Title: | Phytoplankton Population Identification using Cell Pigmentation and/or Complexity |
---|---|
Description: | An approach to filter out and/or identify phytoplankton cells from all particles measured via flow cytometry pigment and cell complexity information. It does this using a sequence of one-dimensional gates on pre-defined channels measuring certain pigmentation and complexity. The package is especially tuned for cyanobacteria, but will work fine for phytoplankton communities where there is at least one cell characteristic that differentiates every phytoplankton in the community. |
Authors: | Oluwafemi Olusoji [cre, aut], Aerts Marc [ctb], Delaender Frederik [ctb], Neyens Thomas [ctb], Spaak jurg [aut] |
Maintainer: | Oluwafemi Olusoji <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.15.0 |
Built: | 2024-12-29 05:23:24 UTC |
Source: | https://github.com/bioc/cyanoFilter |
This function gates all flowFrames in the supplied flowSet to attach cluster labels. Then it mixes up the flowSet into one giant flowFrame and re-gates this to attach another label. These labels are used to examine if the gating algorithms can reproduce the earlier clusters before the mixing.
accTest( fs, sfts = c("phytoFilter", "flowClust", "cytometree"), channels, nrun = 10000, ... )
accTest( fs, sfts = c("phytoFilter", "flowClust", "cytometree"), channels, nrun = 10000, ... )
fs |
flowSet with each flowFrame being a phytoplankton monoculture FCM experiment |
sfts |
character vector of gating function to test. |
channels |
channels to be used for gating |
nrun |
number of times the resampling should be done |
... |
extra options to be parsed to the gating function |
a named list containing the following objects;
depth - the multivariate-depth (median) of each flowFrame in the flowset supplied
accuracy - computed accuracy based on resampling after joining the flowFrames together.
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) #phytoFilter specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "phytoFilter", list(ph = 0.1, proportion = 0.90) )
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) #phytoFilter specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "phytoFilter", list(ph = 0.1, proportion = 0.90) )
This function
accuracy(mat, mono_clust, bi_clust, nrun = 10000)
accuracy(mat, mono_clust, bi_clust, nrun = 10000)
mat |
matrix to be sampled from |
mono_clust |
monoculture cluster label |
bi_clust |
biculture cluster label |
nrun |
number of times the resampling should be carried out. Defaults to 10000 |
a vector of integer values
x <- matrix(NA, nrow = 100, ncol = 3) xx <- apply(x, 2, rnorm, 100) xx <- cbind(xx, Mono = rep(1:2, each = 50), Bi = rep(1:2, times = 50)) accuracy(xx, "Mono", "Bi", nrun = 5000)
x <- matrix(NA, nrow = 100, ncol = 3) xx <- apply(x, 2, rnorm, 100) xx <- cbind(xx, Mono = rep(1:2, each = 50), Bi = rep(1:2, times = 50)) accuracy(xx, "Mono", "Bi", nrun = 5000)
The function identifies margin events, i.e. cells that are too large for the flow cytometer to measure.
cellMargin( flowframe, Channel = "SSC.W", type = c("manual", "estimate"), cut = NULL, y_toplot = "FSC,HLin" )
cellMargin( flowframe, Channel = "SSC.W", type = c("manual", "estimate"), cut = NULL, y_toplot = "FSC,HLin" )
flowframe |
Flowframe containing margin events to be filtered out |
Channel |
The channel on which margin events are. Defaults to SSC.W (side scatter width) |
type |
The method to be used in gating out the margin cells. Can either be 'manual' where user supplies a cut off point on the channel, 1 = not margin 0 = margin |
cut |
sould not be NULL if type = 'manual' |
y_toplot |
channel on y-axis of plot with Channel used to gate out margin events |
Users can either supply a cut-off point along the channel
describing particle width
or allow the function to estimate the cut-off point using the
deGate
function from the
flowDensity package.
