel to select samples for each condition

Description

condSelectUI Creates a panel to select samples for each condition

Usage

condSelectUI()

Value

panel

Examples

x <- condSelectUI()

Correct Batch Effect using Combat in sva package

Description

Batch effect correction

Usage

correctCombat(input = NULL, idata = NULL, metadata = NULL, method = NULL)

Arguments

input

input values

idata

data

metadata

metadata

method

method: either Combat or CombatSeq

Value

data

Examples

x<-correctCombat ()

Correct Batch Effect using Harman

Description

Batch effect correction

Usage

correctHarman(input = NULL, idata = NULL, metadata = NULL)

Arguments

input

input values

idata

data

metadata

metadata

Value

data

Examples

x<-correctHarman ()

customColorsUI

Description

get Custom Color controls

Usage

customColorsUI(id)

Arguments

id

namespace ID

Value

color range

Note

getColRng

Examples

x <- customColorsUI("heatmap")

cutOffSelectionUI

Description

Gathers the cut off selection for DE analysis

Usage

cutOffSelectionUI(id)

Arguments

id

namespace id

Value

returns the left menu according to the selected tab;

Note

cutOffSelectionUI

Examples

x <- cutOffSelectionUI("cutoff")

dataLCFUI Creates a panel to filter low count genes and regions

Description

dataLCFUI Creates a panel to filter low count genes and regions

Usage

dataLCFUI(id)

Arguments

id

namespace id

Value

panel

Examples

x <- dataLCFUI("lcf")

dataLoadUI

Description

Creates a panel to upload the data

Usage

dataLoadUI(id)

Arguments

id

namespace id

Value

panel

Examples

x <- dataLoadUI("load")

debrowserall2all

Description

Module for a bar plot that can be used in data prep, main plots low count removal modules or any desired module

Usage

debrowserall2all(input, output, session, data = NULL, cex = 2)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

cex

the size of the dots

Value

all2all plot

Examples

x <- debrowserall2all()

debrowserbarmainplot

Description

Module for a bar plot that can be used in data prep, main plots low count removal modules or any desired module

Usage

debrowserbarmainplot(
  input,
  output,
  session,
  data = NULL,
  cols = NULL,
  conds = NULL,
  cond_names = NULL,
  key = NULL
)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

cols

columns

conds

conditions

cond_names

condition names

key

the gene or region name

Value

density plot

Examples

x <- debrowserbarmainplot()

debrowserbatcheffect

Description

Module to correct batch effect

Usage

debrowserbatcheffect(input, output, session, ldata = NULL)

Arguments

input

input variables

output

output objects

session

session

ldata

loaded data

Value

main plot

panel

Examples

x <- debrowserbatcheffect()

debrowserboxmainplot

Description

Module for a box plot that can be used in DEanalysis main part and used heatmaps

Usage

debrowserboxmainplot(
  input = NULL,
  output = NULL,
  session = NULL,
  data = NULL,
  cols = NULL,
  conds = NULL,
  cond_names = NULL,
  key = NULL
)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

cols

columns

conds

conditions

cond_names

condition names

key

the gene or region name

Value

density plot

Examples

x <- debrowserboxmainplot()

debrowsercondselect

Description

Condition selection This is not a module. Module construction didn't used here, just use it as functions not in a module.

Usage

debrowsercondselect(
  input = NULL,
  output = NULL,
  session = NULL,
  data = NULL,
  metadata = NULL
)

Arguments

input

input variables

output

output objects

session

session

data

count data

metadata

metadata

Value

main plot

panel

Examples

x <- debrowsercondselect()

debrowserdataload

Description

Module to load count data and metadata

Usage

debrowserdataload(
  input = NULL,
  output = NULL,
  session = NULL,
  nextpagebutton = NULL
)

Arguments

input

input variables

output

output objects

session

session

nextpagebutton

the name of the next page button after loading the data

Value

main plot

panel

Examples

x <- debrowserdataload()

debrowserdeanalysis

Description

Module to perform and visualize DE results.

Usage

debrowserdeanalysis(
  input = NULL,
  output = NULL,
  session = NULL,
  data = NULL,
  metadata = NULL,
  columns = NULL,
  conds = NULL,
  params = NULL
)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

metadata

metadata

columns

columns

conds

conditions

params

de parameters

Value

DE panel

Examples

x <- debrowserdeanalysis()

debrowserdensityplot

Description

Module for a density plot that can be used in data prep and low count removal modules

Usage

debrowserdensityplot(input = NULL, output = NULL, session = NULL, data = NULL)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

Value

density plot

Examples

x <- debrowserdensityplot()

debrowserheatmap

Description

Heatmap module to create interactive heatmaps and get selected list from a heatmap

Usage

debrowserheatmap(input, output, session, expdata = NULL)

Arguments

input

input variables

output

output objects

session

session

expdata

a matrix that includes expression values

Value

heatmapply plot

Examples

x <- debrowserheatmap()

debrowserhistogram

Description

Module for a histogram that can be used in data prep and low count removal modules

Usage

debrowserhistogram(input = NULL, output = NULL, session = NULL, data = NULL)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

Value

histogram

Examples

x <- debrowserhistogram()

debrowserIQRplot

Description

Module for an IQR plot that can be used in data prep and low count removal modules

Usage

debrowserIQRplot(input = NULL, output = NULL, session = NULL, data = NULL)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

Value

IQR

Examples

x <- debrowserIQRplot()

debrowserlowcountfilter

Description

Module to filter low count genes/regions

Usage

debrowserlowcountfilter(
  input = NULL,
  output = NULL,
  session = NULL,
  ldata = NULL
)

Arguments

input

input variables

output

output objects

session

session

ldata

loaded data

Value

main plot

panel

Examples

x <- debrowserlowcountfilter()

debrowsermainplot

Description

Module for a scatter, volcano and ma plots that are going to be used as a mainplot in debrowser

Usage

debrowsermainplot(
  input = NULL,
  output = NULL,
  session = NULL,
  data = NULL,
  cond_names = NULL
)

Arguments

input

input variables

output

output objects

session

session

data

a matrix that includes expression values

cond_names

condition names

Value

main plot

panel

Examples

x <- debrowsermainplot()

debrowserpcaplot

Description

Module for a pca plot with its loadings as a mainplot in debrowser

Usage

debrowserpcaplot(
  input = NULL,
  output = NULL,
  session = NULL,
  pcadata = NULL,
  metadata = NULL
)

Arguments

input

input variables

output

output objects

session

session

pcadata

a matrix that includes expression values

metadata

metadata to color the plots

Value

main plot

panel

Examples

x <- debrowserpcaplot()

dendControlsUI

Description

get distance metric parameters

Usage

dendControlsUI(id, dendtype = "Row")

Arguments

id

module ID

dendtype

Row or Col

Value

controls

Note

dendControlsUI

Examples

x <- dendControlsUI("heatmap")

densityPlotControlsUI

Description

Generates the controls in the left menu for a densityPlot

Usage

densityPlotControlsUI(id)

Arguments

id

namespace id

Value

returns the left menu

Note

densityPlotControlsUI

Examples

x <- densityPlotControlsUI("density")

deServer

Description

Sets up shinyServer to be able to run DEBrowser interactively.

