Title: | coMET: visualisation of regional epigenome-wide association scan (EWAS) results and DNA co-methylation patterns |
---|---|
Description: | Visualisation of EWAS results in a genomic region. In addition to phenotype-association P-values, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. It can be used to other omic-wide association scans as lon:g as the data can be translated to genomic level and for any species. |
Authors: | Tiphaine C. Martin [aut,cre], Thomas Hardiman [aut], Idil Yet [aut], Pei-Chien Tsai [aut], Jordana T. Bell [aut] |
Maintainer: | Tiphaine Martin <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.39.0 |
Built: | 2024-11-19 03:44:29 UTC |
Source: | https://github.com/bioc/coMET |
coMET is an R package for visualising EWAS results in a genomic region. Along with phenotype-association plots, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets (other omic-WAS results) in any species.
Package: | coMET |
Type: | Package |
Version: | 1.11.5 |
Date: | 2018-04-16 |
License: | GPL (>=2) |
coMET is an R package that can generate regional plots of EWAS results, DNA co-methylation patterns, and genomic information. A coMET figure includes 3 panels with a plot of P-values from EWAS, customized annotation tracks, and a triangle heatmap plot which demonstrates the correlation structure of DNA methylation at the CpG sites in the genomic region. Plots are created as PDF or EPS files.
Tiphaine C. Martin, Thomas Hardiman, Idil Yet, Pei-Chien Tsai, Jordana T. Bell
Maintainer: Tiphaine Martin <[email protected]>
Website: http://www.epigen.kcl.ac.uk/comet
Martin, T.C, Yet, I, Tsai, P-C, Bell, J.T., coMET: visualisation of regional epigenome-wide association scan results and DNA co-methylation patterns, BMC bioinformatics, 2015.
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end, dataset="hsapiens_snp_som",showId=FALSE) strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end, strand, dataset="hsapiens_structvar_som") clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) } else { data(geneENSEMBLtrack) data(snpBiomarttrack) data(ISCAtrack) data(strucBiomarttrack) data(ClinVarCnvTrack) data(clinVarMaintrack) data(GWASTrack) data(GeneReviewTrack) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="listfile", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=TRUE) }
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end, dataset="hsapiens_snp_som",showId=FALSE) strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end, strand, dataset="hsapiens_structvar_som") clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) } else { data(geneENSEMBLtrack) data(snpBiomarttrack) data(ISCAtrack) data(strucBiomarttrack) data(ClinVarCnvTrack) data(clinVarMaintrack) data(GWASTrack) data(GeneReviewTrack) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="listfile", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=TRUE) }
Creates a binding motif track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
bindingMotifsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay="all", datasetEnsembl = NULL, title="Binding Motifs ENSEMBL")
bindingMotifsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay="all", datasetEnsembl = NULL, title="Binding Motifs ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
featureDisplay |
A vector of regulatory features to be displayed, such as Egr1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CTCF"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Egr1","CTCF")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
datasetEnsembl |
Allows the user to manually set which data set is used if required. |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "CTCF" if(interactive()){ bindMotifsBiomartTrackSingle<-bindingMotifsBiomart_ENSEMBL(gen,chr,start, end,featureDisplay) plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackSingle) plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- c("CTCF","Egr1") if(interactive()){ bindMotifsBiomartTrackMultiple<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay) plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackMultiple) plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ bindMotifsBiomartTrackAll<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay) plotTracks(bindMotifsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackAll) plotTracks(bindMotifsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "CTCF" if(interactive()){ bindMotifsBiomartTrackSingle<-bindingMotifsBiomart_ENSEMBL(gen,chr,start, end,featureDisplay) plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackSingle) plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- c("CTCF","Egr1") if(interactive()){ bindMotifsBiomartTrackMultiple<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay) plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackMultiple) plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ bindMotifsBiomartTrackAll<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay) plotTracks(bindMotifsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(bindMotifsBiomartTrackAll) plotTracks(bindMotifsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of TF motifs from ENCODE using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
ChIPTF_ENCODE(gen="hg19", chr, start, end, bedFilePath, featureDisplay='all', motifColorFile, type_stacking='dense', showId=FALSE,just_group="above", title="TF motifs ENCODE")
ChIPTF_ENCODE(gen="hg19", chr, start, end, bedFilePath, featureDisplay='all', motifColorFile, type_stacking='dense', showId=FALSE,just_group="above", title="TF motifs ENCODE")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
featureDisplay |
A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
motifColorFile |
The path of the BED file with 2 columns ( the first for motif name and the second for the color in hex format without \# in the beginning) with a header. |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
showId |
logical. say if we write the name of group |
just_group |
position. say where we write the name of group (choice in c("above","righ","left")) |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen <- "hg19" chr<-"chr1" start <- 1000 end <- 329000 if(interactive()){ extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "ENCODE/motifs1000_matches_ENCODE.txt") motif_color <- file.path(extdata, "ENCODE/TFmotifs_colors.csv") chipTFtrack <- ChIPTF_ENCODE(gen,chr,start, end, bedFilePath, featureDisplay=c("AHR::ARNT::HIF1A_1","AIRE_1","AIRE_2","AHR::ARNT_1"), motif_color,type_stacking="squish",showId=TRUE) plotTracks(chipTFtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chipTFtrack) plotTracks(chipTFtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr<-"chr1" start <- 1000 end <- 329000 if(interactive()){ extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "ENCODE/motifs1000_matches_ENCODE.txt") motif_color <- file.path(extdata, "ENCODE/TFmotifs_colors.csv") chipTFtrack <- ChIPTF_ENCODE(gen,chr,start, end, bedFilePath, featureDisplay=c("AHR::ARNT::HIF1A_1","AIRE_1","AIRE_2","AHR::ARNT_1"), motif_color,type_stacking="squish",showId=TRUE) plotTracks(chipTFtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chipTFtrack) plotTracks(chipTFtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create multiple chromHMM Broad tracks by connecting to the UCSC genome browser using the GViz bioconductor package
chromatinHMMAll_UCSC(gen, chr, start, end, mySession, color='coMET', pattern = NULL, table.name = NULL)
chromatinHMMAll_UCSC(gen, chr, start, end, mySession, color='coMET', pattern = NULL, table.name = NULL)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in region of interest (the smallest value) |
end |
the last position in region of interest (the biggest value) |
mySession |
the object session from the function browserSession of rtracklayer |
color |
the colour scheme used for plots. By defult this is set to 'coMET' to allow easy indentifcation of differnent elements. The colour scheme set by UCSC can also be used. Consult userguide for table of colours. |
pattern |
the pattern of the track to visualise |
table.name |
the name of the table from the track |
list of AnnotationTrack objects of GViz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper
library("Gviz") library(rtracklayer) gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38313219 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen track.name="Broad ChromHMM" tablestrack<-ucscTables(gen, track=track.name) table.name<-tablestrack[1] PATTERN.REGULATION<-"GM12878" chromhmmPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,mySession, color='coMET',PATTERN.REGULATION) plotTracks(chromhmmPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") chromhmmNoPattern<-chromatinHMMAll_UCSC(gen,chr,start,end, mySession,color='coMET') plotTracks(chromhmmNoPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(chromhmmPattern) plotTracks(chromhmmPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") data(chromhmmNoPattern) plotTracks(chromhmmNoPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") library(rtracklayer) gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38313219 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen track.name="Broad ChromHMM" tablestrack<-ucscTables(gen, track=track.name) table.name<-tablestrack[1] PATTERN.REGULATION<-"GM12878" chromhmmPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,mySession, color='coMET',PATTERN.REGULATION) plotTracks(chromhmmPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") chromhmmNoPattern<-chromatinHMMAll_UCSC(gen,chr,start,end, mySession,color='coMET') plotTracks(chromhmmNoPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(chromhmmPattern) plotTracks(chromhmmPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") data(chromhmmNoPattern) plotTracks(chromhmmNoPattern, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create one track of only one type of chromHMM Broad element from the UCSC genome browser using the Gviz bioconductor package
chromatinHMMOne_UCSC(gen, chr, start, end, mySession, color="coMET", title="ENCODE/Broad chromHMM", table.name = NULL)
chromatinHMMOne_UCSC(gen, chr, start, end, mySession, color="coMET", title="ENCODE/Broad chromHMM", table.name = NULL)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in region of interest (the smallest value) |
end |
the last position in region of interest (the biggest value) |
mySession |
the object session from the function browserSession of rtracklayer |
color |
the color scheme used for plots. By defult this is set to 'coMET' to allow easy indentifcation of differnent elements. The color scheme set by UCSC can also be used. Consult userguide for table of colors. |
title |
Name of tracks |
table.name |
the name of the table from the track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38303219 color <- "coMET" if(interactive()) { BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen track.name="Broad ChromHMM" tablestrack<-ucscTables(gen, track.name) table.name<-tablestrack[1] chromhmmtrackone<-chromatinHMMOne_UCSC(gen,chr,start,end ,mySession,color="coMET",table.name) plotTracks(chromhmmtrackone, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(chromhmmtrackone) plotTracks(chromhmmtrackone, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38303219 color <- "coMET" if(interactive()) { BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen track.name="Broad ChromHMM" tablestrack<-ucscTables(gen, track.name) table.name<-tablestrack[1] chromhmmtrackone<-chromatinHMMOne_UCSC(gen,chr,start,end ,mySession,color="coMET",table.name) plotTracks(chromhmmtrackone, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(chromhmmtrackone) plotTracks(chromhmmtrackone, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a ChromHMM track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