A plot of channel against "FSC.HLin" is provided with a vertical
line showing the cut-off point separating margin events
from other cells.
an object of class MarginEvents class containing slots;
reducedflowframe - flowframe without margin events
fullflowframe - flowframe with an Margin.Indicator added as an extra column added to the expression matrix to indicate which particles are margin events. 1 = not margin event, 0 = margin event
N_margin - number of margin events recorded
N_cell - numner of non-margin events
N_particle - is the number of particles in total, i.e. N_cell + N_margin
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
extract clusters based on supplied cluster indicator
clusterExtract(flowfile, cluster_var = "Clusters", cluster_val = NULL)
clusterExtract(flowfile, cluster_var = "Clusters", cluster_val = NULL)
flowfile |
flowframe containing cluster indicators as well |
cluster_var |
column name in expression matrix containing the cluter indicators, cannot be NULL. |
cluster_val |
cluster number, cannot be NULL. |
flowFrame containing the clusters
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fin <- phytoFilter(flowfile = reducedFlowframe(cells_nonmargin), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) clusterExtract(flowfile = reducedFlowframe(fin), cluster_var = "Clusters", cluster_val = 1)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fin <- phytoFilter(flowfile = reducedFlowframe(cells_nonmargin), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) clusterExtract(flowfile = reducedFlowframe(fin), cluster_var = "Clusters", cluster_val = 1)
takes a flowframe, name of cluster column and extracts part of flowframe that makes up proportion.
clusterExtractp(flowfile, cluster_var = "Clusters", proportion = 1)
clusterExtractp(flowfile, cluster_var = "Clusters", proportion = 1)
flowfile |
flowframe after debris are removed. |
cluster_var |
column name in expression matrix containing the cluter indicators |
proportion |
value between 0 and 1 indicating percentage of the total particles wanted |
a list containing
particles_per_cluster
clusters_proportion
flowfile_proportion
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cyanoFilter::cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fin <- phytoFilter(flowfile = reducedFlowframe(cells_nonmargin), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) clusterExtractp(flowfile = reducedFlowframe(fin), cluster_var = "Clusters", proportion = 0.80)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cyanoFilter::cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fin <- phytoFilter(flowfile = reducedFlowframe(cells_nonmargin), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) clusterExtractp(flowfile = reducedFlowframe(fin), cluster_var = "Clusters", proportion = 0.80)
The package provides two categories of functions: metafile preprocessing functions and fcsfile processing functions.
This set of functions (goodFcs
and
retain
) helps to
identify the appropriate fcs file to read.
These functions (noNA
and
noNeg
,
phytoFilter
)
works on the fcs file to identify the
phytoplankton populations contained in
the fcs file.
the Debris class
constructor for the DebrisFilter class
DebrisFilter( fullflowframe, reducedflowframe, deb_pos, syn_all_pos, deb_cut, ch_chlorophyll, ch_p2 ) DebrisFilter( fullflowframe, reducedflowframe, deb_pos, syn_all_pos, deb_cut, ch_chlorophyll, ch_p2 )
DebrisFilter( fullflowframe, reducedflowframe, deb_pos, syn_all_pos, deb_cut, ch_chlorophyll, ch_p2 ) DebrisFilter( fullflowframe, reducedflowframe, deb_pos, syn_all_pos, deb_cut, ch_chlorophyll, ch_p2 )
fullflowframe |
same as the input flowFrame |
reducedflowframe |
a partial flowframe containing non-margin events |
deb_pos |
number of margin particles measured |
syn_all_pos |
number of non-margine particles |
deb_cut |
estimated inflection point between debris and good cells |
ch_chlorophyll |
channel estimating chlorophyll level |
ch_p2 |
plotting channel |
object of class DebrisFilter
fullflowframe
object of class "flowFrame" same as the input flowFrame
reducedflowframe
object of class "flowFrame" a partial flowframe containing a proportion of the measured particles
deb_pos
object of class "numeric" representing the proportion of particles in each cluster
syn_all_pos
object of class "numeric" representing the number of particles in each cluster
deb_cut
object of class "numeric" representing the inflection point between debris and good cells.
ch_chlorophyll
objet of class "character" representing the chlorophyll channel.
ch_p2
object of class character to plot
The function takes in a flowframe and identifies debris contained in the provided flowframe.
debrisNc(flowframe, ch_chlorophyll, ch_p2, ph = 0.09, n_sd = 2)
debrisNc(flowframe, ch_chlorophyll, ch_p2, ph = 0.09, n_sd = 2)
flowframe |
flowframe with debris and other cells. |
ch_chlorophyll |
first flowcytometer channel that can be used to separate debris from the rest, e.g. "RED.B.HLin". |
ch_p2 |
second flowcytometer channel use for plotting from the rest, e.g. "YEL.B.HLin" |
ph |
the minimum peak height that should be considered. This aids the removal of tiny peaks. Defaults to 0.1 |
n_sd |
number of standard deviations away from peak should be considered to filter out debris |
The function uses the getPeaks
and
deGate
functions in the flowDensity
package to
identify peaks in ch_chlorophyll, and identify cut-off points
#between these peaks.