Usage

deServer(input, output, session)

Arguments

input

input params from UI

output

output params to UI

session

session variable

Value

the panel for main plots;

Note

deServer

Examples

deServer

deUI

Description

Creates a shinyUI to be able to run DEBrowser interactively.

Usage

deUI()

Value

the panel for main plots;

Note

deUI

Examples

x<-deUI()

distFunParamsUI

Description

get distance metric parameters

Usage

distFunParamsUI()

Value

funParams

Note

distFunParamsUI

Examples

x <- distFunParamsUI()

drawKEGG

Description

draw KEGG patwhay with expression values

Usage

drawKEGG(input = NULL, dat = NULL, pid = NULL)

Arguments

input

input

dat

expression matrix

pid

pathway id

Value

enriched DO

Note

drawKEGG

Examples

x <- drawKEGG()

Creates a more detailed plot using the PCA results from the selected dataset.

Description

Creates a more detailed plot using the PCA results from the selected dataset.

Usage

drawPCAExplained(explainedData = NULL)

Arguments

explainedData

selected data

Value

explained plot

Examples

x <- drawPCAExplained()

fileTypes

Description

Returns fileTypes that are going to be used in creating fileUpload UI

Usage

fileTypes()

Value

file types

Note

fileTypes

Examples

x <- fileTypes()

fileUploadBox

Description

File upload module

Usage

fileUploadBox(id = NULL, inputId = NULL, label = NULL)

Arguments

id

namespace id

inputId

input file ID

label

label

Value

radio control

Note

fileUploadBox

Examples

x <- fileUploadBox("meta", "metadata", "Metadata")

generateTestData

Description

This generates a test data that is suitable to main plots in debrowser

Usage

generateTestData(dat = NULL)

Arguments

dat

DESeq results will be generated for loaded data

Value

testData

Examples

x <- generateTestData()

get_conditions_given_selection

Description

Return the two set of conditions given the selection of meta select box

Usage

get_conditions_given_selection(metadata = NULL, selection = NULL)

Arguments

metadata

meta data table

selection

selection

Value

meta select box

Examples

x<-get_conditions_given_selection()

getAfterLoadMsg

Description

Generates and displays the message to be shown after loading data within the DEBrowser.

Usage

getAfterLoadMsg()

Value

return After Load Msg

Note

getAfterLoadMsg

Examples

x <- getAfterLoadMsg()

getAll2AllPlotUI

Description

all2all plots UI.

Usage

getAll2AllPlotUI(id)

Arguments

id

namespace id

Value

the panel for all2all plots;

Note

getAll2AllPlotUI

Examples

x <- getAll2AllPlotUI("bar")

getBarMainPlot

Description

Makes Density plots

Usage

getBarMainPlot(
  data = NULL,
  cols = NULL,
  conds = NULL,
  cond_names = NULL,
  key = NULL,
  title = "",
  input = NULL
)

Arguments

data

count or normalized data

cols

cols

conds

conds

cond_names

condition names

key

key

title

title

input

input

Examples

getBarMainPlot()

getBarMainPlotUI

Description

main bar plots UI.

Usage

getBarMainPlotUI(id)

Arguments

id

namespace id

Value

the panel for Density plots;

Note

getBarMainPlotUI

Examples

x <- getBarMainPlotUI("bar")

getBoxMainPlot

Description

Makes Density plots

Usage

getBoxMainPlot(
  data = NULL,
  cols = NULL,
  conds = NULL,
  cond_names = NULL,
  key = NULL,
  title = "",
  input = NULL
)

Arguments

data

count or normalized data

cols

cols

conds

conds

cond_names

condition names

key

key

title

title

input

input

Examples

getBoxMainPlot()

getBoxMainPlotUI

Description

main Box plots UI.

Usage

getBoxMainPlotUI(id)

Arguments

id

namespace id

Value

the panel for Density plots;

Note

getBoxMainPlotUI

Examples

x <- getBoxMainPlotUI("box")

getBSTableUI prepares a Modal to put a table

Description

getBSTableUI prepares a Modal to put a table

Usage

getBSTableUI(
  name = NULL,
  label = NULL,
  trigger = NULL,
  size = "large",
  modal = NULL
)

Arguments

name

name

label

label

trigger

trigger button for the modal

size

size of the modal

modal

modal yes/no

Value

the modal

Examples

x<- getBSTableUI()

getColors

Description

get colors for the domains

Usage

getColors(domains = NULL)

Arguments

domains

domains to be colored

Value

colors

Examples

x<-getColors()

getColorShapeSelection

Description

Generates the fill and shape selection boxes for PCA plots. metadata file has to be loaded in this case

Usage

getColorShapeSelection(metadata = NULL, input = NULL, session = NULL)

Arguments

metadata

metadata table

input

input

session

session

Value

Color and shape selection boxes

Examples

x <- getColorShapeSelection()

getCompSelection

Description

Gathers the user selected comparison set to be used within the DEBrowser.

Usage

getCompSelection(name = NULL, count = NULL)

Arguments

name

the name of the selectInput

count

comparison count

Note

getCompSelection

Examples

x <- getCompSelection(name="comp", count = 2)

getConditionSelector

Description

Selects user input conditions to run in DESeq.

Usage

getConditionSelector(num = NULL, choices = NULL, selected = NULL)

Arguments

num

panel that is going to be shown

choices

sample list

selected

selected smaple list

Examples

x <- getConditionSelector()

getConditionSelectorFromMeta

Description

Selects user input conditions to run in DESeq from metadata

Usage

getConditionSelectorFromMeta(
  metadata = NULL,
  input = NULL,
  index = 1,
  num = 0,
  choices = NULL,
  selected = NULL
)

Arguments

metadata

meta data table

input

input

index

index

num

num

choices

choices

selected

selected

Examples

x <- getConditionSelectorFromMeta()

getCondMsg

Description

Generates and displays the current conditions and their samples within the DEBrowser.