chromHMM_RoadMap(gen="hg19",chr, start, end, bedFilePath, featureDisplay = 'all', colorcase='roadmap15', title=" chromHMM RoadMap")
chromHMM_RoadMap(gen="hg19",chr, start, end, bedFilePath, featureDisplay = 'all', colorcase='roadmap15', title=" chromHMM RoadMap")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The file path to the .BED file containing the data to be visualised |
featureDisplay |
A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the 'State & Acronym' column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
colorcase |
the type of colors used to visualise different elements contained in ROADmap data with 15-,18-,25- states. choice between roadmap15, roadmap18, comet18, roadmap25 and comet25. |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to RoadMap Epigenome
library("Gviz") chr <- "chr1" start <- 4500000 end <- 4600000 featureDisplay <- "7_Enh" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapSingle <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapSingle) plotTracks(chromHMM_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") chr <- "chr22" start <- 38291000 end <- 38301200 featureDisplay <- c("7_Enh","13_ReprPC") extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapMultiple <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapMultiple) plotTracks(chromHMM_RoadMapMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") chr <- "chr22" start <- 38291000 end <- 38301200 featureDisplay <- "all" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapAll <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapAll) plotTracks(chromHMM_RoadMapAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chr <- "chr1" start <- 4500000 end <- 4600000 featureDisplay <- "7_Enh" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapSingle <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapSingle) plotTracks(chromHMM_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") chr <- "chr22" start <- 38291000 end <- 38301200 featureDisplay <- c("7_Enh","13_ReprPC") extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapMultiple <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapMultiple) plotTracks(chromHMM_RoadMapMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") chr <- "chr22" start <- 38291000 end <- 38301200 featureDisplay <- "all" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed") if(interactive()){ chromHMM_RoadMapAll <- chromHMM_RoadMap(gen="hg19",chr,start, end, bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' ) plotTracks(chromHMM_RoadMapAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(chromHMM_RoadMapAll) plotTracks(chromHMM_RoadMapAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Removing "chr" at the beginning of the chromosome number
chrUCSC2ENSEMBL(chr)
chrUCSC2ENSEMBL(chr)
chr |
the chromosome number in UCSC format |
the number of chromosome at ENSEMBL format
Tiphaine Martin
chr<-"chr7" chrUCSC2ENSEMBL(chr)
chr<-"chr7" chrUCSC2ENSEMBL(chr)
Create one track of the genomic positions of variants from the ClinVar database (CNV only, Variants excluded) using the Gviz bioconductor package
ClinVarCnv_UCSC(gen, chr, start, end, title="ClinVar Variants", showId = FALSE)
ClinVarCnv_UCSC(gen, chr, start, end, title="ClinVar Variants", showId = FALSE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in region of interest (the smallest value) |
end |
the last position in region of interest (the biggest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=clinvar
http://bioconductor.org/packages/release/bioc/html/Gviz.html
snpLocations_UCSC
, structureBiomart_ENSEMBL
,
snpBiomart_ENSEMBL
,
CoreillCNV_UCSC
, COSMIC_UCSC
,
ClinVarMain_UCSC
library("Gviz") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) plotTracks(clinCNV, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(ClinVarCnvTrack) plotTracks(clinCNV, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) plotTracks(clinCNV, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(ClinVarCnvTrack) plotTracks(clinCNV, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of variants from the ClinVar database (Variants only, CNV excluded) using the Gviz bioconductor package
ClinVarMain_UCSC(gen, chr, start, end, title="ClinVar Variants", showId=FALSE)
ClinVarMain_UCSC(gen, chr, start, end, title="ClinVar Variants", showId=FALSE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in region of interest (the smallest value) |
end |
the last position in region of interest (the biggest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=clinvar
http://bioconductor.org/packages/release/bioc/html/Gviz.html
snpLocations_UCSC
, structureBiomart_ENSEMBL
,
snpBiomart_ENSEMBL
,
CoreillCNV_UCSC
, COSMIC_UCSC
,
ClinVarCnv_UCSC
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 100000 end <- 10000000 if(interactive()) { clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) plotTracks(clinVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else{ data(clinVarMaintrack) plotTracks(clinVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 100000 end <- 10000000 if(interactive()) { clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) plotTracks(clinVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else{ data(clinVarMaintrack) plotTracks(clinVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
col2HSV converts an R color (or a set of colors) into an HSV color model, and then returns the color names in hexadeciaml notation
col2HSV(color)
col2HSV(color)
color |
an R color name or a color in hexadecimal notation |
A character vector with the color(s) name(s) in hexadecimal notation
Gaston Sanchez
# convert 'tomato' col2HSV("tomato")
# convert 'tomato' col2HSV("tomato")
coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.
comet(mydata.file = NULL, mydata.format = "site", mydata.type = "file", mydata.large.file = NULL, mydata.large.format = "site", mydata.large.type = "listfile", cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw", cormatrix.color.scheme = "bluewhitered",cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none", cormatrix.type = "listfile", mydata.ref = NULL, start = NULL, end = NULL, zoom = FALSE, lab.Y = "log", pval.threshold = 1e-05,pval.threshold.2 = 0,disp.pval.threshold = 1, disp.association = FALSE, disp.association.large = FALSE, disp.region = FALSE, disp.region.large = FALSE, disp.beta.association = FALSE, disp.beta.association.large = FALSE, factor.beta = 0.3, symbols = "circle-fill", symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL, use.colors = TRUE , disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL, disp.mydata = TRUE, biofeat.user.file = NULL, biofeat.user.type = NULL, biofeat.user.type.plot = NULL, genome = "hg19", dataset.gene = "hsapiens_gene_ensembl", tracks.gviz = NULL, disp.mydata.names = TRUE, disp.color.bar = TRUE, disp.phys.dist = TRUE, disp.legend = TRUE, disp.marker.lines = TRUE, disp.cormatrixmap = TRUE, disp.pvalueplot =TRUE, disp.type = "symbol", disp.mult.lab.X = FALSE, disp.connecting.lines = TRUE, palette.file = NULL, image.title = NULL, image.name = "coMET", image.type = NULL, image.size = 3.5, fontsize.gviz=5, font.factor = 1, symbol.factor = NULL, print.image = TRUE, connecting.lines.factor = 1.5, connecting.lines.adj = 0.01, connecting.lines.vert.adj = -1, connecting.lines.flex = 0, config.file = NULL, verbose = FALSE)
comet(mydata.file = NULL, mydata.format = "site", mydata.type = "file", mydata.large.file = NULL, mydata.large.format = "site", mydata.large.type = "listfile", cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw", cormatrix.color.scheme = "bluewhitered",cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none", cormatrix.type = "listfile", mydata.ref = NULL, start = NULL, end = NULL, zoom = FALSE, lab.Y = "log", pval.threshold = 1e-05,pval.threshold.2 = 0,disp.pval.threshold = 1, disp.association = FALSE, disp.association.large = FALSE, disp.region = FALSE, disp.region.large = FALSE, disp.beta.association = FALSE, disp.beta.association.large = FALSE, factor.beta = 0.3, symbols = "circle-fill", symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL, use.colors = TRUE , disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL, disp.mydata = TRUE, biofeat.user.file = NULL, biofeat.user.type = NULL, biofeat.user.type.plot = NULL, genome = "hg19", dataset.gene = "hsapiens_gene_ensembl", tracks.gviz = NULL, disp.mydata.names = TRUE, disp.color.bar = TRUE, disp.phys.dist = TRUE, disp.legend = TRUE, disp.marker.lines = TRUE, disp.cormatrixmap = TRUE, disp.pvalueplot =TRUE, disp.type = "symbol", disp.mult.lab.X = FALSE, disp.connecting.lines = TRUE, palette.file = NULL, image.title = NULL, image.name = "coMET", image.type = NULL, image.size = 3.5, fontsize.gviz=5, font.factor = 1, symbol.factor = NULL, print.image = TRUE, connecting.lines.factor = 1.5, connecting.lines.adj = 0.01, connecting.lines.vert.adj = -1, connecting.lines.flex = 0, config.file = NULL, verbose = FALSE)
mydata.file |
Name of the info file describing the coMET parameters |
mydata.format |
Format of the input data in mydata.file. There are 4 different options: site, region, site_asso, region_asso. |
mydata.type |
Format of mydata.file. There are 2 different options: FILE or MATRIX. |
mydata.large.file |
Name of additional info files describing the coMET parameters. File names should be comma-separated. It is optional, but if you add some, they need to be file(s) in tabular format with a header. Additional info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.large.format. |
mydata.large.format |
Format of additional data to be visualised in the p-value plot. Format should be comma-separated. There are 4 different options for each file: site, region, site_asso, region_asso. |
mydata.large.type |
Format of mydata.large.file. There are 2 different options: listfile or listdataframe. |
cormatrix.file |
Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header. |
cormatrix.method |
Options for calculating the correlation matrix: spearman, pearson and kendall |
cormatrix.format |
Format of the input cormatrix.file. TThere are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix) |
cormatrix.color.scheme |
Color scheme options: heat, bluewhitered, cm, topo, gray, bluetored |
cormatrix.conf.level |
Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values. |
cormatrix.sig.level |
Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1. |
cormatrix.adjust |
indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none" |
cormatrix.type |
Format of cormatrix.file. There are 2 different options: listfile or listdataframe. |
mydata.ref |
The name of the referenceomic feature (e.g. CpG-site) listed in mydata.file |
start |
The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features. |
end |
the last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features. |
zoom |
Default=False |
lab.Y |
Scale of the y-axis. Options: log or ln |
pval.threshold |
Significance threshold to be displayed as a red dashed line |
pval.threshold.2 |
the second significance threshold to be displayed as a orange dashed line |
disp.pval.threshold |
Display only the findings that pass the value put in disp.pval.threshold |
disp.association |
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color. |
disp.association.large |