A plot of both channels supplied with horizontal line separating
debris from other cell populations is also returned.
list containing;
syn - flowframe containing non-debris particles
deb_pos - position of particles that are debris
syn_pos - position of particles that are not debris
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05)
generic function for extracting the full flowframe
fullFlowframe(x)
fullFlowframe(x)
x |
an object of either class PhytoFilter, MarginEvents or DebrisFilter |
generic to extract fullFlowframe
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
accesor method for reduced flowframe (DebrisFilter class)
## S4 method for signature 'DebrisFilter' fullFlowframe(x)
## S4 method for signature 'DebrisFilter' fullFlowframe(x)
x |
an object of class DebrisFilter |
full flowFrame method for DebrisFilter
accesor method for the fullflowframe (MarginEvent class)
## S4 method for signature 'MarginEvents' fullFlowframe(x)
## S4 method for signature 'MarginEvents' fullFlowframe(x)
x |
an object of class MarginEvents |
full Flowframe method for MarginEvents
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fullFlowframe(cells_nonmargin)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") fullFlowframe(cells_nonmargin)
accesor method for full flowframe(PhytoFilter class)
## S4 method for signature 'PhytopFilter' fullFlowframe(x)
## S4 method for signature 'PhytopFilter' fullFlowframe(x)
x |
an object of class PhytoFilter |
fullFlowframe method for PhytoFilter
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) phy1 <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) fullFlowframe(phy1)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) phy1 <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) fullFlowframe(phy1)
This function gates all flowFrames in the supplied flowSet to attach cluster labels. Then it mixes up the flowSet into one giant flowFrame and re-gates this to attach another label. These labels are used to examine if the gating algorithms can reproduce the earlier clusters before the mixing.
gateFunc( flowfile, sfts = c("phytoFilter", "flowClust", "cytometree"), channels, funargs_list )
gateFunc( flowfile, sfts = c("phytoFilter", "flowClust", "cytometree"), channels, funargs_list )
flowfile |
flowSet with each flowFrame being a phytoplankton monoculture FCM experiment |
sfts |
character vector of gating function to test. |
channels |
channels to be used for gating |
funargs_list |
additional options for the chosen gating function |
a flowFrame with cluster indicator generated by the software used added to the expression matrix.
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) #phytoFilter specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "phytoFilter", list(ph = 0.1, proportion = 0.90) ) #flowClust specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "flowClust", list(K = 1:4, B = 100) ) #cytometree specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "cytometree", list(minleaf = 1, t = 0.10) )
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) #phytoFilter specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "phytoFilter", list(ph = 0.1, proportion = 0.90) ) #flowClust specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "flowClust", list(K = 1:4, B = 100) ) #cytometree specification gateFunc(flowfile = reducedFlowframe(cells_nodebris), channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin", "FSC.HLin", "SSC.HLin"), sfts = "cytometree", list(minleaf = 1, t = 0.10) )
returns the channel with more than one peak present. It returns NA if there is only one peak present.
getChannel(flowfile, ch, ph)
getChannel(flowfile, ch, ph)
flowfile |
flowframe after debris are removed. |
ch |
channel to be checked for multiple peaks. |
ph |
maximum peak height to be ignored. This allows ignoring of tiny peaks that could affect the gating process. |
name of channel with more than one peak
@examples flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) getChannel(flowfile_logtrans, 'RED.B.HLin', 0.05)
produces a scatter plot of the expression matrix of the flowframe. If a cluster variable is given, it assigns different colors to the clusters.
ggpairsDens(flowfile, channels = NULL, group = NULL, notToPlot = NULL, ...)
ggpairsDens(flowfile, channels = NULL, group = NULL, notToPlot = NULL, ...)
flowfile |
flowframe to be plotted |
channels |
a character vector of length 2 or more. It must contain channel names in the flowfile. |
group |
cluster groups. It must be equal to the number of particles in the flowfile. If group is null cluster boundaries are not drawn. |
notToPlot |
columns not to plot. This is especially useful for for plotting all columns in a |
... |
not used at the moment @return a ggplot object |
a ggplot object
# example without clustering flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) ggpairsDens(flowfile = flowfile_logtrans, channels = c("FSC.HLin", "RED.R.HLin", "RED.B.HLin", "NIR.R.HLin"))
# example without clustering flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) ggpairsDens(flowfile = flowfile_logtrans, channels = c("FSC.HLin", "RED.R.HLin", "RED.B.HLin", "NIR.R.HLin"))
plots two channels of a flowframe.
