Package: dandelionR (via r-universe)

February 22, 2025

Title Single-cell Immune Repertoire Trajectory Analysis in R
Version 0.99.10

Description dandelionR is an R package for performing single-cell
immune repertoire trajectory analysis, based on the original
python implementation. It provides the necessary functions to
interface with scRepertoire and a custom implementation of an
absorbing Markov chain for pseudotime inference, inspired by
the Palantir Python package.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

biocViews Software, InmunoOncology, SingleCell

Collate 'check.R' 'constructMarkovChain.R' 'dandelionR.R' 'data.R’
'determMultiscaleSpace.R' 'terminalStateFromMarkovChain.R'
'differentiationProbabilities.R' 'filterCells.R' 'getPbs.R'
'projectProbability.R' 'maxMinSampling.R' 'minMaxScale.R'
'markovProbability.R' 'miloUmap.R' ‘projectPseudotimeToCell.R'
'setupVdjPseudobulk.R' 'splitCTgene.R' 'vdjPseudobulk.R’

Imports BiocGenerics, bluster, destiny, igraph, MASS, Matrix, methods,
miloR, purrr, rlang, S4Vectors, SingleCellExperiment, spam,
stats, SummarizedExperiment, uwot

Suggests BiocStyle, knitr, rmarkdown, RColorBrewer, scater,
scRepertoire, testthat

VignetteBuilder knitr
URL https://www.github.com/tuonglab/dandelionR/

BugReports https://www.github.com/tuonglab/dandelionR/issues
Depends R (>=4.4.0)

Config/pak/sysreqs cmake libfontconfigl-dev libfreetype6-dev
libglpk-dev make libicu-dev libxml2-dev libssl-dev

1

https://www.github.com/tuonglab/dandelionR/
https://www.github.com/tuonglab/dandelionR/issues

2 demo_airr

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/dandelionR
RemoteRef HEAD

RemoteSha 4b4b57bcdf1292fb7151b149f19a035db84aae7e

Contents
demo_airr L e s 2
demo_SCE e e 3
differentiationProbabilities L. 4
markovProbability 4
miloUmap 6
projectProbability 8
projectPseudotimeToCell 9
SCe_VA] . . 10
setupVdjPseudobulk 12
vdjPseudobulk L 15

Index 18

demo_airr Example AIRR Dataset for V(D)J Analysis
Description

The demo_airr object is a list of AIRR data frames from a down-sampled demo dataset derived
from Suo et al., 2024, Nature Biotechnology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication athttps://www.nature.com/articles/s41587-023-01734-7.
The original files are available at https://github.com/zktuong/dandelion-demo-files.

Usage

data(demo_airr)

Format
A SingleCellExperiment object with the following slots:

list List of DataFrames containing the standardised AIRR data for each sample.
For information of AIRR rearrangements, see the AIRR Community standards at https:
//docs.airr-community.org/.

Source

Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

https://www.nature.com/articles/s41587-023-01734-7
https://github.com/zktuong/dandelion-demo-files
https://docs.airr-community.org/
https://docs.airr-community.org/
https://www.nature.com/articles/s41587-023-01734-7

demo_sce 3

Examples

data(demo_airr)

demo_sce Example SCE Dataset that does not contain V(D)J information

Description

The demo_sce object is a down-sampled demo dataset derived from Suo et al., 2024, Nature
Biotechnology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication at https://www.nature.com/articles/s41587-023-01734-7.
The original Lymphoid cells data in hSad format is available at https://developmental.cellatlas.
io/fetal-immune.

Usage

data(demo_sce)

Format

A SingleCellExperiment object with the following slots:

colData A minimall DataFrame containing metadata about each sample, corresponding to obs in
AnnData (Python). The following columns are relevant for vignette usage:
anno_lvl_2_final_clean Cell type annotations.

int_colData A DataFrame containing additional assay metadata important for further analysis.
Includes:

e X_scvi: A dimensionality reduction matrix from the scVI model.
* UMAP: A UMAP reduction matrix.

Source

Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

Examples

data(demo_sce)

https://www.nature.com/articles/s41587-023-01734-7
https://developmental.cellatlas.io/fetal-immune
https://developmental.cellatlas.io/fetal-immune
https://www.nature.com/articles/s41587-023-01734-7

4 markovProbability

differentiationProbabilities
Compute Branch Probabilities Using Markov Chain

Description

This function calculates branch probabilities for differentiation trajectories based on a Markov chain
constructed from waypoint data and pseudotime ordering.