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color. |
disp.region |
This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown. |
disp.region.large |
This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown. |
disp.beta.association |
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown. |
disp.beta.association.large |
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is ththe default size of symbole; if TRUE, the effect direction is shown. |
factor.beta |
Factor to visualise the size of beta. Default value = 0.3. |
symbols |
The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle |
symbols.large |
The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.s., square-fill. Example: circle,diamond-fill,triangle |
sample.labels |
Labels for the sample described in mydata.file to include in the legend |
sample.labels.large |
Labels for the sample described in mydata.large.file to include in the legend |
use.colors |
Use the colors defined or use the grey color scheme |
disp.color.ref |
Logical option TRUE or FALSE (TRUE default). if TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black. |
color.list |
List of colors for displaying the P-value symbols related to the data in mydata.file |
color.list.large |
List of colors for displaying the P-value symbols related to the data in mydata.large.file |
disp.mydata |
logical option TRUE or FALSE. TRUE (default). If TRUE, the P-value plot is shown; if FALSE the plot will be defined by GViz |
biofeat.user.file |
Name of data file to visualise in the tracks. File names should be comma-separated. |
biofeat.user.type |
Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneregionTrack. |
biofeat.user.type.plot |
Format of the plot if the data are shown with the Gviz's function called DataTrack (comma-separated) |
genome |
The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37),"grch38" (GRCh38) |
dataset.gene |
The gene names from ENSEMBL. e.g. hsapiens_gene |
tracks.gviz |
list of tracks created by Gviz. |
disp.mydata.names |
logical option TRUE or FALSE. If True (default), the names of the CpG sites are displayed. |
disp.color.bar |
Color legend for the correlation matrix (range -1 to 1). Default: blue-white-red |
disp.phys.dist |
logical option (TRUE or FALSE). TRUE (default).Display the bp distance on the plots |
disp.legend |
logical option TRUE or FALSE. TRUE (default) Display the sample labels and corresponding symbols on the lower right side |
disp.marker.lines |
logical option TRUE or FALSE. TRUE (default), if FALSE the red line for pval.threshold is not shown |
disp.cormatrixmap |
logical option TRUE or FALSE. TRUE (default), if FALSE correlation matrix is not shown |
disp.pvalueplot |
logical option (TRUE or FALSE). TRUE (default), if FALSE the pvalue plot is not shown |
disp.type |
Default: symbol |
disp.mult.lab.X |
logical option TRUE or FALSE. FALSE (default).Display evenly spaced X-axis labels; up to 5 labels are shown. |
disp.connecting.lines |
logical option TRUE or FALSE. TRUE (default) displays connecting lines between p-value plot and correlation matrix |
palette.file |
File that contains color scheme for the heatmap. Colors are hexidecimal HTML color codes; one color per line; if you do not want to use this option, use the color defined by the option cormatrix.color.scheme |
image.title |
Title of the plot |
image.name |
The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type. |
image.type |
Options: pdf or eps |
image.size |
Default: 3.5 inches. Possible sizes : 3.5 or 7 |
fontsize.gviz |
Font size of writing in annotation track. Default value =5 |
font.factor |
Font size of the sample labels. Range: 0-1 |
symbol.factor |
Size of the symbols. Range: 0-1 |
print.image |
Print image in file or not. |
connecting.lines.factor |
Length of the connecting lines. Range: 0-2 |
connecting.lines.adj |
Position of the connecting lines horizontally. Negative values shift the connecting lines to the left and positive values shift the lines to the right. Range: (-1;1) option -1 means no connecting lines. |
connecting.lines.vert.adj |
Position of the connecting lines vertically. Can be used to vertically adjust the position of the connecting lines in relation to the CpG-site names. Negative value shift the connecting lines down. Range: (-0.5 - 0), option -1 mean the default value related to the plot size (-0.5 for 3.5 plot size; -0.7 for 7.5 plot size) |
connecting.lines.flex |
Adjusts the spread of the connecting lines. Range: 0-2 |
config.file |
Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP) |
verbose |
logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments. |
The function is limited to visualize 120 omic features.
Create a plot in pdf or eps format depending to some options
Tiphaine Martin
http://epigen.kcl.ac.uk/comet/
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ cat("interactive") genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end, dataset="hsapiens_snp_som",showId=FALSE) strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end, strand, dataset="hsapiens_structvar_som") clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) } else { cat("Non interactive") data(geneENSEMBLtrack) data(snpBiomarttrack) data(ISCAtrack) data(strucBiomarttrack) data(ClinVarCnvTrack) data(clinVarMaintrack) data(GWASTrack) data(GeneReviewTrack) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) }
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg38" if(interactive()){ cat("interactive") genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end, dataset="hsapiens_snp_som",showId=FALSE) strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end, strand, dataset="hsapiens_structvar_som") clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end) clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end) gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) } else { cat("Non interactive") data(geneENSEMBLtrack) data(snpBiomarttrack) data(ISCAtrack) data(strucBiomarttrack) data(ClinVarCnvTrack) data(clinVarMaintrack) data(GWASTrack) data(GeneReviewTrack) listgviz <- list(genetrack,snptrack,strutrack,clinVariant, clinCNV,gwastrack,geneRtrack) comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file", cormatrix.file=mycorrelation, cormatrix.type="listfile", mydata.large.file=myexpressfile, mydata.large.type="listfile", tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE) }
coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks. In addition, the function comet.list gives the list of correlations between omic features
comet.list(cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw", cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none", cormatrix.type = "listdataframe", cormatrix.output="cormatrix_list", config.file = NULL, verbose = FALSE)
comet.list(cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw", cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none", cormatrix.type = "listdataframe", cormatrix.output="cormatrix_list", config.file = NULL, verbose = FALSE)
cormatrix.file |
Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header. |
cormatrix.method |
Options for calculating the correlation matrix: spearman, pearson and kendall. Default value= spearman |
cormatrix.format |
Format of the input cormatrix.file. TThere are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix) |
cormatrix.conf.level |
Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values. |
cormatrix.sig.level |
Significant level to visualise the correlation. If the correlation has a pvalue below the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1. |
cormatrix.adjust |
indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none" |
cormatrix.type |
Format of cormatrix.file. There are 2 different options: listfile or listdataframe. |
cormatrix.output |
The path and the name of the output file without the extension |
config.file |
Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". |
verbose |
logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments. |
Create a list of correlation between omic features
Tiphaine Martin
http://epigen.kcl.ac.uk/comet/
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") myoutput <- file.path(extdata, "cyp1b1_res37_cormatrix_list_BH05.txt") comet.list(cormatrix.file=mycorrelation,cormatrix.method = "spearman", cormatrix.format= "raw", cormatrix.conf.level=0.05, cormatrix.sig.level= 0.05, cormatrix.adjust="BH", cormatrix.type = "listfile", cormatrix.output=myoutput, verbose=FALSE)
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") myoutput <- file.path(extdata, "cyp1b1_res37_cormatrix_list_BH05.txt") comet.list(cormatrix.file=mycorrelation,cormatrix.method = "spearman", cormatrix.format= "raw", cormatrix.conf.level=0.05, cormatrix.sig.level= 0.05, cormatrix.adjust="BH", cormatrix.type = "listfile", cormatrix.output=myoutput, verbose=FALSE)
coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.
comet.web(mydata.file = NULL, mydata.format = c("site", "region", "site_asso", "region_asso"), mydata.large.file = NULL, mydata.large.format = c("site", "region", "site_asso", "region_asso"), cormatrix.file = NULL, cormatrix.method = c("spearman", "pearson", "kendall"), cormatrix.format = c("cormatrix", "raw","raw_rev"), cormatrix.color.scheme = "heat", cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none",mydata.ref = NULL, genome="hg19", start = NULL, end = NULL, zoom = FALSE, lab.Y = "log", pval.threshold = 1e-07, pval.threshold.2 = 0, disp.pval.threshold = 1, disp.association= FALSE, disp.association.large = FALSE, disp.beta.association = "FALSE", disp.beta.association.large = "FALSE", factor.beta = 0.3, disp.region = FALSE, disp.region.large = FALSE, symbols = "circle-fill", symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL, use.colors = TRUE, disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL, biofeat.user.file = NULL, biofeat.user.type = c("GeneRegion", "Annotation", "Data"), biofeat.user.type.plot = NULL, list.tracks = "geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP", pattern.regulation = "GM12878", image.title = NULL, image.name = "coMET", image.type = c("pdf", "eps"), image.size = 3.5, fontsize.gviz=5, font.factor = 1, print.image = FALSE, config.file = NULL, verbose = FALSE)
comet.web(mydata.file = NULL, mydata.format = c("site", "region", "site_asso", "region_asso"), mydata.large.file = NULL, mydata.large.format = c("site", "region", "site_asso", "region_asso"), cormatrix.file = NULL, cormatrix.method = c("spearman", "pearson", "kendall"), cormatrix.format = c("cormatrix", "raw","raw_rev"), cormatrix.color.scheme = "heat", cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none",mydata.ref = NULL, genome="hg19", start = NULL, end = NULL, zoom = FALSE, lab.Y = "log", pval.threshold = 1e-07, pval.threshold.2 = 0, disp.pval.threshold = 1, disp.association= FALSE, disp.association.large = FALSE, disp.beta.association = "FALSE", disp.beta.association.large = "FALSE", factor.beta = 0.3, disp.region = FALSE, disp.region.large = FALSE, symbols = "circle-fill", symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL, use.colors = TRUE, disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL, biofeat.user.file = NULL, biofeat.user.type = c("GeneRegion", "Annotation", "Data"), biofeat.user.type.plot = NULL, list.tracks = "geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP", pattern.regulation = "GM12878", image.title = NULL, image.name = "coMET", image.type = c("pdf", "eps"), image.size = 3.5, fontsize.gviz=5, font.factor = 1, print.image = FALSE, config.file = NULL, verbose = FALSE)
.