ggplotDens(flowfile, channels, ...)
ggplotDens(flowfile, channels, ...)
flowfile |
flowframe to be plotted |
channels |
a character vector of length 2, must contain channel names in the flowfile. |
... |
not used at the moment |
a ggplot object
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) ggplotDens(flowfile_logtrans, channels = c("FSC.HLin", "RED.R.HLin"))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) ggplotDens(flowfile_logtrans, channels = c("FSC.HLin", "RED.R.HLin"))
plots two channels of a flowframe with different colors for clusters identified.
ggplotDens2(flowfile, channels, group, ...)
ggplotDens2(flowfile, channels, group, ...)
flowfile |
flowframe to be plotted |
channels |
a character vector of length 2, must contain channel names in the flowfile. |
group |
cluster groups. must be equal to the number of particles in the flow cytometer. |
... |
not used at the moment |
a ggplot object
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) cct <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) ggplotDens2(reducedFlowframe(cct), c("RED.B.HLin", "YEL.B.HLin"), group = "Clusters")
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) cct <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) ggplotDens2(reducedFlowframe(cct), c("RED.B.HLin", "YEL.B.HLin"), group = "Clusters")
This function examines the column containig
and determins if the measurement can be used for further analysis or not
based on a supplied range.
goodFcs(metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50)
goodFcs(metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50)
metafile |
associated metafile to the supplied fcsfile. This is a csv file containig computed stats from the flow cytometer. |
col_cpml |
column name or column number in metafile containing cell per microlitre measurements. |
mxd_cellpML |
maximal accepted cell per microlitre. Flowfiles with larger cell per microlitre are termed bad. Defaults to 1000. |
mnd_cellpML |
minimum accepted cell per microlitre. Flowfiles with lesser cell per microlitre are termed bad. Defaults to 50. |
Most flow cytometer makers will always inform clients within which
range can measurements from the machine be trusted. The machines normally
stores the amount of it counted in a sample. Too large
value could mean possible doublets and too low value could mean too little
cells.
character vector with length same as the number of rows in the metafile whose entries are good for good files and bad for bad files.
require("stringr") metadata <- system.file("extdata", "2019-03-25_Rstarted.csv", package = "cyanoFilter", mustWork = TRUE) metafile <- read.csv(metadata, skip = 7, stringsAsFactors = FALSE, check.names = TRUE, encoding = "UTF-8") metafile <- metafile[, seq_len(65)] #first 65 columns contains useful information #extract the part of the Sample.ID that corresponds to BS4 or BS5 metafile$Sample.ID2 <- stringr::str_extract(metafile$Sample.ID, "BS*[4-5]") #clean up the Cells.muL column names(metafile)[which(stringr::str_detect(names(metafile), "Cells."))] <- "CellspML" goodFcs(metafile = metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50)
require("stringr") metadata <- system.file("extdata", "2019-03-25_Rstarted.csv", package = "cyanoFilter", mustWork = TRUE) metafile <- read.csv(metadata, skip = 7, stringsAsFactors = FALSE, check.names = TRUE, encoding = "UTF-8") metafile <- metafile[, seq_len(65)] #first 65 columns contains useful information #extract the part of the Sample.ID that corresponds to BS4 or BS5 metafile$Sample.ID2 <- stringr::str_extract(metafile$Sample.ID, "BS*[4-5]") #clean up the Cells.muL column names(metafile)[which(stringr::str_detect(names(metafile), "Cells."))] <- "CellspML" goodFcs(metafile = metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50)
function to check if object is of class cyanoFilter(DebrisFilter)
is.DebrisFilter(x)
is.DebrisFilter(x)
x |
any R object |
TRUE if object is of class DebrisFilter. FALSE otherwise
x <- c(1, 5, 4) is.DebrisFilter(x)
x <- c(1, 5, 4) is.DebrisFilter(x)
function to check if object is a flowFrame
is.flowFrame(x)
is.flowFrame(x)
x |
any R object |
TRUE if object is a flowFrame. FALSE otherwise
x <- c(1, 5, 4) is.flowFrame(x)
x <- c(1, 5, 4) is.flowFrame(x)
function to check if object is a flowSet
is.flowSet(x)
is.flowSet(x)
x |
any R object |
TRUE if object is a flowSet. FALSE otherwise
x <- c(1, 5, 4) is.flowSet(x)
x <- c(1, 5, 4) is.flowSet(x)
function to check if object is of class cyanoFilter(MarginEvents)
is.MarginEvents(x)
is.MarginEvents(x)
x |
any R object |
TRUE if object is of class MarginEvents. FALSE otherwise
x <- c(1, 5, 4) is.MarginEvents(x)
x <- c(1, 5, 4) is.MarginEvents(x)