Usage

differentiationProbabilities(
wp_data,
terminal_states = NULL,
knn = 30L,
pseudotime,
waypoints,
verbose = TRUE

Arguments

wp_data A multi-scale data matrix or data frame representing the waypoints.
terminal_states
Integer vector. Indices of the terminal states. Default is NULL.

knn Integer. Number of nearest neighbors for graph construction. Default is 30L.
pseudotime Numeric vector. Pseudotime ordering of cells.
waypoints Integer vector. Indices of selected waypoints used to construct the Markov chain.
verbose Boolean, whether to print messages/warnings.

Value

A numeric matrix or data frame containing branch probabilities for each waypoint.

markovProbability Markov Chain Construction and Probability Calculation

Description

This function preprocesses data, constructs a Markov chain, and calculates transition probabilities
based on pseudotime information.

markovProbability

Usage

markovProbability(

milo,

diffusionmap,

terminal_state = NULL,

root_cell,
knn = 30L,

diffusiontime

= NULL,

pseudotime_key = "pseudotime”,
scale_components = TRUE,

num_waypoints

= 500,

n_eigs = NULL,
verbose = TRUE

Arguments

milo

diffusionmap

terminal_state
root_cell
knn

diffusiontime

pseudotime_key

A Miloor SingleCellExperiment object. This object should have pseudotime
stored in colData, which will be used to calculate probabilities. If pseudotime
is available in milo, it takes precedence over the value provided through the
diffusiontime parameter.

A DiffusionMap object corresponding to the milo object. Used for Markov
chain construction.

Integer. The index of the terminal state in the Markov chain.
Integer. The index of the root state in the Markov chain.
Integer. The number of nearest neighbors for graph construction. Default is 30L.

Numeric vector. If pseudotime is not stored in milo, this parameter can be used
to provide pseudotime values to the function.

Character. The name of the column in colData that contains the inferred pseu-
dotime.

scale_components

num_waypoints

n_eigs

verbose

Value

Logical. If TRUE, the components will be scaled before constructing the Markov
chain. Default is FALSE.

Integer. The number of waypoints to sample when constructing the Markov
chain. Default is 500L.

integer, default is NULL. Number of eigen vectors to use.

* If is not specified, the number of eigen vectors will be determined using the
eigen gap.
Logical. If TRUE, print progress. Default is TRUE.

milo or SinglCellExperiment object with pseudotime, probabilities in its colData

6 miloUmap

Examples

data(sce_vdj)

downsample to first 2000 cells

sce_vdj <- sce_vdj[, 1:2000]

sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")

)

Build Milo Object

set.seed(100)

milo_object <- miloR::Milo(sce_vdj)

milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,

reduced.dim = "X_scvi"

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d =20

)

Construct Pseudobulked VDJ Feature Space
pb.milo <- vdjPseudobulk(milo_object, col_to_take = "anno_lvl_2_final_clean"”)
pb.milo <- scater::runPCA(pb.milo, assay.type = "Feature_space")

Define root and branch tips

pca <- t(as.matrix(SingleCellExperiment::reducedDim(pb.milo, type = "PCA")))
branch.tips <- c(which.min(pcal, 21), which.max(pcal, 21))
names(branch.tips) <- c("CD8+T", "CD4+T")

root <- which.min(pcal, 11)

Construct Diffusion Map
dm <- destiny::DiffusionMap(t(pca), n_pcs = 10, n_eigs = 5)
dif.pse <- destiny::DPT(dm, tips = c(root, branch.tips), w_width = 0.1)

Markov Chain Construction
pb.milo <- markovProbability(
milo = pb.milo,
diffusionmap = dm,
diffusiontime = dif.pse[[paste@("DPT", root)]1],
terminal_state = branch.tips,
root_cell = root,

pseudotime_key = "pseudotime”
)
miloUmap Perform UMAP on the Adjacency Matrix of a Milo Object
Description

This function uses uwot: : umap to perform UMAP dimensionality reduction on the adjacency ma-
trix of the KNN graph in a Milo object.

miloUmap

Usage

miloUmap(
milo,

slot_name = "UMAP_knngraph"”,

n_neighbors
"euclidean”,

metric =

50L,

min_dist = 0.3,

Arguments
milo

slot_name

n_neighbors

metric

min_dist

Value

the milo object with knn graph that needed to conduct umap on.
character, with default "'UMAP_knngraph’.