mydata.file |
Name of the info file describing the coMET parameters. It is mandatory and has to be a file in tabular format with a header. Info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.format. |
mydata.format |
Format of the input data in mydata.file. There are 4 different options: site, region, site_asso, region_asso. |
mydata.large.file |
Name of additional info files describing the coMET parameters. File names should be comma-separated. It is optional, but if you add some, they need to be file(s) in tabular format with a header. Additional info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.large.format. |
mydata.large.format |
Format of additional data to be visualised in the p-value plot. Format should be comma-separated.There are 4 different options for each file: site, region, site_asso, region_asso. |
cormatrix.file |
Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header. |
cormatrix.method |
A character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated. |
cormatrix.format |
A character string indicating which format of the input cormatrix.file is to be used. There are three options: raw file (raw if CpG sites are by column and samples by row or row_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix) |
cormatrix.color.scheme |
A character string indicating which Color scheme options is to be used: heat, bluewhitered, cm, topo, gray, bluetored |
cormatrix.conf.level |
Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values. |
cormatrix.sig.level |
Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1. |
cormatrix.adjust |
indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none" |
mydata.ref |
The name of the reference omic feature (e.g. CpG-site) listed in mydata.file |
genome |
The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37),"grch38" (GRCh38) |
start |
The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features. |
end |
the last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features. |
zoom |
logical option TRUE or FALSE. FALSE (default) |
lab.Y |
Scale of the y-axis. Options: log or ln |
pval.threshold |
Significance threshold to be displayed as a red dashed line. Default value = 1e-7 |
pval.threshold.2 |
the second significance threshold to be displayed as a orange dashed line. Default value= 0 (no printed) |
disp.pval.threshold |
Display only the findings that pass the value put in disp.pval.threshold |
disp.association |
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color. |
disp.association.large |
This logical option works only if mydata.large.file contains the effect direction (MYDATA.large.FORMA=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color. |
disp.beta.association |
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown. |
disp.beta.association.large |
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is ththe default size of symbole; if TRUE, the effect direction is shown. |
factor.beta |
Factor to visualise the size of beta. Default value = 0.3. |
disp.region |
This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown. |
disp.region.large |
This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown. |
symbols |
The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle |
symbols.large |
The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.s., square-fill. Example: circle,diamond-fill,triangle |
sample.labels |
Labels for the sample described in mydata.file to include in the legend |
sample.labels.large |
Labels for the sample described in mydata.large.file to include in the legend |
use.colors |
Use the colors defined or use the grey color scheme |
disp.color.ref |
Logical option TRUE or FALSE (TRUE default). if TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black. |
color.list |
List of colors for displaying the P-value symbols related to the data in mydata.file |
color.list.large |
List of colors for displaying the P-value symbols related to the data in mydata.large.file |
biofeat.user.file |
Name of data file to visualise in the tracks. File names should be comma-separated. |
biofeat.user.type |
Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneRegionTrack. |
biofeat.user.type.plot |
Format of the plot if the data are shown with the Gviz's function called DataTrack (comma-separated) |
list.tracks |
List of annotation tracks to visualise. Options include geneENSEMBL, CGI, ChromHMM, DNAse, RegENSEMBL, SNP, transcriptENSEMBL, SNPstoma, SNPstru, SNPstrustoma, BindingMotifENSEMBL, otherRegulatoryENSEMBL, regulatoryEvidenceENSEMBL, regulatoryFeaturesENSEMBL, regulatorySegmeENSEMBL, miRNAENSEMBL, ImprintedtissuesGenes, COSMIC, GAD, ClinVar, GeneReviews, GWAS, ClinVarCNV, GCcontent, genesUCSC, xenogenesUCSC, SegDuplication,RepeatElt. |
pattern.regulation |
The cell/tissue or the list of cells/tissues to visualise in the regulation region defined by Broad ChromHMM |
image.title |
Title of the plot |
image.name |
The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type. |
image.type |
Options: pdf or eps |
image.size |
Default: 3.5 inches. Possible sizes : 3.5 or 7 |
fontsize.gviz |
Font size of writing in annotation track. Default value =5 |
font.factor |
Font size of the sample labels. Range: 0-1 |
print.image |
Print image in file or not. |
config.file |
Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP) |
verbose |
logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments. |
The function is limited to visualize 120 omic features.
Create a plot in pdf or eps format depending to some options
Tiphaine Martin
http://epigen.kcl.ac.uk/comet/
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4webserver.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") comet.web(config.file=configfile, mydata.file=myinfofile, cormatrix.file=mycorrelation, mydata.large.file=myexpressfile, print.image=FALSE,verbose=FALSE)
extdata <- system.file("extdata", package="coMET",mustWork=TRUE) configfile <- file.path(extdata, "config_cyp1b1_zoom_4webserver.txt") myinfofile <- file.path(extdata, "cyp1b1_infofile.txt") myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt") mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt") comet.web(config.file=configfile, mydata.file=myinfofile, cormatrix.file=mycorrelation, mydata.large.file=myexpressfile, print.image=FALSE,verbose=FALSE)
Complementary or opposite color scheme is formed by colors that are opposite each other on the color wheel (example: red and green). The high contrast of complementary colors creates a vibrant look that must be managed well so it is not jarring.
complementary(color, plot = TRUE, bg = "white", labcol = NULL, cex = 0.8, title = TRUE)
complementary(color, plot = TRUE, bg = "white", labcol = NULL, cex = 0.8, title = TRUE)
color |
an R color name or color in hexadecimal notation |
plot |
logical value indicating whether to plot a color wheel with the generated scheme |
bg |
background color of the plot. Used only when
|
labcol |
color for the labels (i.e. names of the
colors). Used only when |
cex |
numeric value indicating the character expansion of the labels |
title |
logical value indicating whether to display
a title in the plot. Used ony when |
The complementary color is obtained following a color wheel with 12 colors, each one spaced at 30 degrees from each other. Complementary color schemes are tricky to use in large doses, but work well when you wnat something to stand out. In addition, omplementary colors are really bad for text.
A character vector with the given color and the complementary color in hexadecimal notation
Gaston Sanchez
# complementary color of 'tomato' with no plot opposite("tomato", plot = FALSE) # complementary color of 'tomato' with color wheel opposite("tomato", bg = "gray30")
# complementary color of 'tomato' with no plot opposite("tomato", plot = FALSE) # complementary color of 'tomato' with color wheel opposite("tomato", bg = "gray30")
Create one track of the genomic positions of copy-number variants (CNVs) in chromosomal aberration and inherited disorder cell lines from the NIGMS Human Genetic Cell Repository using the Gviz bioconductor package.
CoreillCNV_UCSC(gen, chr, start, end,title="Coriell CNVs", showId=FALSE)
CoreillCNV_UCSC(gen, chr, start, end,title="Coriell CNVs", showId=FALSE)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=coriellDelDup
snpLocations_UCSC
, structureBiomart_ENSEMBL
,
snpBiomart_ENSEMBL
,
COSMIC_UCSC
,
ClinVarMain_UCSC
,
ClinVarCnv_UCSC
library("Gviz") gen <- "hg19" chrom <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ coreilVariant<-CoreillCNV_UCSC(gen,chrom,start,end) plotTracks(coreilVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(coreilVarianttrack) plotTracks(coreilVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chrom <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ coreilVariant<-CoreillCNV_UCSC(gen,chrom,start,end) plotTracks(coreilVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(coreilVarianttrack) plotTracks(coreilVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
[obselete] No more possible to extract COSMIC data from UCSC.
Create one track of the genomic positions of variants from COSMIC, the "Catalogue Of Somatic Mutations In Cancer" in extracting data from UCSC and using the Gviz bioconductor package.