function to check if object is of class cyanoFilter(PhytoFilter)
is.PhytopFilter(x)
is.PhytopFilter(x)
x |
any R object |
TRUE if object is of class PhytoFilter. FALSE otherwise
x <- c(1, 5, 4) is.PhytopFilter(x)
x <- c(1, 5, 4) is.PhytopFilter(x)
log transforms the expression matrix of a flowframe
lnTrans(x, notToTransform = c("SSC.W", "TIME"))
lnTrans(x, notToTransform = c("SSC.W", "TIME"))
x |
flowframe to be transformed |
notToTransform |
columns not to be transformed |
flowframe with log transformed expression matrix
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME'))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME'))
the marginEvent class
constructor for the MarginEvents class
MarginEvents( fullflowframe, reducedflowframe, N_margin, N_nonmargin, N_particle, Channel, y_toplot, cut ) MarginEvents( fullflowframe, reducedflowframe, N_margin, N_nonmargin, N_particle, Channel, y_toplot, cut )
MarginEvents( fullflowframe, reducedflowframe, N_margin, N_nonmargin, N_particle, Channel, y_toplot, cut ) MarginEvents( fullflowframe, reducedflowframe, N_margin, N_nonmargin, N_particle, Channel, y_toplot, cut )
fullflowframe |
same as the input flowFrame |
reducedflowframe |
a partial flowframe containing non-margin events |
N_margin |
number of margin particles measured |
N_nonmargin |
number of non-margine particles |
N_particle |
total number of particles measured |
Channel |
channel measuring the width of the particles |
y_toplot |
another channel to use in a bivariate plot |
cut |
the cut-off point estimated or supplied. |
object of class MarginEvents
fullflowframe
object of class "flowFrame" same as the input flowFrame
reducedflowframe
object of class "flowFrame" a partial flowframe containing a proportion of the measured particles
N_margin
object of class "numeric" representing the proportion of particles in each cluster
N_nonmargin
object of class "integer" representing the number of particles in each cluster
N_particle
object of class "integer" representing the labels for each cluster
Channel
object of class character representing channel measuring cell width
y_toplot
object of class character representing plot variable
cut
object of class numberic representing estimated inflection point or supplied cut-off point
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
takes a flowframe, a group indicator and formulates another flowframe with group indicator as part of the expression matrix of the new flowframe.
newFlowframe(flowfile, group = NULL, togate = NULL)
newFlowframe(flowfile, group = NULL, togate = NULL)
flowfile |
flowframe after debris are removed. |
group |
cluster group to be added to the expression matrix |
togate |
channel detected to have more than one peak |
flowframe with indicators for particle cluster
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
Removes NA values from the expression matrix of a flow cytometer file.
noNA(x)
noNA(x)
x |
flowframe with expression matrix containing NAs. |
flowframe with expression matrix rid of NAs.
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) noNA(x = flowfile)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) noNA(x = flowfile)
Removes negative values from the expression matrix
noNeg(x)
noNeg(x)
x |
is the flowframe whose expression matrix contains negative values |
flowframe with non-negative values in its expression matrix
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) noNeg(x = flowfile_nona)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) noNeg(x = flowfile_nona)
returns the labels stating the cluster of each row in a flowfile.
oneDgate(flowfile, togate)
oneDgate(flowfile, togate)
flowfile |
flowframe after debris are removed. |
togate |
channels detected to have more than one peak present.
Provide by the |
list of indicators for cells above and below an estimated threshold
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
produces a scatter plot of the expression matrix of a flowframe. Note that, it takes some time to display the plot.
pairsPlot(x, notToPlot = c("TIME"), ...)
pairsPlot(x, notToPlot = c("TIME"), ...)
x |
flowframe to be plotted |
notToPlot |
column in expression matrix not to be plotted |
... |
other arguments. Not used at the moment |
a plot object
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) pairsPlot(flowfile_logtrans, notToPlot = c("TIME", "SSC.W", "SSC.HLin", "NIR.R.HLin", "FSC.HLin"))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) pairsPlot(flowfile_logtrans, notToPlot = c("TIME", "SSC.W", "SSC.HLin", "NIR.R.HLin", "FSC.HLin"))
This function takes in a flowframe with debris removed and identifies the different phytoplankton cell population based on cell pigmentation and/or complexity.