* The slot name in reduceDim where the result store
integer, with default SOL.

* the size of local neighborhood (in terms of number of neighboring sample
points) used for manifold approximation.

* Here, the goal is to create large enough neighborhoods to capture the local
manifold structure to allow for hypersampling.

character, with default ’euclidean’

* the choice of metric used to measure distance to find nearest neighbors.
Default is ’euclidean’.

numeric, with default 0.3
* the minimum distance between points in the low dimensional space

other parameters passed to uwot::umap

milo object with umap reduction

Examples

data(sce_vdj)

downsample to just 1000 cells
sce_vdj <- sce_vdj[, 1:1000]
sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")

)

Build Milo Object
milo_object <- miloR::Milo(sce_vdj)
milo_object <- miloR::buildGraph(milo_object,
k = 50, d = 20,
reduced.dim = "X_scvi"

)

milo_object <- miloR::makeNhoods(milo_object,

8 projectProbability

reduced_dims = "X_scvi”, d = 20

)

Construct UMAP on Milo Neighbor Graph
milo_object <- miloUmap(milo_object)

projectProbability Project Probabilities from Markov Chain to Pseudobulks

Description

This function projects probabilities calculated from a Markov chain onto each pseudobulk based on
a diffusion distance matrix.

Usage

projectProbability(
diffusionmap,
waypoints,
probabilities,
t=1,
verbose = TRUE

Arguments

diffusionmap diffusion map, used to reconstruct diffustion distance matrix
waypoints Integer vector. Indices of the waypoints used in the Markov chain.

probabilities Numeric vector. Probabilities associated with the waypoints, calculated from
the Markov chain.

t Numeric. The diffusion time to be used in the projection.
verbose Boolean, whether to print messages/warnings.
Value

each pseudobulk’s probabilites

projectPseudotime ToCell 9

projectPseudotimeToCell

Project Pseudotime and Branch Probabilities to Single Cells

Description

This function projects pseudotime and branch probabilities from pseudobulk data to single-cell
resolution (milo). The results are stored in the colData of the milo object.

Usage
projectPseudotimeToCell(
milo,
pb_milo,
term_states NULL,
pseudotime_key = "pseudotime”,
suffix = "",
verbose = TRUE
)
Arguments
milo A SingleCellExperiment or Milo object. Represents single-cell data where
pseudotime and branch probabilities will be projected.
pb_milo A pseudobulk Milo object. Contains aggregated branch probabilities and pseu-

term_states

pseudotime_key

suffix

verbose

Value

dotime information to be transferred to single cells.

Named vector of terminal states, with branch probabilities to be transferred. The
names should correspond to branches of interest.

Character. The column name in colData of pb_milo that contains the pseudo-
time information which was used in the markovProbability function. Default
is "pseudotime”.

Character. A suffix to be added to the new column names in colData. Default
is an empty string (' ").

Boolean, whether to print messages/warnings.

subset of milo or SingleCellExperiment object where cell that do not belong to any neighbourhood
are removed and projected pseudotime information stored colData

Examples

data(sce_vdj)

downsample to first 2000 cells
sce_vdj <- sce_vdj[, 1:2000]
sce_vdj <- setupVdjPseudobulk(sce_vdj,

10

already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")
)
Build Milo Object
set.seed(100)
milo_object <- miloR::Milo(sce_vdj)
milo_object <- miloR::buildGraph(milo_object,
k =50, d = 20,

reduced.dim = "X_scvi”

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d =20

)

Construct Pseudobulked VDJ Feature Space
pb.milo <- vdjPseudobulk(milo_object, col_to_take = "anno_lvl_2_final_clean")
pb.milo <- scater::runPCA(pb.milo, assay.type = "Feature_space")

Define root and branch tips

pca <- t(as.matrix(SingleCellExperiment::reducedDim(pb.milo, type = "PCA")))
branch.tips <- c(which.min(pcal, 21), which.max(pcal, 21))
names(branch.tips) <- c("CD8+T", "CD4+T")

root <- which.min(pcal, 11)