COSMIC_UCSC(gen, chr, start, end,title= "COSMIC", showId=FALSE)
COSMIC_UCSC(gen, chr, start, end,title= "COSMIC", showId=FALSE)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38) |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cosmic
snpLocations_UCSC
, structureBiomart_ENSEMBL
,
snpBiomart_ENSEMBL
,
CoreillCNV_UCSC
, ClinVarMain_UCSC
,
ClinVarCnv_UCSC
,
library("Gviz") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg19" if(interactive()){ cosmicVariant<-COSMIC_UCSC(gen,chrom,start,end) plotTracks(cosmicVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(cosmicVarianttrack) plotTracks(cosmicVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chrom <- "chr2" start <- 38290160 end <- 38303219 gen <- "hg19" if(interactive()){ cosmicVariant<-COSMIC_UCSC(gen,chrom,start,end) plotTracks(cosmicVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(cosmicVarianttrack) plotTracks(cosmicVariant, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
create track CpG Island from UCSC using the Gviz bioconductor package
cpgIslands_UCSC(gen, chr, start, end, title="CpG Islands UCSC")
cpgIslands_UCSC(gen, chr, start, end, title="CpG Islands UCSC")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
Name of tracks |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cpgIslandSuper
library("Gviz") chrom <- "chr2" start <- 100000 end <- 1000000 gen <- "hg38" if(interactive()) { cpgIstrack<-cpgIslands_UCSC(gen, chrom, start, end) plotTracks(cpgIstrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(cpgIslandtrack) plotTracks(cpgIstrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chrom <- "chr2" start <- 100000 end <- 1000000 gen <- "hg38" if(interactive()) { cpgIstrack<-cpgIslands_UCSC(gen, chrom, start, end) plotTracks(cpgIstrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(cpgIslandtrack) plotTracks(cpgIstrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a DGFP track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
dgfootprints_RoadMap(gen="hg19", chr, start, end, bedFilePath, tissueGroupDisplay='Blood & T-cell',showId=FALSE, type_stacking="dense", title= "DGFP RoadMap")
dgfootprints_RoadMap(gen="hg19", chr, start, end, bedFilePath, tissueGroupDisplay='Blood & T-cell',showId=FALSE, type_stacking="dense", title= "DGFP RoadMap")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The file path to the .BED file containing the data to be visualised |
tissueGroupDisplay |
the group of tissue visualised among list("Neurosph","Epithelial","IMR90","Thymus","Heart","Brain","Digestive","Muscle","Other","iPSC","HSC & B-cell","Blood & T-cell"="ES-deriv") |
showId |
logical. say if we write the name of group |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to RoadMap Epigenome
library("Gviz") chr <- "chr1" start <- 236728 end <- 238778 gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/CD3-DS17198.hg19_subset.bed") if(interactive()){ dgfootprints_RoadMapSingle <- dgfootprints_RoadMap(gen,chr,start, end, bedFilePath, tissueGroupDisplay='Blood & T-cell' ) plotTracks(dgfootprints_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(dgfootprints_RoadMapSingle) plotTracks(dgfootprints_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chr <- "chr1" start <- 236728 end <- 238778 gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/CD3-DS17198.hg19_subset.bed") if(interactive()){ dgfootprints_RoadMapSingle <- dgfootprints_RoadMap(gen,chr,start, end, bedFilePath, tissueGroupDisplay='Blood & T-cell' ) plotTracks(dgfootprints_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(dgfootprints_RoadMapSingle) plotTracks(dgfootprints_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creation of DNase cluster track from a connection to UCSC genome browser in using the GViz bioconductor package. Obselete function
DNAse_UCSC(gen, chr, start, end, mySession, title="DNA cluster", track.name = "DNase Clusters", table.name = NULL)
DNAse_UCSC(gen, chr, start, end, mySession, title="DNA cluster", track.name = "DNase Clusters", table.name = NULL)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
mySession |
the object session from the function browserSession of rtracklayer |
title |
Name of tracks |
track.name |
the name of the track DNAse_UCSC. "DNase Clusters"(default) |
table.name |
the name of the table from the track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeDNAseSuper
# library("Gviz") # library("rtracklayer") # gen <- "hg19" # chr <- "chr7" # start <- 38290160 # end <- 38303219 # if(interactive()){ # BROWSER.SESSION="UCSC" # mySession <- browserSession(BROWSER.SESSION) # genome(mySession) <- gen # track.name="Broad ChromHMM" # tablestrack<-tableNames(ucscTableQuery(mySession, track=track.name)) # table.name<-tablestrack[1] # dnasetrack<-DNAse_UCSC(gen,chr,start,end,mySession) # plotTracks(dnasetrack, from = start, to =end, # fontfamily="sans",fontfamily.title="sans") # }else { # data(dnasetrack) # plotTracks(dnasetrack, from = start, to =end, # fontfamily="sans",fontfamily.title="sans") # }
# library("Gviz") # library("rtracklayer") # gen <- "hg19" # chr <- "chr7" # start <- 38290160 # end <- 38303219 # if(interactive()){ # BROWSER.SESSION="UCSC" # mySession <- browserSession(BROWSER.SESSION) # genome(mySession) <- gen # track.name="Broad ChromHMM" # tablestrack<-tableNames(ucscTableQuery(mySession, track=track.name)) # table.name<-tablestrack[1] # dnasetrack<-DNAse_UCSC(gen,chr,start,end,mySession) # plotTracks(dnasetrack, from = start, to =end, # fontfamily="sans",fontfamily.title="sans") # }else { # data(dnasetrack) # plotTracks(dnasetrack, from = start, to =end, # fontfamily="sans",fontfamily.title="sans") # }
Creates a track of promoters/enhancers from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
DNaseI_FANTOM(gen="hg19", chr, start, end, bedFilePath, featureDisplay='enhancer', stacking_type="dense", title=" DNaseI Fantom")
DNaseI_FANTOM(gen="hg19", chr, start, end, bedFilePath, featureDisplay='enhancer', stacking_type="dense", title=" DNaseI Fantom")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
featureDisplay |
A vector of regulatory features to be displayed, such as enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("enhancer","promoter")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
stacking_type |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen <- "hg19" chr<- "chr1" start <- 6000000 end <- 6500000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) enhFantomFile <- file.path(extdata, "/FANTOM/human_permissive_enhancers_phase_1_and_2_example970.bed") if(interactive()){ enhFANTOMtrack <- DNaseI_FANTOM(gen,chr,start, end, enhFantomFile, featureDisplay='enhancer') plotTracks(enhFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(enhFANTOMtrack) plotTracks(enhFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr<- "chr1" start <- 6000000 end <- 6500000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) enhFantomFile <- file.path(extdata, "/FANTOM/human_permissive_enhancers_phase_1_and_2_example970.bed") if(interactive()){ enhFANTOMtrack <- DNaseI_FANTOM(gen,chr,start, end, enhFantomFile, featureDisplay='enhancer') plotTracks(enhFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(enhFANTOMtrack) plotTracks(enhFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of promoter/enhancer regions from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
DNaseI_RoadMap(gen="hg19", chr, start, end, bedFilePath, featureDisplay='promotor',showId=TRUE, type_stacking="dense", title = "DNaseI RoadMap")
DNaseI_RoadMap(gen="hg19", chr, start, end, bedFilePath, featureDisplay='promotor',showId=TRUE, type_stacking="dense", title = "DNaseI RoadMap")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The file path to the .BED file containing the data to be visualised |
featureDisplay |
A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the 'State & Acronym' column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
showId |
Allows to visualise the Id of DNAse group. |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to RoadMap Epigenome
library("Gviz") chr <- "chr2" start <- 38300049 end <- 38302592 gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/regions_prom_E063.bed") if(interactive()){ DNaseI_RoadMapSingle <- DNaseI_RoadMap(gen,chr,start, end, bedFilePath, featureDisplay='promotor' ) plotTracks(DNaseI_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(DNaseI_RoadMapSingle) plotTracks(DNaseI_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chr <- "chr2" start <- 38300049 end <- 38302592 gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "RoadMap/regions_prom_E063.bed") if(interactive()){ DNaseI_RoadMapSingle <- DNaseI_RoadMap(gen,chr,start, end, bedFilePath, featureDisplay='promotor' ) plotTracks(DNaseI_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(DNaseI_RoadMapSingle) plotTracks(DNaseI_RoadMapSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track from a BED file for eQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
eQTL(gen,chr, start, end, bedFilePath, featureDisplay, showId=FALSE, type_stacking="squish",just_group="above", title="eQTL" )
eQTL(gen,chr, start, end, bedFilePath, featureDisplay, showId=FALSE, type_stacking="squish",just_group="above", title="eQTL" )
gen |
the name of the genome. |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The file path to the .BED file containing the data to be visualised |
featureDisplay |
A vector of eQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CpG"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("SNP","CpG")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
showId |
Allows to visualise the Id of eQTL group. |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
just_group |
position. say where we write the name of group (choice in c("above","righ","left")) |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "SNP" gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackSingle <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackSingle) plotTracks(eQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ########### library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- c("SNP","mRNA_pheno") gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackMultiple <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackMultiple) plotTracks(eQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "all" gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackAll <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackAll) plotTracks(eQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "SNP" gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackSingle <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackSingle) plotTracks(eQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ########### library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- c("SNP","mRNA_pheno") gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackMultiple <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackMultiple) plotTracks(eQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ###### library("Gviz") chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "all" gen="hg19" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "eQTL.bed") if(interactive()){ eQTLTrackAll <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(eQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eQTLTrackAll) plotTracks(eQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of eQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
eQTL_GTEx(gen="hg19",chr,start, end, bedFilePath, featureDisplay = 'all', showId=FALSE, type_stacking="squish",just_group="above",title="eQTL GTEX")
eQTL_GTEx(gen="hg19",chr,start, end, bedFilePath, featureDisplay = 'all', showId=FALSE, type_stacking="squish",just_group="above",title="eQTL GTEX")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
featureDisplay |
A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
showId |
logical. say if we write the name of group |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
just_group |
position. say where we write the name of group (choice in c("above","righ","left")) |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen <- "hg19" chr<-"chr3" start <- 132423172 end <- 132442807 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "/GTEX/eQTL_Uterus_Analysis_extract100.snpgenes") if(interactive()){ eGTexTrackall <- eQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay="all", showId=TRUE,just_group="left") plotTracks(eGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eGTexTrackall) plotTracks(eGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } if(interactive()){ eGTexTrackSNP <- eQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay="SNP", showId=TRUE,just_group="left") plotTracks(eGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eGTexTrackSNP) plotTracks(eGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr<-"chr3" start <- 132423172 end <- 132442807 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "/GTEX/eQTL_Uterus_Analysis_extract100.snpgenes") if(interactive()){ eGTexTrackall <- eQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay="all", showId=TRUE,just_group="left") plotTracks(eGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eGTexTrackall) plotTracks(eGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } if(interactive()){ eGTexTrackSNP <- eQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay="SNP", showId=TRUE,just_group="left") plotTracks(eGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(eGTexTrackSNP) plotTracks(eGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of variants from the Genetic Association Database (GAD) (archive of human genetic association studies of complex diseases and disorders) using the Gviz bioconductor package
GAD_UCSC(gen, chr, start, end,title="GAD", showId=FALSE)
GAD_UCSC(gen, chr, start, end,title="GAD", showId=FALSE)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gad
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GeneReviews_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen2 <- "hg19" chrom2 <- "chr2" start2 <- 38290160 end2 <- 38303219 if(interactive()) { gadtrack<-GAD_UCSC(gen=gen2 ,chr=chrom2 ,start=start2 ,end=end2) plotTracks(gadtrack, from = start2, to =end2, fontfamily="sans",fontfamily.title="sans") } else { data(gadtrack) plotTracks(gadtrack, from = start2, to =end2, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen2 <- "hg19" chrom2 <- "chr2" start2 <- 38290160 end2 <- 38303219 if(interactive()) { gadtrack<-GAD_UCSC(gen=gen2 ,chr=chrom2 ,start=start2 ,end=end2) plotTracks(gadtrack, from = start2, to =end2, fontfamily="sans",fontfamily.title="sans") } else { data(gadtrack) plotTracks(gadtrack, from = start2, to =end2, fontfamily="sans",fontfamily.title="sans") }
Create a track of GC content from UCSC using the Gviz bioconductor package
gcContent_UCSC(gen, chr, start, end, title="GC Percent")
gcContent_UCSC(gen, chr, start, end, title="GC Percent")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
Name of tracks |
A UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gc5Base
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ gctrack<-gcContent_UCSC(gen,chr,start,end) plotTracks(gctrack,from= start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(gctrack) plotTracks(gctrack,from= start, to=end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ gctrack<-gcContent_UCSC(gen,chr,start,end) plotTracks(gctrack,from= start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(gctrack) plotTracks(gctrack,from= start, to=end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of variants from GeneReviews using the Gviz bioconductor package
GeneReviews_UCSC(gen, chr, start, end,title="GeneReviews", showId=FALSE)
GeneReviews_UCSC(gen, chr, start, end,title="GeneReviews", showId=FALSE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=geneReviews
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 10000000 end <- 100000000 if(interactive()){ geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end,showId=TRUE) plotTracks(geneRtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(GeneReviewTrack) plotTracks(geneRtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 10000000 end <- 100000000 if(interactive()){ geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end,showId=TRUE) plotTracks(geneRtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(GeneReviewTrack) plotTracks(geneRtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genes in the genomic regions of interest from EMSEMBL using the Gviz bioconductor package
genes_ENSEMBL(gen, chr, start, end, showId=FALSE,title="genes (ENSEMBL)")
genes_ENSEMBL(gen, chr, start, end, showId=FALSE,title="genes (ENSEMBL)")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
showId |
Show the ID of the genetic elements |
title |
Name of tracks |
A BiomartGeneRegionTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GeneReviews_UCSC
, GAD_UCSC
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg19" chrom <- "chr2" start <- 38290160 end <- 38303219 if(interactive()) { genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) plotTracks(genetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(geneENSEMBLtrack) plotTracks(genetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chrom <- "chr2" start <- 38290160 end <- 38303219 if(interactive()) { genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE) plotTracks(genetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(geneENSEMBLtrack) plotTracks(genetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Obtain the genes names in the genomic regions of interest from ENSEMBL
genesName_ENSEMBL(gen, chr, start, end, dataset)
genesName_ENSEMBL(gen, chr, start, end, dataset)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
dataset |
Name of the database to select genes |
Can be null
List of name of genes found in this region of interest.