phytoFilter( flowfile, pig_channels = NULL, com_channels = NULL, ph = 0.05, proportion = 0.8 )
phytoFilter( flowfile, pig_channels = NULL, com_channels = NULL, ph = 0.05, proportion = 0.8 )
flowfile |
flowframe after debris are removed. |
pig_channels |
flowcytometer channels measuring cell pigments. |
com_channels |
flowcytometer channels measuring cell complexity. |
ph |
maximum peak height to be ignored. This allows ignoring of tiny peaks that could affect the gating process. |
proportion |
proportion of cell count to be returned. |
The function uses the getPeaks
and
deGate
functions in the
flowDensity package to
identify peaks and identify cut-off points between these peaks.
object of class PhytopFilter containing;
fullflowframe - flowframe containing all phytoplankton cells with added columns indicating cluster
flowframe_proportion - a part of fullflowframe containing proportion of cell count.
clusters_proportion - proportion of cells in each cluster
particles_per_cluster - number of particles per cluster
Cluster_ind - indicator for each cluster
gated_channels - channels with multiple peaks
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin"))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin"))
the phytofilter class
constructor for the PhytoFilter class
PhytopFilter( fullflowframe, flowframe_proportion, clusters_proportion, particles_per_cluster, Cluster_ind, gated_channels, channels ) PhytopFilter( fullflowframe, flowframe_proportion, clusters_proportion, particles_per_cluster, Cluster_ind, gated_channels, channels )
PhytopFilter( fullflowframe, flowframe_proportion, clusters_proportion, particles_per_cluster, Cluster_ind, gated_channels, channels ) PhytopFilter( fullflowframe, flowframe_proportion, clusters_proportion, particles_per_cluster, Cluster_ind, gated_channels, channels )
fullflowframe |
same as the input flowFrame |
flowframe_proportion |
a partial flowframe containing containing a proportion of the measured particles |
clusters_proportion |
number of margin particles measured |
particles_per_cluster |
number of particles in each cluster |
Cluster_ind |
labels for each cluster |
gated_channels |
channels used for gating |
channels |
all channels supplied |
object of class PhytoFilter
fullflowframe
object of class "flowFrame" same as the input flowFrame
flowframe_proportion
object of class "flowFrame" a partial flowframe containing a proportion of the measured particles
clusters_proportion
object of class "numeric" representing the proportion of particles in each cluster
particles_per_cluster
object of class "data.frame" representing the number of particles in each cluster
Cluster_ind
object of class "integer" representing the labels for each cluster
gated_channels
object of class "character" representing the names of channels with multiple peaks
channels
object of class "character" representing the names of the channels
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin")
This function takes in a flowframe with debris removed and identifies phytoplankton cell population in the provided frame.
pigmentGate(flowfile, pig_channels, ph = 0.05)
pigmentGate(flowfile, pig_channels, ph = 0.05)
flowfile |
flowframe after debris are removed. |
pig_channels |
flowcytometer channels measuring phytoplankton pigmentations. |
ph |
maximum peak height to be ignored. This allows ignoring of tiny peaks that could affect the gating process. |
The function uses the getPeaks
and
deGate
functions in the
flowDensity package to identify peaks and identify cut-off
points between these peaks.