Construct Diffusion Map
dm <- destiny::DiffusionMap(t(pca), n_pcs = 10, n_eigs = 5)
dif.pse <- destiny::DPT(dm, tips = c(root, branch.tips), w_width = 0.1)

Markov Chain Construction
pb.milo <- markovProbability(
milo = pb.milo,
diffusionmap = dm,
diffusiontime = dif.psel[[paste@("DPT", root)1],
terminal_state = branch.tips,
root_cell = root,
pseudotime_key = "pseudotime”
)
Project Pseudobulk Data
projected_milo <- projectPseudotimeToCell(
milo_object,
pb.milo,
branch.tips,
pseudotime_key = "pseudotime”

sce_vdj

sce_vdj Example Dataset for V(D)J Analysis

sce_vdj 11

Description

The sce_vdj object is a down-sampled demo dataset derived from Suo et al., 2024, Nature Biotech-
nology.

This dataset is used in vignettes to demonstrate workflows for V(D)J analysis.

For details, see the original publication at https://www.nature.com/articles/s41587-023-01734-7.

Usage

data(sce_vdj)

Format

A SingleCellExperiment object with the following slots:

colData A DataFrame containing metadata about each sample, corresponding to obs in AnnData
(Python). The following columns are relevant for vignette usage:

productive_(mode)_VDJ, productive_(mode)_VJ Factors indicating whether the heavy or
light chain is productive. mode refers to the extraction mode for V(D)J genes and can be
one of:

e 'abT': TCR alpha-beta
e 'gdT': TCR gamma-delta
* 'B': BCR
Gene segment fields Gene segment annotations with column names in the format (v/d/j)_call_(mode)_(VDJI/VI)
Examples include:
e v_call_abT_VDJ: V gene for TCR alpha-beta VDJ recombination
e d_call_abT_VJ: D gene for TCR alpha-beta VJ recombination
chain_status A factor describing the receptor chain’s status.
anno_lvl_2_final_clean Cell type annotations.
int_colData A DataFrame containing additional assay metadata important for further analysis.
Includes:
e X_scvi: A dimensionality reduction matrix from the scVI model.
* UMAP: A UMAP reduction matrix.

Source

Suo et al., 2024, Nature Biotechnology.
https://www.nature.com/articles/s41587-023-01734-7.

Examples

data(sce_vdj)

https://www.nature.com/articles/s41587-023-01734-7
https://www.nature.com/articles/s41587-023-01734-7

12 setupVdjPseudobulk

setupVdjPseudobulk Preprocess V(D)J Data for Pseudobulk Analysis

Description

This function preprocesses single-cell V(D)J sequencing data for pseudobulk analysis. It filters
data based on productivity and chain status, subsets data, extracts main V(D)J genes, and removes
unmapped entries.

Usage

setupVdjPseudobulk(
sce,
mode_option = c("abT", "gdT", "B"),
already.productive = TRUE,
productive_cols = NULL,
productive_vj = TRUE,
productive_vdj = TRUE,
allowed_chain_status = NULL,
subsetby = NULL,
groups = NULL,
extract_cols = NULL,
filter_unmapped = TRUE,
check_vj_mapping = c(TRUE, TRUE),
check_vdj_mapping = c(TRUE, FALSE, TRUE),
check_extract_cols_mapping = NULL,
remove_missing = TRUE,
verbose = TRUE

Arguments

sce A SingleCellExperiment object. V(D)J data should be contained in colData
for filtering.

mode_option Optional character. Specifies the mode for extracting V(D)J genes. If NULL,
extract_cols must be specified. Default is NULL.

already.productive
Logical. Whether the data has already been filtered for productivity. If TRUE,
skips productivity filtering. Default is FALSE.

productive_cols
Character vector. Names of colData columns used for productivity filtering.
Default is NULL.

productive_vj Logical. If TRUE, retains cells where the main VJ chain is productive. Default is
TRUE.

productive_vdj Logical. If TRUE, retains cells where the main VDJ chain is productive. Default
is TRUE.