Tiphaine Martin
go to ENSEMBL
http://bioconductor.org/packages/release/bioc/html/Gviz.html
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ dataset<- "hsapiens_gene_ensembl" geneNameEnsembl<- genesName_ENSEMBL(gen,chr,start,end,dataset) geneNameEnsembl } else { data(geneNameEnsembl) geneNameEnsembl }
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ dataset<- "hsapiens_gene_ensembl" geneNameEnsembl<- genesName_ENSEMBL(gen,chr,start,end,dataset) geneNameEnsembl } else { data(geneNameEnsembl) geneNameEnsembl }
Create one track of the genomic positions of variants from the NHGRI Catalog of Published Genome-Wide Association Studies using the Gviz bioconductor package
GWAScatalog_UCSC(gen, chr, start, end, title="GWAS Catalog", showId=FALSE)
GWAScatalog_UCSC(gen, chr, start, end, title="GWAS Catalog", showId=FALSE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gwasCatalog
http://bioconductor.org/packages/release/bioc/html/Gviz.html
ISCA_UCSC
, knownGenes_UCSC
, genesName_ENSEMBL
,
GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 10000 end <- 100000 if(interactive()) { gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) plotTracks(gwastrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(GWASTrack) plotTracks(gwastrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chrom <- "chr2" start <- 10000 end <- 100000 if(interactive()) { gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end) plotTracks(gwastrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(GWASTrack) plotTracks(gwastrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a HiC matrix from Rao et al.,2014.
HiCdata2matrix( chr, start, end, bedFilePath)
HiCdata2matrix( chr, start, end, bedFilePath)
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("corrplot") gen <- "hg19" chr<-"chr1" start <- 5000000 end <- 9000000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "HiC/chr1_1mb.RAWobserved") if(interactive()){ matrix_HiC_Rao <- HiCdata2matrix(chr,start, end, bedFilePath) cor_matrix_HiC <- cor(matrix_HiC_Rao) diag(cor_matrix_HiC)<-1 corrplot(cor_matrix_HiC, method = "circle") } else { data(matrix_HiC_Rao) cor_matrix_HiC <- cor(matrix_HiC_Rao) diag(cor_matrix_HiC)<-1 corrplot(cor_matrix_HiC, method = "circle") }
library("corrplot") gen <- "hg19" chr<-"chr1" start <- 5000000 end <- 9000000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "HiC/chr1_1mb.RAWobserved") if(interactive()){ matrix_HiC_Rao <- HiCdata2matrix(chr,start, end, bedFilePath) cor_matrix_HiC <- cor(matrix_HiC_Rao) diag(cor_matrix_HiC)<-1 corrplot(cor_matrix_HiC, method = "circle") } else { data(matrix_HiC_Rao) cor_matrix_HiC <- cor(matrix_HiC_Rao) diag(cor_matrix_HiC)<-1 corrplot(cor_matrix_HiC, method = "circle") }
Create multiple tracks of histone modifications from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package
HistoneAll_UCSC(gen, chr, start, end, mySession, pattern = NULL, track.name = "Broad Histone", table.name = NULL)
HistoneAll_UCSC(gen, chr, start, end, mySession, pattern = NULL, track.name = "Broad Histone", table.name = NULL)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
mySession |
the object session from the function browserSession of rtracklayer |
pattern |
The cell type |
track.name |
the name of the track, for example: "Broad Histone" |
table.name |
the name of the table from the track |
A list of AnnotationTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper
http://bioconductor.org/packages/release/bioc/html/Gviz.html
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38313219 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen pattern1 <- "GM12878" histonalltrack<-HistoneAll_UCSC(gen,chr,start,end,mySession, pattern=pattern1,track.name="Broad Histone") plotTracks(histonalltrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(histonalltrack) plotTracks(histonalltrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38313219 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen pattern1 <- "GM12878" histonalltrack<-HistoneAll_UCSC(gen,chr,start,end,mySession, pattern=pattern1,track.name="Broad Histone") plotTracks(histonalltrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(histonalltrack) plotTracks(histonalltrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create one track of one histone modification profile from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package
HistoneOne_UCSC(gen, chr, start, end, mySession, title="Broad Histone", track.name = "Broad Histone", table.name = NULL)
HistoneOne_UCSC(gen, chr, start, end, mySession, title="Broad Histone", track.name = "Broad Histone", table.name = NULL)
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
mySession |
the object session from the function browserSession of rtracklayer |
title |
Name of tracks |
track.name |
the name of the track, for example: "Broad Histone" |
table.name |
the name of the table from the track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper
http://bioconductor.org/packages/release/bioc/html/Gviz.html
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()) { BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen histoneonetrack<-HistoneOne_UCSC(gen,chr,start,end,mySession) plotTracks(histoneonetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(histoneonetrack) plotTracks(histoneonetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()) { BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen histoneonetrack<-HistoneOne_UCSC(gen,chr,start,end,mySession) plotTracks(histoneonetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(histoneonetrack) plotTracks(histoneonetrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of imprinted genes from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
imprintedGenes_GTEx(gen="hg19", chr,start, end, tissues="all", classification="all",showId=FALSE, title="Imprinted genes GTEx")
imprintedGenes_GTEx(gen="hg19", chr,start, end, tissues="all", classification="all",showId=FALSE, title="Imprinted genes GTEx")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
tissues |
list of tissues among 33 tissues in GTEx |
classification |
list of classification from 5 types (biallelic, consistent with biallelic, consistent with imprinting, imprinted, NC) |
showId |
logical. say if we write the name of group |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen<-"hg19" chr<- "chr6" start <- 144251437 end <- 144330541 if(interactive()){ allIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="all", classification="imprinted",showId=TRUE) allimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="all", classification="imprinted",showId=TRUE) StomachIGtrack <-imprintedGenes_GTEx(gen,chr,start, end, tissues="Stomach", classification="all",showId=TRUE) PancreasIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="Pancreas", classification="all",showId=TRUE) PancreasimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="Pancreas", classification="biallelic",showId=TRUE) imprintinglist <- list(allIGtrack,allimprintedIGtrack, StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack) plotTracks(imprintinglist, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(allIGtrack) data(allimprintedIGtrack) data(StomachIGtrack) data(PancreasIGtrack) data(PancreasimprintedIGtrack) imprintinglist <- list(allIGtrack,allimprintedIGtrack, StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack) plotTracks(imprintinglist, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen<-"hg19" chr<- "chr6" start <- 144251437 end <- 144330541 if(interactive()){ allIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="all", classification="imprinted",showId=TRUE) allimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="all", classification="imprinted",showId=TRUE) StomachIGtrack <-imprintedGenes_GTEx(gen,chr,start, end, tissues="Stomach", classification="all",showId=TRUE) PancreasIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="Pancreas", classification="all",showId=TRUE) PancreasimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end, tissues="Pancreas", classification="biallelic",showId=TRUE) imprintinglist <- list(allIGtrack,allimprintedIGtrack, StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack) plotTracks(imprintinglist, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(allIGtrack) data(allimprintedIGtrack) data(StomachIGtrack) data(PancreasIGtrack) data(PancreasimprintedIGtrack) imprintinglist <- list(allIGtrack,allimprintedIGtrack, StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack) plotTracks(imprintinglist, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genes in the genomic regions of interest from EMSEMBL using the Gviz bioconductor package
interestGenes_ENSEMBL(gen, chr, start, end, interestfeatures,interestcolor, showId=FALSE,title="genes (ENSEMBL)")
interestGenes_ENSEMBL(gen, chr, start, end, interestfeatures,interestcolor, showId=FALSE,title="genes (ENSEMBL)")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
interestfeatures |
A data frame with 3 columns: start of features, end of features, and type of features |
interestcolor |
A list with the color for each new features defined |
showId |
Show the ID of the genetic elements |
title |
Name of tracks |
A BiomartGeneRegionTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GeneReviews_UCSC
, GAD_UCSC
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg19" chr <- "chr15" start <- 75011669 end <- 75019876 interestfeatures <- rbind(c("75011883","75013394","bad"),c("75013932","75014410","good")) interestcolor <- list("bad"="red", "good"="green") if(interactive()) { interestgenesENSMBLtrack<-interestGenes_ENSEMBL(gen,chr,start,end, interestfeatures,interestcolor,showId=TRUE) plotTracks(interestgenesENSMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(interestgenesENSMBLtrack) plotTracks(interestgenesENSMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr <- "chr15" start <- 75011669 end <- 75019876 interestfeatures <- rbind(c("75011883","75013394","bad"),c("75013932","75014410","good")) interestcolor <- list("bad"="red", "good"="green") if(interactive()) { interestgenesENSMBLtrack<-interestGenes_ENSEMBL(gen,chr,start,end, interestfeatures,interestcolor,showId=TRUE) plotTracks(interestgenesENSMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(interestgenesENSMBLtrack) plotTracks(interestgenesENSMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create a track to visualize different transcripts from ENSEMBL using the Gviz bioconductor package
interestTranscript_ENSEMBL(gen, chr, start, end,interestfeatures, interestcolor,showId = FALSE, title="transcripts ENSEMBL")
interestTranscript_ENSEMBL(gen, chr, start, end,interestfeatures, interestcolor,showId = FALSE, title="transcripts ENSEMBL")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