Usage

getCondMsg(dc = NULL, input = NULL, cols = NULL, conds = NULL)

Arguments

dc

columns

input

selected comparison

cols

columns

conds

selected conditions

Value

return conditions

Note

getCondMsg

Examples

x <- getCondMsg()

getCovariateDetails

Description

get the covariate detail box after DE method selected

Usage

getCovariateDetails(num = NULL, input = NULL, metadata = NULL)

Arguments

num

panel that is going to be shown

input

user input

metadata

metadata

Examples

x <- getCovariateDetails()

getCutOffSelection

Description

Gathers the cut off selection for DE analysis

Usage

getCutOffSelection(nc = 1)

Arguments

nc

total number of comparisons

Value

returns the left menu according to the selected tab;

Note

getCutOffSelection

Examples

x <- getCutOffSelection()

getDataAssesmentText DataAssesment text

Description

getDataAssesmentText DataAssesment text

Usage

getDataAssesmentText()

Value

help text for data assesment

Examples

x<- getDataAssesmentText()

getDataForTables get data to fill up tables tab

Description

getDataForTables get data to fill up tables tab

Usage

getDataForTables(
  input = NULL,
  init_data = NULL,
  filt_data = NULL,
  selected = NULL,
  getMostVaried = NULL,
  mergedComp = NULL,
  explainedData = NULL
)

Arguments

input

input parameters

init_data

initial dataset

filt_data

filt_data

selected

selected genes

getMostVaried

most varied genes

mergedComp

merged comparison set

explainedData

pca gene set

Value

data

Examples

x <- getDataForTables()

getDataPreparationText DataPreparation text

Description

getDataPreparationText DataPreparation text

Usage

getDataPreparationText()

Value

help text for data preparation

Examples

x<- getDataPreparationText()

getDEAnalysisText DEAnalysis text

Description

getDEAnalysisText DEAnalysis text

Usage

getDEAnalysisText()

Value

help text for DE Analysis

Examples

x<- getDEAnalysisText()

getDensityPlot

Description

Makes Density plots

Usage

getDensityPlot(data = NULL, input = NULL, title = "")

Arguments

data

count or normalized data

input

input

title

title

Examples

getDensityPlot()

getDensityPlotUI

Description

Density plot UI.

Usage

getDensityPlotUI(id)

Arguments

id

namespace id

Value

the panel for Density plots;

Note

getDensityPlotUI

Examples

x <- getDensityPlotUI("density")

getDEResultsUI Creates a panel to visualize DE results

Description

getDEResultsUI Creates a panel to visualize DE results

Usage

getDEResultsUI(id)

Arguments

id

namespace id

Value

panel

Examples

x <- getDEResultsUI("batcheffect")

getDomains

Description

Get domains for the main plots.

Usage

getDomains(filt_data = NULL)

Arguments

filt_data

data to get the domains

Value

domains

Examples

x<-getDomains()

getDown get down regulated data

Description

getDown get down regulated data

Usage

getDown(filt_data = NULL)

Arguments

filt_data

filt_data

Value

data

Examples

x <- getDown()

getDownloadSection

Description

download section button and dataset selection box in the menu for user to download selected data.

Usage

getDownloadSection(choices = NULL)

Arguments

choices

main vs. QC section

Value

the panel for download section in the menu;

Note

getDownloadSection

Examples

x<- getDownloadSection()

getEnrichDO

Description

Gathers the Enriched DO Term analysis data to be used within the GO Term plots.

Usage

getEnrichDO(genelist = NULL, pvalueCutoff = 0.01)

Arguments

genelist

gene list

pvalueCutoff

the p value cutoff

Value

enriched DO

Note

getEnrichDO

Examples

x <- getEnrichDO()

getEnrichGO

Description

Gathers the Enriched GO Term analysis data to be used within the GO Term plots.

Usage

getEnrichGO(
  genelist = NULL,
  pvalueCutoff = 0.01,
  org = "org.Hs.eg.db",
  ont = "CC"
)

Arguments

genelist

gene list

pvalueCutoff

p value cutoff

org

the organism used

ont

the ontology used

Value

Enriched GO

Note

getEnrichGO

Examples

x <- getEnrichGO()

getEnrichKEGG

Description

Gathers the Enriched KEGG analysis data to be used within the GO Term plots.

Usage

getEnrichKEGG(genelist = NULL, pvalueCutoff = 0.01, org = "org.Hs.eg.db")

Arguments

genelist

gene list

pvalueCutoff

the p value cutoff

org

the organism used

Value

Enriched KEGG

Note

getEnrichKEGG

Examples

x <- getEnrichKEGG()

getEntrezIds

Description

Gathers the gene list to use for GOTerm analysis.

Usage

getEntrezIds(genes = NULL, org = "org.Hs.eg.db")

Arguments

genes

gene list with fold changes

org

orgranism for gene symbol entrez ID conversion

Value

ENTREZ ID list

Note

GOTerm

getEntrezIds symobol to ENTREZ ID conversion

Examples

x <- getEntrezIds()

getEntrezTable

Description

Gathers the entrezIds of the genes in given list and their data

Usage

getEntrezTable(genes = NULL, dat = NULL, org = "org.Hs.eg.db")

Arguments

genes

gene list

dat

data matrix

org

orgranism for gene symbol entrez ID conversion

Value

table with the entrez IDs in the rownames

Note

GOTerm

getEntrezTable symobol to ENTREZ ID conversion

Examples

x <- getEntrezTable()

getGeneList

Description

Gathers the gene list to use for GOTerm analysis.

Usage

getGeneList(
  genes = NULL,
  org = "org.Hs.eg.db",
  fromType = "SYMBOL",
  toType = c("ENTREZID")
)

Arguments

genes

gene list

org

orgranism for gene symbol entrez ID conversion

fromType

from Type

toType

to Type

Value

ENTREZ ID list

Note

GOTerm

getGeneList symobol to ENTREZ ID conversion

Examples

x <- getGeneList(c('OCLN', 'ABCC2'))

getGeneSetData

Description

Gathers the specified gene set list to be used within the DEBrowser.

Usage

getGeneSetData(data = NULL, geneset = NULL)

Arguments

data

loaded dataset

geneset

given gene set

Value

data

Examples

x <- getGeneSetData()

getGOLeftMenu

Description

Generates the GO Left menu to be displayed within the DEBrowser.

Usage

getGOLeftMenu()

Value

returns the left menu according to the selected tab;

Note

getGOLeftMenu

Examples

x <- getGOLeftMenu()

getGoPanel

Description

Creates go term analysis panel within the shiny display.

Usage

getGoPanel()

Value

the panel for go term analysis;

Note

getGoPanel

Examples

x <- getGoPanel()

getGOPlots

Description

Go term analysis panel. Generates appropriate GO plot based on user selection.