list containing;
full_flowframe - flowframe containing only phytoplankton cells
phy_ind - indicator for phytoplankton clusters found
gated_channels - pigment channels with more than one peak
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cyanoFilter::pigmentGate(flowfile = flowfile_logtrans, pig_channels = c("RED.B.HLin", "YEL.B.HLin", "FSC.HLin", "RED.R.HLin"), ph = 0.06)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cyanoFilter::pigmentGate(flowfile = flowfile_logtrans, pig_channels = c("RED.B.HLin", "YEL.B.HLin", "FSC.HLin", "RED.R.HLin"), ph = 0.06)
plot method for DebrisFilter objects
## S4 method for signature 'DebrisFilter,ANY' plot(x)
## S4 method for signature 'DebrisFilter,ANY' plot(x)
x |
an object of class DebrisFilter |
object of class ggplot
plot method for MarginEvents objects
## S4 method for signature 'MarginEvents,ANY' plot(x)
## S4 method for signature 'MarginEvents,ANY' plot(x)
x |
an object of class MarginEvents |
object of class ggplot
plot method for PhytoFilter objects
## S4 method for signature 'PhytopFilter,ANY' plot(x)
## S4 method for signature 'PhytopFilter,ANY' plot(x)
x |
an object of class PhytoFilter |
object of class ggplot
generic function for extracting the full flowframe
reducedFlowframe(x)
reducedFlowframe(x)
x |
an object of either class PhytoFilter, MarginEvents or DebrisFilter |
generic to extract fullFlowframe
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
accesor method for reduced flowframe (DebrisFilter class)
## S4 method for signature 'DebrisFilter' reducedFlowframe(x)
## S4 method for signature 'DebrisFilter' reducedFlowframe(x)
x |
an object of class DebrisFilter |
reduced flowFrame method for DebrisFilter
accesor method for reduced flowframe (MarginEvent class)
## S4 method for signature 'MarginEvents' reducedFlowframe(x)
## S4 method for signature 'MarginEvents' reducedFlowframe(x)
x |
an object of class MarginEvents |
reduced Flowframe method for MarginEvents
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") reducedFlowframe(cells_nonmargin)
accesor method for reduced flowframe(PhytoFilter class)
## S4 method for signature 'PhytopFilter' reducedFlowframe(x)
## S4 method for signature 'PhytopFilter' reducedFlowframe(x)
x |
an object of class PhytoFilter |
reduced flowFrame method for PhytoFilter #' @examples flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) phy1 <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) reducedFlowframe(phy1)
Function to determine what files to retain and finally read from the flow cytometer FCS file.
retain( meta_files, make_decision = c("maxi", "mini", "unique"), Status = "Status", CellspML = "CellspML" )
retain( meta_files, make_decision = c("maxi", "mini", "unique"), Status = "Status", CellspML = "CellspML" )
meta_files |
dataframe from meta file that has been preprocessed by the
|
make_decision |
decision to be made should more than one
|
Status |
column name in meta_files containing status obtained from the
|
CellspML |
column name in meta_files containing |
It is typically not known in advance which dilution level would
result in the desired , therefore
the samples are ran through the flow cytometer at two or more
dilution levels. Out of these, one has to decide which
to retain and finally use for further analysis. This function and
goodFcs
are to help you decide that.
If more than one of the dilution levels are judged good,
the option make_decision = "maxi" will give "Retain" to the
row with the maximum while the opposite occurs
for make_decision = "mini". make_decision = "unique"
i there is only one measurement for that particular sample,
while make_decision = "maxi"
and make_decision = "mini" should be used for files with more
than one measurement for the sample in question.
a character vector with entries "Retain" for a file to be retained or "No!" for a file to be discarded.
require("stringr") metadata <- system.file("extdata", "2019-03-25_Rstarted.csv", package = "cyanoFilter", mustWork = TRUE) metafile <- read.csv(metadata, skip = 7, stringsAsFactors = FALSE, check.names = TRUE, encoding = "UTF-8") metafile <- metafile[, seq_len(65)] #first 65 columns contain useful information #extract the part of the Sample.ID that corresponds to BS4 or BS5 metafile$Sample.ID2 <- stringr::str_extract(metafile$Sample.ID, "BS*[4-5]") #clean up the Cells.muL column names(metafile)[which(stringr::str_detect(names(metafile), "Cells."))] <- "CellspML" metafile$Status <- cyanoFilter::goodFcs(metafile = metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50) metafile$Retained <- NULL # first 3 rows contain BS4 measurements at 3 dilution levels metafile$Retained[seq_len(3)] <- cyanoFilter::retain(meta_files = metafile[seq_len(3),], make_decision = "maxi", Status = "Status", CellspML = "CellspML") # last 3 rows contain BS5 measurements at 3 dilution levels as well metafile$Retained[seq(4, 6, by = 1)] <- cyanoFilter::retain(meta_files = metafile[seq(4, 6, by = 1),], make_decision = "maxi", Status = "Status", CellspML = "CellspML")