interestfeatures |
A data frame with 3 columns: start of features, end of features, and type of features |
interestcolor |
A list with the color for each new features defined |
showId |
Show the ID of the genetic elements |
title |
Name of tracks |
A BiomartGeneRegionTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
,
library("Gviz") gen <- "hg19" chr <- "chr15" start <- 75011669 end <- 75019876 interestfeatures <- rbind(c("75017782","75017835","bad"),c("75013755","75013844","good")) interestcolor <- list("bad"="red", "good"="green") if(interactive()){ interesttransENSMBLtrack<-interestTranscript_ENSEMBL(gen,chr,start,end, interestfeatures,interestcolor,showId=TRUE) plotTracks(interesttransENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(interesttransENSMBLtrack) plotTracks(interesttransENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr <- "chr15" start <- 75011669 end <- 75019876 interestfeatures <- rbind(c("75017782","75017835","bad"),c("75013755","75013844","good")) interestcolor <- list("bad"="red", "good"="green") if(interactive()){ interesttransENSMBLtrack<-interestTranscript_ENSEMBL(gen,chr,start,end, interestfeatures,interestcolor,showId=TRUE) plotTracks(interesttransENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(interesttransENSMBLtrack) plotTracks(interesttransENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of variants from International Standards for Cytogenomic Arrays (ISCA) Consortium using the Gviz bioconductor package (obselete datbase, Impossible to access to data from UCSC from September 2015)
ISCA_UCSC(gen, chr, start, end, mySession, table.name,title="ISCA", showId=FALSE)
ISCA_UCSC(gen, chr, start, end, mySession, table.name,title="ISCA", showId=FALSE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
mySession |
the object session from the function browserSession of rtracklayer |
table.name |
A table of ISCAT classifications: iscaBenign, iscaCuratedBenign, iscaCuratedPathogenic, iscaLikelyBenign, iscaLikelyPathogenic, iscaPathGainCum, iscaPathLossCum, iscaPathogenic, iscaUncertain |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=iscaComposite
http://bioconductor.org/packages/release/bioc/html/Gviz.html
GWAScatalog_UCSC
, knownGenes_UCSC
, genesName_ENSEMBL
,
GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
# Oboselet function library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38292433 end <- 38305492 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen iscatrack <-ISCA_UCSC(gen,chrom,start,end,mySession,title="ISCA", table="iscaPathogenic") plotTracks(iscatrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(ISCAtrack_Grch38) plotTracks(iscatrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
# Oboselet function library("Gviz") library("rtracklayer") gen <- "hg19" chr <- "chr2" start <- 38292433 end <- 38305492 if(interactive()){ BROWSER.SESSION="UCSC" mySession <- browserSession(BROWSER.SESSION) genome(mySession) <- gen iscatrack <-ISCA_UCSC(gen,chrom,start,end,mySession,title="ISCA", table="iscaPathogenic") plotTracks(iscatrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(ISCAtrack_Grch38) plotTracks(iscatrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create a track of known genes from the UCSC genome browser using the Gviz bioconductor package
knownGenes_UCSC(gen, chr, start, end,title="UCSC known Genes", showId=TRUE)
knownGenes_UCSC(gen, chr, start, end,title="UCSC known Genes", showId=TRUE)
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
Name of tracks |
showId |
Show the ID of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=knownGene
http://bioconductor.org/packages/release/bioc/html/Gviz.html
ISCA_UCSC
, GWAScatalog_UCSC
, genesName_ENSEMBL
,
GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
,
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()) { genesUcsctrack<-knownGenes_UCSC(gen,chr,start,end,showId=TRUE) plotTracks(genesUcsctrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(genesUcsctrack) plotTracks(genesUcsctrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()) { genesUcsctrack<-knownGenes_UCSC(gen,chr,start,end,showId=TRUE) plotTracks(genesUcsctrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }else { data(genesUcsctrack) plotTracks(genesUcsctrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a track from a BED file for metQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
metQTL(gen, chr, start, end, bedFilePath, featureDisplay, showId=FALSE, type_stacking="squish",just_group="above", title="metQTL")
metQTL(gen, chr, start, end, bedFilePath, featureDisplay, showId=FALSE, type_stacking="squish",just_group="above", title="metQTL")
gen |
the name of the genome. Default value=hg19 |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The file path to the .BED file containing the data to be visualised |
featureDisplay |
A vector of metQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CpG"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("SNP","CpG")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
showId |
Allows the visualization of the Id of metQTL group. |
type_stacking |
Sets the type of stacking used by Gviz for plots. By default this is set to 'squish'. For more information see Gviz user guide. |
just_group |
position. say where we write the name of group (choice in c("above","righ","left")) |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "trans_local_metQTL" type_stacking <- "squish" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) mqtlbedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackSingle <- metQTL(gen,chr,start, end,mqtlbedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackSingle) plotTracks(metQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ### library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- c("trans_local_metQTL","CpG") extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackMultiple <- metQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackMultiple) plotTracks(metQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "all" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackAll <- metQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackAll) plotTracks(metQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "trans_local_metQTL" type_stacking <- "squish" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) mqtlbedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackSingle <- metQTL(gen,chr,start, end,mqtlbedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackSingle) plotTracks(metQTLTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ### library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- c("trans_local_metQTL","CpG") extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackMultiple <- metQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackMultiple) plotTracks(metQTLTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- 'hg19' chr <- "chr15" start <- 74889136 end <- 75018200 featureDisplay <- "all" extdata <- system.file("extdata", package="coMET",mustWork=TRUE) bedFilePath <- file.path(extdata, "metQTL.bed") if(interactive()){ metQTLTrackAll <- metQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay ) plotTracks(metQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(metQTLTrackAll) plotTracks(metQTLTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of miRNA target regions from ENSEMBL using the Gviz bioconductor package.
miRNATargetRegionsBiomart_ENSEMBL(gen, chr, start, end, showId=FALSE, datasetEnsembl = "hsapiens_mirna_target_feature", title="miRNA Target Regions ENSEMBL")
miRNATargetRegionsBiomart_ENSEMBL(gen, chr, start, end, showId=FALSE, datasetEnsembl = "hsapiens_mirna_target_feature", title="miRNA Target Regions ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
showId |
Show the ID of the genetic elements |
datasetEnsembl |
Allows the user to manually set which data set is used if required.Default=hsapiens_mirna_target_feature |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 1000000 end <- 20000000 if(interactive()){ miRNATargetRegionsBiomartTrack<-miRNATargetRegionsBiomart_ENSEMBL(gen,chr,start,end, datasetEnsembl = "hsapiens_mirna_target_feature") plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(miRNATargetRegionsBiomartTrack) plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 1000000 end <- 20000000 if(interactive()){ miRNATargetRegionsBiomartTrack<-miRNATargetRegionsBiomart_ENSEMBL(gen,chr,start,end, datasetEnsembl = "hsapiens_mirna_target_feature") plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(miRNATargetRegionsBiomartTrack) plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a track from ENSEMBL of other regulatory regions using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all",datasetEnsembl = "hsapiens_external_feature", title="Other Regulatory Regions ENSEMBL")
otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all",datasetEnsembl = "hsapiens_external_feature", title="Other Regulatory Regions ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
featureDisplay |
A vector of regulatory features to be displayed, such as Enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are two possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Enhancer"), only the name of the specific feature is required. Second, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
datasetEnsembl |
Allows the user to manually set which data set is used if required. |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 100000 end <- 5000000 featureDisplay <- "Enhancer" if(interactive()){ otherRegulatoryRegionsTrackSingle<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(otherRegulatoryRegionsTrackSingle) plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ######## library("Gviz") gen <- "hg38" chr <- "chr1" start <- 100000 end <- 5000000 featureDisplay <- "all" if(interactive()){ otherRegulatoryRegionsTrackAll<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(otherRegulatoryRegionsTrackAll) plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 100000 end <- 5000000 featureDisplay <- "Enhancer" if(interactive()){ otherRegulatoryRegionsTrackSingle<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(otherRegulatoryRegionsTrackSingle) plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ######## library("Gviz") gen <- "hg38" chr <- "chr1" start <- 100000 end <- 5000000 featureDisplay <- "all" if(interactive()){ otherRegulatoryRegionsTrackAll<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(otherRegulatoryRegionsTrackAll) plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
This function displays a color wheel with specified colors
pizza(colors, bg = "gray95", border = NA, init.angle = 105, cex = 0.8, lty = 1, labcol = NULL, ...)