Usage

getGOPlots(dataset = NULL, GSEARes = NULL, input = NULL)

Arguments

dataset

the dataset used

GSEARes

GSEA results

input

input params

Value

the panel for go plots;

Note

getGOPlots

Examples

x<- getGOPlots()

getGroupSelector Return the groups

Description

getGroupSelector Return the groups

Usage

getGroupSelector(metadata = NULL, input = NULL, index = 1, num = 0)

Arguments

metadata

meta data table

input

input params

index

index

num

num

Value

meta select box

Examples

x<-getGroupSelector()

getGSEA

Description

Gathers the Enriched KEGG analysis data to be used within the GO Term plots.

Usage

getGSEA(
  dataset = NULL,
  pvalueCutoff = 0.01,
  org = "org.Hs.eg.db",
  sortfield = "log2FoldChange"
)

Arguments

dataset

dataset

pvalueCutoff

the p value cutoff

org

the organism used

sortfield

sort field for GSEA

Value

GSEA

Note

getGSEA

Examples

x <- getGSEA()

getHeatmapUI

Description

Generates the left menu to be used for heatmap plots

Usage

getHeatmapUI(id)

Arguments

id

module ID

Value

heatmap plot area

Note

getHeatmapUI

Examples

x <- getHeatmapUI("heatmap")

getHelpButton prepares a helpbutton for to go to a specific site in the documentation

Description

getHelpButton prepares a helpbutton for to go to a specific site in the documentation

Usage

getHelpButton(name = NULL, link = NULL)

Arguments

name

name that are going to come after info

link

link of the help

Value

the info button

Examples

x<- getHelpButton()

getHideLegendOnOff

Description

hide legend

Usage

getHideLegendOnOff(id = "pca")

Arguments

id

namespace id

Examples

x <- getHideLegendOnOff("pca")

getHistogramUI

Description

Histogram plots UI.

Usage

getHistogramUI(id)

Arguments

id

namespace id

Value

the panel for PCA plots;

Note

getHistogramUI

Examples

x <- getHistogramUI("histogram")

getIntroText Intro text

Description

getIntroText Intro text

Usage

getIntroText()

Value

the JS for tab updates

Examples

x<- getIntroText()

getIQRPlot

Description

Makes IQR boxplot plot

Usage

getIQRPlot(data = NULL, input = NULL, title = "")

Arguments

data

count or normalized data

input

input

title

title

Examples

getIQRPlot()

getIQRPlotUI

Description

IQR plot UI.

Usage

getIQRPlotUI(id)

Arguments

id

namespace id

Value

the panel for IQR plots;

Note

getIQRPlotUI

Examples

x <- getIQRPlotUI("IQR")

getJSLine

Description

heatmap JS code for selection functionality

Usage

getJSLine()

Value

JS Code

Examples

x <- getJSLine()

getKEGGModal prepares a modal for KEGG plots

Description

getKEGGModal prepares a modal for KEGG plots

getKEGGModal prepares a helpbutton for to go to a specific site in the documentation

Usage

getKEGGModal()

getKEGGModal()

Value

the info button

the info button

Examples

x<- getKEGGModal()

    x<- getKEGGModal()

getLeftMenu

Description

Generates the left menu for for plots within the DEBrowser.

Usage

getLeftMenu(input = NULL)

Arguments

input

input values

Value

returns the left menu according to the selected tab;

Note

getLeftMenu

Examples

x <- getLeftMenu()

getLegendColors

Description

Generates colors according to the data

Usage

getLegendColors(Legend = c("up", "down", "NS"))

Arguments

Legend

unique Legends

Value

mainPlotControls

Note

getLegendColors

Examples

x <- getLegendColors(c("up", "down", "GS", "NS"))

getLegendRadio

Description

Radio buttons for the types in the legend

Usage

getLegendRadio(id)

Arguments

id

namespace id

Value

radio control

Note

getLegendRadio

Examples

x <- getLegendRadio("deprog")

getLegendSelect

Description

select legend

Usage

getLegendSelect(id = "pca")

Arguments

id

namespace id

Note

getLegendSelect

Examples

x <- getLegendSelect("pca")

getLevelOrder

Description

Generates the order of the overlapping points

Usage

getLevelOrder(Level = c("up", "down", "NS"))

Arguments

Level

factor levels shown in the legend

Value

order

Note

getLevelOrder

Examples

x <- getLevelOrder(c("up", "down", "GS", "NS"))

getLoadingMsg

Description

Creates and displays the loading message/gif to be displayed within the DEBrowser.

Usage

getLoadingMsg(output = NULL)

Arguments

output

output message

Value

loading msg

Note

getLoadingMsg

Examples

x <- getLoadingMsg()

getMainPanel

Description

main panel for volcano, scatter and maplot. Barplot and box plots are in this page as well.

Usage

getMainPanel()

Value

the panel for main plots;

Note

getMainPanel

Examples

x <- getMainPanel()

getMainPlotsLeftMenu

Description

Generates the Main PLots Left menu to be displayed within the DEBrowser.

Usage

getMainPlotsLeftMenu()

Value

returns the left menu according to the selected tab;

Note

getMainPlotsLeftMenu

Examples

x <- getMainPlotsLeftMenu()

getMainPlotUI

Description

main plot for volcano, scatter and maplot.

Usage

getMainPlotUI(id)

Arguments

id

namespace id

Value

the panel for main plots;

Note

getMainPlotUI

Examples

x <- getMainPlotUI("main")

getMean

Description

Gathers the mean for selected condition.

Usage

getMean(data = NULL, selcols = NULL)

Arguments

data

dataset

selcols

input cols

Value

data

Examples

x <- getMean()

getMergedComparison

Description

Gathers the merged comparison data to be used within the DEBrowser.

Usage

getMergedComparison(dc = NULL, nc = NULL, input = NULL)

Arguments

dc

data container

nc

the number of comparisons

input

input params

Value

data

Examples

x <- getMergedComparison()

getMetaSelector

Description

Return the sample selection box using meta data table

Usage

getMetaSelector(metadata = NULL, input = NULL, n = 0)

Arguments

metadata

meta data table

input

input params

n

the box number

Value

meta select box

Examples

x<-getMetaSelector()

get the detail boxes after DE method selected

Description

get the detail boxes after DE method selected

Usage

getMethodDetails(num = NULL, input = NULL)

Arguments

num

panel that is going to be shown

input

user input

Examples

x <- getMethodDetails()

getMostVariedList

Description

Calculates the most varied genes to be used for specific plots within the DEBrowser.