setupVdjPseudobulk 13

allowed_

subsetby
groups

extract_

filter_u

check_vj

check_vd

check_ex

chain_status
Character vector. Specifies chain statuses to retain. Valid options include™ c('single
pair', 'Extrapair', 'Extrapair-exception', 'OrphanVDJ', 'Orphan VDJ-exception')".
Default is NULL.
Character. Name of a colData column for subsetting. Default is NULL.
Character vector. Specifies the subset condition for filtering. Default is NULL.

cols Character vector. Names of colData columns where V(D)J information is stored,
used instead of the standard columns. Default is NULL.

nmapped
Logic. Whether to filter unmapped data. Default is TRUE.
_mapping
Logic vector. Whether to check for VJ mapping. Default is c(TRUE, TRUE).
* If the first element is TRUE, function will filter the unmapped data in V
gene of the VJ chain
* If the second element is TRUE, function will filter the unmapped data in J
gene of the VJ chain
j_mapping
Logic vector. Specifies columns to check for VDJ mapping. Defaultis c(TRUE, FALSE, 'TRUE).
* If the first element is TRUE, function will filter the unmapped data in V
gene of the VDJ chain
* If the second element is TRUE, function will filter the unmapped data in D
gene of the VDJ chain
e If the third element is TRUE, function will filter the unmapped data in J
gene of the VDJ chain
tract_cols_mapping

Character vector. Specifies columns related to extract_cols for mapping checks.
Default is NULL.

remove_missing Logical. If TRUE, removes cells with contigs matching the filter. If FALSE, masks

verbose

Details

them with uniform values. Default is TRUE.

Logical. Whether to print messages. Default is TRUE.

The function performs the following preprocessing steps:

* Productivity Filtering:

Skipped if already.productive = TRUE.

Filters cells based on productivity using productive_cols or standard colData columns
named productive_{mode_option}_{type} (where type is "VDJ’ or *VI’).
mode_option
+ function will check colData(s) named productive_{mode_option}_{type}, where
type should be *VDJ’ or *VJ’ or both, depending on values of productive_vj and
productive_vdj.

If set as NULL, the function needs the option ’extract_cols’ to be specified
productive_cols

14 setupVdjPseudobulk

+ must be be specified when productivity filtering is need to conduct and mode_option
is NULL.

+ where VDJ/V] information is stored so that this will be used instead of the standard
columns.

— productive_vj, productive_vdj
If TRUE, cell will only be kept if the main V(D)J chain is productive
* Chain Status Filtering:
— Retains cells with chain statuses specified by allowed_chain_status.
* Subsetting:

— Conducted only if both subsetby and groups are provided.
— Retains cells matching the groups condition in the subsetby column.

Main V(D)J Extraction:

— Uses extract_cols to specify custom columns for extracting V(D)J information.

e Unmapped Data Filtering:

— decided to removes or masks cells based on filter_unmapped.

— Checks specific columns for unclear mappings using check_vj_mapping, check_vdj_mapping,
or check_extract_cols_mapping.

— filter_unmapped
+ pattern to be filtered from object.
x If is set to be NULL, the filtering process will not start
— check_vj_mapping, check_vdj_mapping
* only colData specified by these arguments (check_vj_mapping and check_vdj_mapping)
will be checked for unclear mappings
— check_extract_cols_mapping, related to extract_cols

Only colData specified by the argument will be checked for unclear mapping, the
colData should first specified by extract_cols

— remove_missing
If TRUE, will remove cells with contigs matching the filter from the object.
+ If FALSE, will mask them with a uniform value dependent on the column name.

Value

filtered SingleCellExperiment object

Examples

load data

data(sce_vdj)

check the dimension

dim(sce_vdj)

filtered the data

sce_vdj <- setupVdjPseudobulk(
sce = sce_vdj,
mode_option = "abT"”, # set the mode to alpha-beta TCR
allowed_chain_status = c("Single pair”, "Extra pair"),

vdjPseudobulk

15

already.productive = FALSE
) # need to filter the unproductive cells
check the remaining dim

dim(sce_vdj)

vdjPseudobulk

Generate Pseudobulk V(D)J Feature Space

Description

This function creates a pseudobulk V(D)J feature space from single-cell data, aggregating V(D)J in-
formation into pseudobulk groups. It supports input as either aMilo object or a SingleCellExperiment

object.