require("stringr") metadata <- system.file("extdata", "2019-03-25_Rstarted.csv", package = "cyanoFilter", mustWork = TRUE) metafile <- read.csv(metadata, skip = 7, stringsAsFactors = FALSE, check.names = TRUE, encoding = "UTF-8") metafile <- metafile[, seq_len(65)] #first 65 columns contain useful information #extract the part of the Sample.ID that corresponds to BS4 or BS5 metafile$Sample.ID2 <- stringr::str_extract(metafile$Sample.ID, "BS*[4-5]") #clean up the Cells.muL column names(metafile)[which(stringr::str_detect(names(metafile), "Cells."))] <- "CellspML" metafile$Status <- cyanoFilter::goodFcs(metafile = metafile, col_cpml = "CellspML", mxd_cellpML = 1000, mnd_cellpML = 50) metafile$Retained <- NULL # first 3 rows contain BS4 measurements at 3 dilution levels metafile$Retained[seq_len(3)] <- cyanoFilter::retain(meta_files = metafile[seq_len(3),], make_decision = "maxi", Status = "Status", CellspML = "CellspML") # last 3 rows contain BS5 measurements at 3 dilution levels as well metafile$Retained[seq(4, 6, by = 1)] <- cyanoFilter::retain(meta_files = metafile[seq(4, 6, by = 1),], make_decision = "maxi", Status = "Status", CellspML = "CellspML")
returns the position of the cells below, above or between estimated gates
rowNumbers(flowframe, gates, ch)
rowNumbers(flowframe, gates, ch)
flowframe |
after debris are removed. |
gates |
cut point between the identified clusters |
ch |
gated channel |
a numeric vector
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) oneDgate(flowfile, 'RED.B.HLin')
takes a flowframes, a vector of channels, cluster indicator and return desired summaries per cluster
summaries(object, channels, cluster_var, summary)
summaries(object, channels, cluster_var, summary)
object |
An object of class cyanoFilter to be summarised. |
channels |
channels whose summaries are to be computed |
cluster_var |
column name in expression matrix containing the cluter indicators |
summary |
summary statistic of interest. Only mean and variance-covariance matrix supported at the moment. |
list containing computed summaires
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05)
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05)
takes a flowframes, a vector of channels, cluster indicator and return desired summaries per cluster
## S4 method for signature 'DebrisFilter' summaries(object, channels = NULL)
## S4 method for signature 'DebrisFilter' summaries(object, channels = NULL)
object |
An object of class MarginEvents to be summarised. |
channels |
channels whose summaries are to be computed |
list containing the required summaries
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") summaries(cells_nonmargin, c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") summaries(cells_nonmargin, c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"))
takes a flowframes, a vector of channels, cluster indicator and return desired summaries per cluster
## S4 method for signature 'MarginEvents' summaries(object, channels = NULL)
## S4 method for signature 'MarginEvents' summaries(object, channels = NULL)
object |
An object of class MarginEvents to be summarised. |
channels |
channels whose summaries are to be computed |
list containing the required summaries
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") summaries(cells_nonmargin, c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"))
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") summaries(cells_nonmargin, c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"))
takes a flowframes, a vector of channels, cluster indicator and return desired summaries per cluster
## S4 method for signature 'PhytopFilter' summaries( object, channels = NULL, cluster_var = "Clusters", summary = c("mean", "median", "cov", "n") )
## S4 method for signature 'PhytopFilter' summaries( object, channels = NULL, cluster_var = "Clusters", summary = c("mean", "median", "cov", "n") )
object |
An object of class cyanoFilter to be summarised. |
channels |
channels whose summaries are to be computed |
cluster_var |
column name in expression matrix containing the cluter indicators |
summary |
summary statistic of interest. Only mean and variance-covariance matrix supported at the moment. |
list containing computed summaires
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) fin <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) summaries(object = fin, channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), cluster_var = "Clusters", summary = 'mean')
flowfile_path <- system.file("extdata", "B4_18_1.fcs", package = "cyanoFilter", mustWork = TRUE) flowfile <- flowCore::read.FCS(flowfile_path, alter.names = TRUE, transformation = FALSE, emptyValue = FALSE, dataset = 1) flowfile_nona <- cyanoFilter::noNA(x = flowfile) flowfile_noneg <- cyanoFilter::noNeg(x = flowfile_nona) flowfile_logtrans <- cyanoFilter::lnTrans(x = flowfile_noneg, c('SSC.W', 'TIME')) cells_nonmargin <- cellMargin(flowframe = flowfile_logtrans, Channel = 'SSC.W', type = 'estimate', y_toplot = "FSC.HLin") cells_nodebris <- debrisNc(flowframe = reducedFlowframe(cells_nonmargin), ch_chlorophyll = "RED.B.HLin", ch_p2 = "YEL.B.HLin", ph = 0.05) fin <- phytoFilter(flowfile = reducedFlowframe(cells_nodebris), pig_channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), com_channels = c("FSC.HLin", "SSC.HLin")) summaries(object = fin, channels = c("RED.B.HLin", "YEL.B.HLin", "RED.R.HLin"), cluster_var = "Clusters", summary = 'mean')