Usage

getMostVariedList(datavar = NULL, cols = NULL, input = NULL)

Arguments

datavar

loaded dataset

cols

selected columns

input

input

Value

data

Examples

x <- getMostVariedList()

getNormalizedMatrix

Description

Normalizes the matrix passed to be used within various methods within DEBrowser. Requires edgeR package

Usage

getNormalizedMatrix(M = NULL, method = "TMM")

Arguments

M

numeric matrix

method

normalization method for edgeR. default is TMM

Value

normalized matrix

Note

getNormalizedMatrix

Examples

x <- getNormalizedMatrix(mtcars)

getOrganism

Description

getOrganism

Usage

getOrganism(org)

Arguments

org

organism

Value

organism name for keg

Note

getOrganism

Examples

x <- getOrganism()

getOrganismBox

Description

Get the organism Box.

Usage

getOrganismBox()

Value

selectInput

Note

getOrganismBox

getOrganismBox makes the organism box

Examples

x <- getOrganismBox()

getOrganismPathway

Description

getOrganismPathway

Usage

getOrganismPathway(org)

Arguments

org

organism

Value

organism name for pathway

Note

getOrganismPathway

Examples

x <- getOrganismPathway()

getPCAcontolUpdatesJS in the prep menu we have two PCA plots to show how batch effect correction worked. One set of PCA input controls updates two PCA plots with this JS.

Description

getPCAcontolUpdatesJS in the prep menu we have two PCA plots to show how batch effect correction worked. One set of PCA input controls updates two PCA plots with this JS.

Usage

getPCAcontolUpdatesJS()

Value

the JS for tab updates

Examples

x<- getTabUpdateJS()

getPCAexplained

Description

Creates a more detailed plot using the PCA results from the selected dataset.

Usage

getPCAexplained(datasetInput = NULL, pca_data = NULL, input = NULL)

Arguments

datasetInput

selected data

pca_data

from user

input

input params

Value

explained plot

Examples

load(system.file("extdata", "demo", "demodata.Rda", package="debrowser"))
input<-c()
input$qcplot<-"pca"
input$col_list<-colnames(demodata[,1:6])
dat <- getNormalizedMatrix(demodata[,1:6])
pca_data <- run_pca(dat)
x <- getPCAexplained(dat, pca_data, input)

getPCAPlotUI

Description

PCA plots UI.

Usage

getPCAPlotUI(id)

Arguments

id

namespace id

Value

the panel for PCA plots;

Note

getPCAPlotUI

Examples

x <- getPCAPlotUI("pca")

getPCselection

Description

Generates the PC selection number to be used within DEBrowser.

Usage

getPCselection(id, num = 1, xy = "x")

Arguments

id

namespace id

num

PC selection number

xy

x or y coordinate

Value

PC selection for PCA analysis

Note

getPCselection

Examples

x <- getPCselection("pca")

getPlotArea

Description

returns plot area either for heatmaply or heatmap.2

Usage

getPlotArea(input = NULL, session = NULL)

Arguments

input

input variables

session

session

Value

heatmapply/heatmap.2 plot area

Examples

x <- getPlotArea()

getProgramTitle

Description

Generates the title of the program to be displayed within DEBrowser. If it is called in a program, the program title will be hidden

Usage

getProgramTitle(session = NULL)

Arguments

session

session var

Value

program title

Note

getProgramTitle

Examples

title<-getProgramTitle()

getQAText Some questions and answers

Description

getQAText Some questions and answers

Usage

getQAText()

Value

help text for QA

Examples

x<- getQAText()

getQCLeftMenu

Description

Generates the left menu to be used for QC plots within the DEBrowser.

Usage

getQCLeftMenu(input = NULL)

Arguments

input

input values

Value

QC left menu

Note

getQCLeftMenu

Examples

x <- getQCLeftMenu()

getQCPanel

Description

Gathers the conditional panel for QC plots

Usage

getQCPanel(input = NULL)

Arguments

input

user input

Value

the panel for QC plots

Note

getQCSection

Examples

x <- getQCPanel()

getSampleDetails

Description

get sample details

Usage

getSampleDetails(output = NULL, summary = NULL, details = NULL, data = NULL)

Arguments

output

output

summary

summary output name

details

details ouput name

data

data

Value

panel

Examples

x <- getSampleDetails()

getSampleNames

Description

Prepares initial samples to fill condition boxes. it reads the sample names from the data and splits into two.

Usage

getSampleNames(cnames = NULL, part = 1)

Arguments

cnames

sample names in the header of a dataset

part

c(1,2). 1=first half and 2= second half

Value

sample names.

Examples

x<-getSampleNames()

getSearchData

Description

search the geneset in the tables and return it

Usage

getSearchData(dat = NULL, input = NULL)

Arguments

dat

table data

input

input params

Value

data

Examples

x <- getSearchData()

getSelectedCols

Description

gets selected columns

Usage

getSelectedCols(data = NULL, datasetInput = NULL, input = NULL)

Arguments

data

all loaded data

datasetInput

selected dataset

input

user input params

Examples

getSelectedCols()

getSelectedDatasetInput

Description

Gathers the user selected dataset output to be displayed.

Usage

getSelectedDatasetInput(
  rdata = NULL,
  getSelected = NULL,
  getMostVaried = NULL,
  mergedComparison = NULL,
  input = NULL
)

Arguments

rdata

filtered dataset

getSelected

selected data

getMostVaried

most varied data

mergedComparison

merged comparison data

input

input parameters

Value

data

Examples

x <- getSelectedDatasetInput()

getSelectInputBox

Description

Selects user input conditions to run in DESeq.

Usage

getSelectInputBox(
  id = NULL,
  name = NULL,
  num = 0,
  choices = NULL,
  selected = NULL,
  cw = 2,
  multiple = FALSE
)

Arguments

id

input id

name

label of the box

num

panel that is going to be shown

choices

sample list

selected

selected smaple list

cw

column width

multiple

if multiple choices are available

Examples

x <- getSelectInputBox()

getSelHeat

Description

heatmap selection functionality

Usage

getSelHeat(expdata = NULL, input = NULL)

Arguments

expdata

selected genes

input

input params

Value

plot

Examples

x <- getSelHeat()

getShapeColor

Description

Generates the fill and shape selection boxes for PCA plots. metadata file has to be loaded in this case

Usage

getShapeColor(input = NULL)

Arguments

input

input values

Value

Color and shape from selection boxes or defaults

Examples

x <- getShapeColor()

getStartPlotsMsg

Description

Generates and displays the starting messgae to be shown once the user has first seen the main plots page within DEBrowser.

Usage

getStartPlotsMsg()

Value

return start plot msg

Note

getStartPlotsMsg

Examples

x <- getStartPlotsMsg()

getStartupMsg

Description

Generates and displays the starting message within DEBrowser.