Usage

vdjPseudobulk(

milo,
pbs = NULL,
col_to_bulk

extract_cols

NULL,
=c("v_call_abT_VDJ_main", "j_call_abT_VDJ_main", "v_call_abT_VJ_main",

"j_call_abT_VJ_main"),

mode_option
col_to_take
normalise =
renormalize
min_count =

= c("abT”, "gdT", "B"),
= NULL,

TRUE,

= FALSE,

1L,

verbose = TRUE

Arguments
milo

pbs

col_to_bulk

extract_cols

A Miloor SingleCellExperiment object containing V(D)J data.
Optional. A binary matrix with cells as rows and pseudobulk groups as columns.

e If milo is a Milo object, this parameter is not required.

e If milo is a SingleCellExperiment object, either pbs or col_to_bulk
must be provided.

Optional character or character vector. Specifies colData column(s) to generate
pbs. If multiple columns are provided, they will be combined. Default is NULL.
e If milo is a Milo object, this parameter is not required.
e If milo is a SingleCellExperiment object, either pbs or col_to_bulk
must be provided.

Character vector. Specifies column names where V(D)J information is stored.
Defaultis c('v_call_abT_VDJ_main', 'j_call_abT_VDJ_main', ' 'v_call_abT_VJ_main', 'j_ca

16 vdjPseudobulk

mode_option Character. Specifies the mode for extracting V(D)J genes. Must be one of
c('B', "abT', 'gdT"'). Defaultis 'abT"'.
* Note: This parameter is considered only when extract_cols = NULL.
e IfNULL, uses column names such as v_call_VDJ instead of v_call_abT_VDJ.

col_to_take Optional character or vector of characters. Specifies names of colData of milo
that need to identify the most common value for each pseudobulk Default is
NULL.

normalise Logical. If TRUE, scales the counts of each V(D)J gene group to 1 for each

pseudobulk. Default is TRUE.

renormalize Logical. If TRUE, rescales the counts of each V(D)J gene group to 1 for each
pseudobulk after removing *missing’ calls. Useful when setupVdjPseudobulk()
was run with remove_missing = FALSE. Default is FALSE.

min_count Integer. Sets pseudobulk counts in V(D)J gene groups with fewer than this many
non-missing calls to 0. Default is 1.
verbose Logical. If TRUE, prints messages and warnings. Default is TRUE.
Details

This function aggregates V(D)J data into pseudobulk groups based on the following logic:

* Input Requirements:

* If milo is a Milo object, neither pbs nor col_to_bulk is required.

* IfmiloisaSingleCellExperiment object, the user must provide either pbs or col_to_bulk.
* Normalization:

* When normalise = TRUE, scales V(D)J counts to 1 for each pseudobulk group.

* When renormalize = TRUE, rescales the counts after removing *missing’ calls.

* Mode Selection:

e Ifextract_cols = NULL, the function relies on mode_option to determine which V(D)J columns
to extract.
* Filtering:

» Uses min_count to filter pseudobulks with insufficient counts for V(D)J groups.

Value

SingleCellExperiment object

Examples

data(sce_vdj)
sce_vdj <- setupVdjPseudobulk(sce_vdj,
already.productive = FALSE,
allowed_chain_status = c("Single pair”, "Extra pair")
)
Build Milo Object
milo_object <- miloR::Milo(sce_vdj)

vdjPseudobulk

milo_object <- miloR::buildGraph(milo_object,
k =50, d = 20,

reduced.dim = "X_scvi”

)

milo_object <- miloR::makeNhoods(milo_object,
reduced_dims = "X_scvi”,
d =20

)

Construct pseudobulked VDJ feature space
pb.milo <- vdjPseudobulk(milo_object, col_to_take

"anno_lvl_2_final_clean")

17

Index

+ datasets
demo_airr, 2
demo_sce, 3
sce_vdj, 10

demo_airr, 2
demo_sce, 3
differentiationProbabilities, 4

markovProbability, 4
miloUmap, 6

projectProbability, 8
projectPseudotimeToCell, 9

sce_vdj, 10
setupVdjPseudobulk, 12

vdjPseudobulk, 15

18

	demo_airr
	demo_sce
	differentiationProbabilities
	markovProbability
	miloUmap
	projectProbability
	projectPseudotimeToCell
	sce_vdj
	setupVdjPseudobulk
	vdjPseudobulk
	Index