Usage

getStartupMsg()

Value

return startup msg

Note

getStartupMsg

Examples

x <- getStartupMsg()

getTableDetails

Description

get table details To be able to put a table into two lines are necessary; into the server part; getTableDetails(output, session, "dataname", data, modal=TRUE) into the ui part; uiOutput(ns("dataname"))

Usage

getTableDetails(
  output = NULL,
  session = NULL,
  tablename = NULL,
  data = NULL,
  modal = NULL
)

Arguments

output

output

session

session

tablename

table name

data

matrix data

modal

if it is true, the matrix is going to be in a modal

Value

panel

Examples

x <- getTableDetails()

getTableModal prepares table modal for KEGG

Description

getTableModal prepares table modal for KEGG

Usage

getTableModal()

Value

the info button

Examples

x<- getTableModal()

getTableStyle

Description

User defined selection that selects the style of table to display within the DEBrowser.

Usage

getTableStyle(
  dat = NULL,
  input = NULL,
  padj = c("padj"),
  foldChange = c("foldChange"),
  DEsection = TRUE
)

Arguments

dat

dataset

input

input params

padj

the name of the padj value column in the dataset

foldChange

the name of the foldChange column in the dataset

DEsection

if it is in DESection or not

Note

getTableStyle

Examples

x <- getTableStyle()

getTabUpdateJS prepmenu tab and discovery menu tab updates

Description

getTabUpdateJS prepmenu tab and discovery menu tab updates

Usage

getTabUpdateJS()

Value

the JS for tab updates

Examples

x<- getTabUpdateJS()

getUp get up regulated data

Description

getUp get up regulated data

Usage

getUp(filt_data = NULL)

Arguments

filt_data

filt_data

Value

data

Examples

x <- getUp()

getUpDown get up+down regulated data

Description

getUpDown get up+down regulated data

Usage

getUpDown(filt_data = NULL)

Arguments

filt_data

filt_data

Value

data

Examples

x <- getUpDown()

getVariationData

Description

Adds an id to the data frame being used.

Usage

getVariationData(inputdata = NULL, cols = NULL, conds = NULL, key = NULL)

Arguments

inputdata

dataset

cols

columns

conds

conditions

key

gene or region name

Value

plotdata

Examples

x <- getVariationData()

heatmapControlsUI

Description

Generates the left menu to be used for heatmap plots

Usage

heatmapControlsUI(id)

Arguments

id

module ID

Value

HeatmapControls

Note

heatmapControlsUI

Examples

x <- heatmapControlsUI("heatmap")

heatmapJScode

Description

heatmap JS code for selection functionality

Usage

heatmapJScode()

Value

JS Code

Examples

x <- heatmapJScode()

heatmapServer

Description

Sets up shinyServer to be able to run heatmapServer interactively.

Usage

heatmapServer(input, output, session)

Arguments

input

input params from UI

output

output params to UI

session

session variable

Value

the panel for main plots;

Note

heatmapServer

Examples

heatmapServer

heatmapUI

Description

Creates a shinyUI to be able to run DEBrowser interactively.

Usage

heatmapUI(input, output, session)

Arguments

input

input variables

output

output objects

session

session

Value

the panel for heatmapUI;

Note

heatmapUI

Examples

x<-heatmapUI()

hideObj

Description

Hides a shiny object.

Usage

hideObj(btns = NULL)

Arguments

btns

hide group of objects with shinyjs

Examples

x <- hideObj()

histogramControlsUI

Description

Generates the controls in the left menu for a histogram

Usage

histogramControlsUI(id)

Arguments

id

namespace id

Value

returns the left menu

Note

histogramControlsUI

Examples

x <- histogramControlsUI("histogram")

installpack

Description

install packages if they don't exist display.

Usage

installpack(package_name = NULL)

Arguments

package_name

package name to be installed

Note

installpack

Examples

x <- installpack()

IQRPlotControlsUI

Description

Generates the controls in the left menu for an IQR plot#'

Usage

IQRPlotControlsUI(id)

Arguments

id

namespace id

Value

returns the left menu

Note

IQRPlotControlsUI

Examples

x <- IQRPlotControlsUI("IQR")

kmeansControlsUI

Description

get kmeans controls

Usage

kmeansControlsUI(id)

Arguments

id

module ID

Value

controls

Note

kmeansControlsUI

Examples

x <- kmeansControlsUI("heatmap")

lcfMetRadio

Description

Radio buttons for low count removal methods

Usage

lcfMetRadio(id)

Arguments

id

namespace id

Value

radio control

Note

lcfMetRadio

Examples

x <- lcfMetRadio("lcf")

loadpack

Description

load packages

Usage

loadpack(package_name = NULL)

Arguments

package_name

package name to be loaded

Note

loadpack

Examples

x <- loadpack()

mainPlotControlsUI

Description

Generates the left menu to be used for main plots

Usage

mainPlotControlsUI(id)

Arguments

id

module ID

Value

mainPlotControls

Note

mainPlotControlsUI

Examples

x <- mainPlotControlsUI("main")

mainScatterNew

Description

Creates the main scatter, volcano or MA plot to be displayed within the main panel.

Usage

mainScatterNew(input = NULL, data = NULL, cond_names = NULL, source = NULL)

Arguments

input

input params

data

dataframe that has log2FoldChange and log10padj values

cond_names

condition names

source

for event triggering to select genes

Value

scatter, volcano or MA plot

Examples

x <- mainScatterNew()

niceKmeans

Description

Generates hierarchially clustered K-means clusters

Usage

niceKmeans(df = NULL, input = NULL, iter.max = 1000, nstart = 100)

Arguments

df

data

input

user inputs

iter.max

max iteration for kmeans clustering

nstart

n for kmeans clustering

Value

heatmap plot area

Note

niceKmeans

Examples

x <- niceKmeans()

normalizationMethods

Description

Select box to select normalization method prior to batch effect correction

Usage

normalizationMethods(id)

Arguments

id

namespace id

Value

radio control

Note

normalizationMethods

Examples

x <- normalizationMethods("batch")

palUI

Description

get pallete

Usage

palUI(id)

Arguments

id

namespace ID

Value

pals

Note

palUI

Examples

x <- palUI("heatmap")

panel.cor

Description

Prepares the correlations for the all2all plot.

Usage

panel.cor(x, y, prefix = "rho=", cex.cor = 2, ...)

Arguments

x

numeric vector x

y

numeric vector y

prefix

prefix for the text

cex.cor

correlation font size

...

additional parameters

Value

all2all correlation plots

Examples

panel.cor(c(1,2,3), c(4,5,6))

panel.hist

Description

Prepares the historgram for the all2all plot.

Usage

panel.hist(x, ...)

Arguments

x

a vector of values for which the histogram is desired

...

any additional params

Value

all2all histogram plots

Examples

panel.hist(1)

pcaPlotControlsUI

Description

Generates the PCA PLots Left menu to be displayed within the DEBrowser.

Usage

pcaPlotControlsUI(id = "pca")

Arguments

id

namespace id

Value

returns the left menu according to the selected tab;

Note

pcaPlotControlsUI

Examples

x <- pcaPlotControlsUI("pca")

plot_pca

Description

Plots the PCA results for the selected dataset.

Usage

plot_pca(
  dat = NULL,
  pcx = 1,
  pcy = 2,
  metadata = NULL,
  color = NULL,
  shape = NULL,
  size = NULL,
  textonoff = "On",
  legendSelect = "samples",
  input = NULL
)

Arguments

dat

data

pcx

x axis label

pcy

y axis label

metadata

additional data

color

color for plot

shape

shape for plot

size

size of the plot

textonoff

text on off

legendSelect

select legend

input

input param

Value

pca list

Examples

load(system.file("extdata", "demo", "demodata.Rda",
            package="debrowser"))
    metadata<-cbind(colnames(demodata[,1:6]), 
            colnames(demodata[,1:6]),
            c(rep("Cond1",3), rep("Cond2",3)))
    colnames(metadata)<-c("samples", "color", "shape")
    
    a <- plot_pca(getNormalizedMatrix(
            demodata[rowSums(demodata[,1:6])>10,1:6]),
            metadata = metadata, color = "samples",
            size = 5, shape = "shape")

plotData

Description

prepare plot data for mainplots

Usage

plotData(pdata = NULL, input = NULL)

Arguments

pdata

data

input

input

Value

prepdata

Note

plotData

Examples

x <- plotData()

plotMarginsUI

Description

Margins module for plotly plots

Usage

plotMarginsUI(id, t = 20, b = 100, l = 100, r = 20)

Arguments

id

id

t

top margin

b

bottom margin

l

left margin

r

right margin

Value

size and margins controls

Note

plotMarginsUI

Examples

x <- plotMarginsUI("heatmap")

plotSizeMarginsUI

Description

Size and margins module for plotly plots

Usage

plotSizeMarginsUI(id, w = 800, h = 640, t = 20, b = 100, l = 100, r = 20)

Arguments

id

id

w

width

h

height

t

top margin

b

bottom margin

l

left margin

r

right margin

Value

size and margins controls

Note

plotSizeMarginsUI

Examples

x <- plotSizeMarginsUI("heatmap")

plotSizeUI

Description

Size module for plotly plots

Usage

plotSizeUI(id, w = 800, h = 600)

Arguments

id

id

w

width

h

height

Value

size and margins controls

Note

plotSizeUI

Examples

x <- plotSizeUI("heatmap")

plotTypeUI

Description

Plot download type

Usage

plotTypeUI(id)

Arguments

id

id

Value

size and margins controls

Note

plotTypeUI

Examples

x <- plotTypeUI("heatmap")

prepDataContainer

Description

Prepares the data container that stores values used within DESeq.

Usage

prepDataContainer(data = NULL, counter = NULL, input = NULL, meta = NULL)

Arguments

data

loaded dataset

counter

the number of comparisons

input

input parameters

meta

loaded metadata

Value

data

Examples

x <- prepDataContainer()

prepGroup

Description

prepare group table

Usage

prepGroup(conds = NULL, cols = NULL, metadata = NULL, covariates = NULL)

Arguments

conds

inputconds

cols

columns

metadata

metadata

covariates

covariates

Value

data

Examples

x <- prepGroup()

prepHeatData

Description

scales the data

Usage

prepHeatData(expdata = NULL, input = NULL)

Arguments

expdata

a matrixthat includes expression values

input

input variables

Value

heatdata

Examples

x <- prepHeatData()

prepPCADat

Description

prepares pca data with metadata. If metadata doesn't exists it puts all the sampels into a signlge group; "Conds".

Usage

prepPCADat(pca_data = NULL, metadata = NULL, input = NULL, pcx = 1, pcy = 2)

Arguments

pca_data

pca run results

metadata

additional meta data

input

input

pcx

x axis label

pcy

y axis label

Value

Color and shape from selection boxes or defaults

Examples

x <- prepPCADat()

push

Description

Push an object to the list.

Usage

push(l, ...)

Arguments

l

that are going to push to the list

...

list object

Value

combined list

Examples

mylist <- list()
    newlist <- push ( 1, mylist )

removeCols

Description

remove unnecessary columns

Usage

removeCols(cols = NULL, dat = NULL)

Arguments

cols

columns that are going to be removed from data frame

dat

data

Value

data

Examples

x <- removeCols()

removeExtraCols

Description

remove extra columns for QC plots

Usage

removeExtraCols(dat = NULL)

Arguments

dat

selected data

Examples

removeExtraCols()

round_vals

Description

Plot PCA results.

Usage

round_vals(l)

Arguments

l

the value

Value

round value

Examples

x<-round_vals(5.1323223)

run_pca

Description

Runs PCA on the selected dataset.

Usage

run_pca(x = NULL, retx = TRUE, center = TRUE, scale = TRUE)

Arguments

x

dataframe with experiment data

retx

specifies if the data should be returned

center

center the PCA (Boolean)

scale

scale the PCA (Boolean)

Value

pca list

Examples

load(system.file("extdata", "demo", "demodata.Rda", 
        package="debrowser"))
    pca_data<-run_pca(getNormalizedMatrix(
        demodata[rowSums(demodata[,1:6])>10,1:6]))

runDE

Description

Run DE algorithms on the selected parameters. Output is to be used for the interactive display.

Usage

runDE(
  data = NULL,
  metadata = NULL,
  columns = NULL,
  conds = NULL,
  params = NULL
)

Arguments

data

A matrix that includes all the expression raw counts, rownames has to be the gene, isoform or region names/IDs

metadata

metadata of the matrix of expression raw counts

columns

is a vector that includes the columns that are going to be analyzed. These columns has to match with the given data.

conds

experimental conditions. The order has to match with the column order

params

all params for the DE methods

Value

de results

Examples

x <- runDE()

runDESeq2

Description

Run DESeq2 algorithm on the selected conditions. Output is to be used for the interactive display.

Usage

runDESeq2(
  data = NULL,
  metadata = NULL,
  columns = NULL,
  conds = NULL,
  params = NULL
)

Arguments

data

A matrix that includes all the expression raw counts, rownames has to be the gene, isoform or region names/IDs

metadata

metadata of the matrix of expression raw counts

columns

is a vector that includes the columns that are going to be analyzed. These columns has to match with the given data.

conds

experimental conditions. The order has to match with the column order

params

fitType: either "parametric", "local", or "mean" for the type of fitting of dispersions to the mean intensity. See estimateDispersions for description. betaPrior: whether or not to put a zero-mean normal prior on the non-intercept coefficients See nbinomWaldTest for description of the calculation of the beta prior. By default, the beta prior is used only for the Wald test, but can also be specified for the likelihood ratio test. testType: either "Wald" or "LRT", which will then use either Wald significance tests (defined by nbinomWaldTest), or the likelihood ratio test on the difference in deviance between a full and reduced model formula (defined by nbinomLRT) shrinkage: Adds shrunken log2 fold changes (LFC) and SE to a results table from DESeq run without LFC shrinkage. For consistency with results, the column name lfcSE is used here although what is returned is a posterior SD. Three shrinkage estimators for LFC are available via type (see the vignette for more details on the estimators). The apeglm publication demonstrates that 'apeglm' and 'ashr' outperform the original 'normal' shrinkage estimator.

Value

deseq2 results

Examples

x <- runDESeq2()

runEdgeR

Description

Run EdgeR algorithm on the selected conditions. Output is to be used for the interactive display.

Usage

runEdgeR(
  data = NULL,
  metadata = NULL,
  columns = NULL,
  conds = NULL,
  params = NULL
)

Arguments

data

A matrix that includes all the expression raw counts, rownames has to be the gene, isoform or region names/IDs

metadata

metadata of the matrix of expression raw counts

columns

is a vector that includes the columns that are going to be analyzed. These columns has to match with the given data.

conds

experimental conditions. The order has to match with the column order

params

normfact: Calculate normalization factors to scale the raw library sizes. Values can be "TMM","RLE","upperquartile","none". dispersion: either a numeric vector of dispersions or a character string indicating that dispersions should be taken from the data object. If a numeric vector, then can be either of length one or of length equal to the number of genes. Allowable character values are "common", "trended", "tagwise" or "auto". Default behavior ("auto" is to use most complex dispersions found in data object. testType: exactTest or glmLRT. exactTest: Computes p-values for differential abundance for each gene between two digital libraries, conditioning on the total count for each gene. The counts in each group as a proportion of the whole are assumed to follow a binomial distribution. glmLRT: Fit a negative binomial generalized log-linear model to the read counts for each gene. Conduct genewise statistical tests for a given coefficient or coefficient contrast.

Value

edgeR results

Examples

x <- runEdgeR()

runHeatmap

Description

Creates a heatmap based on the user selected parameters within shiny

Usage

runHeatmap(input = NULL, session = NULL, expdata = NULL)

Arguments

input

input variables

session

session

expdata

a matrix that includes expression values

Value

heatmapply plot

Examples

x <- runHeatmap()

runHeatmap2

Description

Creates a heatmap based on the user selected parameters within shiny

Usage

runHeatmap2(input = NULL, session = NULL, expdata = NULL)

Arguments

input

input variables

session

session

expdata

a matrix that includes expression values

Value

heatmap.2

Examples

x <- runHeatmap2()

runLimma

Description

Run Limma algorithm on the selected conditions. Output is to be used for the interactive display.

Usage

runLimma(
  data = NULL,
  metadata = NULL,
  columns = NULL,
  conds = NULL,
  params = NULL
)

Arguments

data

A matrix that includes all the expression raw counts, rownames has to be the gene, isoform or region names/IDs

metadata

metadata of the matrix of expression raw counts

columns

is a vector that includes the columns that are going to be analyzed. These columns has to match with the given data.

conds

experimental conditions. The order has to match with the column order

params

normfact: Calculate normalization factors to scale the raw library sizes. Values can be "TMM","RLE","upperquartile","none". fitType, fitting method; "ls" for least squares or "robust" for robust regression normBet: Normalizes expression intensities so that the intensities or log-ratios have similar distributions across a set of arrays.

Value

Limma results

Examples

x <- runLimma()

selectConditions

Description

Selects user input conditions, multiple if present, to be used in DESeq.

Usage

selectConditions(
  Dataset = NULL,
  metadata = NULL,
  choicecounter = NULL,
  session = NULL,
  input = NULL
)

Arguments

Dataset

used dataset

metadata

metadatatable to select from metadata

choicecounter

choicecounter to add multiple comparisons

session

session

input

input params

Value

the panel for go plots;

Note

selectConditions

Examples

x<- selectConditions()

selectedInput

Description

Selects user input conditions to run in DESeq.

Usage

selectedInput(id = NULL, num = 0, default = NULL, input = NULL)

Arguments

id

input id

num

panel that is going to be shown

default

default text

input

input params

Examples

x <- selectedInput()

selectGroupInfo

Description

Group info column selection. This can be used in batch effect or coloring the groups in the plots.

Usage

selectGroupInfo(
  metadata = NULL,
  input = NULL,
  selectname = "groupselect",
  label = "Group info"
)

Arguments

metadata

metadata

input

input values

selectname

name of the select box

label

label of the select box

Note

selectGroupInfo

Examples

x <- selectGroupInfo()

sepRadio

Description

Radio button for separators

Usage

sepRadio(id, name)

Arguments

id

module id

name

name

Value

radio control

Note

sepRadio

Examples

x <- sepRadio("meta", "metadata")

setBatch to skip batch effect correction batch variable set with the filter results

Description

setBatch to skip batch effect correction batch variable set with the filter results

Usage

setBatch(fd = NULL)

Arguments

fd

filtered data

Value

fd data

Examples

x <- setBatch()

showObj

Description

Displays a shiny object.

Usage

showObj(btns = NULL)

Arguments

btns

show group of objects with shinyjs

Examples

x <- showObj()

startDEBrowser

Description

Starts the DEBrowser to be able to run interactively.

Usage

startDEBrowser()

Value

the app

Note

startDEBrowser

Examples

startDEBrowser()

startHeatmap

Description

Starts the DEBrowser heatmap

Usage

startHeatmap()

Value

the app

Note

startHeatmap

Examples

startHeatmap()

textareaInput

Description

Generates a text area input to be used for gene selection within the DEBrowser.

Usage

textareaInput(id, label, value, rows = 20, cols = 35, class = "form-control")

Arguments

id

id of the control

label

label of the control

value

initial value

rows

the # of rows

cols

the # of cols

class

css class

Examples

x <- textareaInput("genesetarea", "Gene Set",
        "Fgf21", rows = 5, cols = 35)

togglePanels

Description

User defined toggle to display which panels are to be shown within DEBrowser.

Usage

togglePanels(num = NULL, nums = NULL, session = NULL)

Arguments

num

selected panel

nums

all panels

session

session info

Note

togglePanels

Examples

x <- togglePanels()