pizza(colors, bg = "gray95", border = NA, init.angle = 105, cex = 0.8, lty = 1, labcol = NULL, ...)
colors |
a vector with R color names of colors in hexadecimal notation |
bg |
background color of the plot. Default
|
border |
color of the border separating the pizza slices |
init.angle |
integer value indicating the start angle (in degrees) for the slices |
cex |
numeric value indicating the character expansion of the labels |
lty |
argument passed to |
labcol |
color for the labels (i.e. names of the colors) |
... |
graphical parameters ( |
This function is based on the pie
function
Gaston Sanchez
# pizza color wheel for rainbow colors pizza(rainbow(7)) # pizza color wheel for tomato (18 colors) pizza(setColors("tomato", 18), bg = "gray20", cex = 0.7)
# pizza color wheel for rainbow colors pizza(rainbow(7)) # pizza color wheel for tomato (18 colors) pizza(setColors("tomato", 18), bg = "gray20", cex = 0.7)
Creates a track of psiQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
psiQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay = 'all', showId=FALSE, type_stacking="squish",just_group="above", title="psiQTL GTEX")
psiQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay = 'all', showId=FALSE, type_stacking="squish",just_group="above", title="psiQTL GTEX")
gen |
the name of the genome. |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
featureDisplay |
A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
showId |
logical. say if we write the name of group |
type_stacking |
Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz |
just_group |
position. say where we write the name of group (choice in c("above","righ","left")) |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen <- "hg19" chr<-"chr13" start <- 52713837 end <- 52715894 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) psiQTLFilePath <- file.path(extdata, "/GTEX/psiQTL_Assoc-total.AdiposeTissue.txt") if(interactive()){ psiGTexTrackall<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath, featureDisplay = 'all', showId=TRUE, type_stacking="squish", just_group="above" ) plotTracks(psiGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(psiGTexTrackall) plotTracks(psiGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } if(interactive()){ psiGTexTrackSNP<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath, featureDisplay = 'SNP', showId=TRUE, type_stacking="squish", just_group="left") plotTracks(psiGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(psiGTexTrackSNP) plotTracks(psiGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr<-"chr13" start <- 52713837 end <- 52715894 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) psiQTLFilePath <- file.path(extdata, "/GTEX/psiQTL_Assoc-total.AdiposeTissue.txt") if(interactive()){ psiGTexTrackall<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath, featureDisplay = 'all', showId=TRUE, type_stacking="squish", just_group="above" ) plotTracks(psiGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(psiGTexTrackall) plotTracks(psiGTexTrackall, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } if(interactive()){ psiGTexTrackSNP<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath, featureDisplay = 'SNP', showId=TRUE, type_stacking="squish", just_group="left") plotTracks(psiGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(psiGTexTrackSNP) plotTracks(psiGTexTrackSNP, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create a track of RefSeq genes from the UCSC genome browser using the Gviz bioconductor package
refGenes_UCSC(gen, chr, start, end, title="Ref Genes UCSC", track = "refGene", IdType="Ref", showId=TRUE)
refGenes_UCSC(gen, chr, start, end, title="Ref Genes UCSC", track = "refGene", IdType="Ref", showId=TRUE)
gen |
The name of the genome |
chr |
The chromosome of interest |
start |
The first position in the region of interest (the smallest value) |
end |
The last position in the region of interest (the largest value) |
title |
Name of tracks |
track |
the name of table in UCSC for the group "Genes and Gene Prediction" |
IdType |
When set to 'ref' shows the gene reference, when set to "name" shows the gene name |
showId |
Shows the ID or name of the genetic elements |
An UcscTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=knownGene
http://bioconductor.org/packages/release/bioc/html/Gviz.html
ISCA_UCSC
, GWAScatalog_UCSC
, genesName_ENSEMBL
,
GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
, transcript_ENSEMBL
, knownGenes_UCSC
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38203219 end <- 38303219 IdType <- "name" track <- "refGene" if(interactive()) { genesUcsctrack<-refGenes_UCSC(gen,chr,start,end,track,IdType) plotTracks(genesUcsctrack, from = start, to =end) }else { data(genesUcsctrack) plotTracks(genesUcsctrack, from = start, to =end) }
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38203219 end <- 38303219 IdType <- "name" track <- "refGene" if(interactive()) { genesUcsctrack<-refGenes_UCSC(gen,chr,start,end,track,IdType) plotTracks(genesUcsctrack, from = start, to =end) }else { data(genesUcsctrack) plotTracks(genesUcsctrack, from = start, to =end) }
Create a 'Regulation' track from ENSEMBL using the Gviz bioconductor package
regulationBiomart_ENSEMBL(gen, chr, start, end,title="Regulation ENSEMBL")
regulationBiomart_ENSEMBL(gen, chr, start, end,title="Regulation ENSEMBL")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
Name of tracks |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation biomart
library("Gviz") gen <- "hg19" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ regulationENSEMBLtrack<-regulationBiomart_ENSEMBL(gen,chr,start,end) plotTracks(regulationENSEMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(regulationENSEMBLtrack) plotTracks(regulationENSEMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()){ regulationENSEMBLtrack<-regulationBiomart_ENSEMBL(gen,chr,start,end) plotTracks(regulationENSEMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(regulationENSEMBLtrack) plotTracks(regulationENSEMBLtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
regulatoryEvidenceBiomart_ENSEMBL (gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_annotated_feature", title="Other Regulatory Regions ENSEMBL")
regulatoryEvidenceBiomart_ENSEMBL (gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_annotated_feature", title="Other Regulatory Regions ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
featureDisplay |
A vector of regulatory features to be displayed, such as DNase1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "DNase1"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("CTCF","DNase1")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
datasetEnsembl |
Allows the user to manually set which data set is used if required. |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 40000 end <- 50000 featureDisplay <- "H3K27me3" if(interactive()){ regulatoryEvidenceBiomartTrackSingle <- regulatoryEvidenceBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackSingle) plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 40000 end <- 100000 featureDisplay <- c("H3K27me3","H3K36me3") if(interactive()){ regulatoryEvidenceBiomartTrackMultiple<-regulatoryEvidenceBiomart_ENSEMBL (gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackMultiple) plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 50000 end <- 100000 featureDisplay <- "all" if(interactive()){ regulatoryEvidenceBiomartTrackAll<-regulatoryEvidenceBiomart_ENSEMBL (gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackAll) plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 40000 end <- 50000 featureDisplay <- "H3K27me3" if(interactive()){ regulatoryEvidenceBiomartTrackSingle <- regulatoryEvidenceBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackSingle) plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 40000 end <- 100000 featureDisplay <- c("H3K27me3","H3K36me3") if(interactive()){ regulatoryEvidenceBiomartTrackMultiple<-regulatoryEvidenceBiomart_ENSEMBL (gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackMultiple) plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 50000 end <- 100000 featureDisplay <- "all" if(interactive()){ regulatoryEvidenceBiomartTrackAll<-regulatoryEvidenceBiomart_ENSEMBL (gen, chr,start,end,featureDisplay) plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryEvidenceBiomartTrackAll) plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
regulatoryFeaturesBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_regulatory_feature", title="Regulatory Features ENSEMBL")
regulatoryFeaturesBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_regulatory_feature", title="Regulatory Features ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
featureDisplay |
A vector of regulatory features to be displayed, such as Promoter. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Promoter"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("TF binding site","Promoter")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
datasetEnsembl |
Allows the user to manually set which data set is used if required.Default=hsapiens_regulatory_feature |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 500000 featureDisplay <- "Enhancer" if(interactive()){ regulatoryFeaturesBiomartTrackSingle<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackSingle) plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 100000 featureDisplay <- c("CTCF Binding Site","Enhancer") if(interactive()){ regulatoryFeaturesBiomartTrackMultiple<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackMultiple) plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ regulatoryFeaturesBiomartTrackAll<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackAll) plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 500000 featureDisplay <- "Enhancer" if(interactive()){ regulatoryFeaturesBiomartTrackSingle<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackSingle) plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 100000 featureDisplay <- c("CTCF Binding Site","Enhancer") if(interactive()){ regulatoryFeaturesBiomartTrackMultiple<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackMultiple) plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } ##### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ regulatoryFeaturesBiomartTrackAll<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatoryFeaturesBiomartTrackAll) plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
[obselete] Creates a track of regulatory segments from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
regulatorySegmentsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = 'all', datasetEnsembl = "hsapiens_external_feature", title="External Regulatory ENSEMBL")
regulatorySegmentsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = 'all', datasetEnsembl = "hsapiens_external_feature", title="External Regulatory ENSEMBL")
gen |
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38). |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
featureDisplay |
A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide. |
datasetEnsembl |
Allows the user to manually set which data set is used if required.Default=hsapiens_segmentation_feature |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to ENSEMBLregulation binding motif biomart
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "CTCF enriched" if(interactive()){ regulatorySegmentsBiomartTrackSingle<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackSingle) plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } #### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- c("CTCF enriched","Predicted Promoter Flank") if(interactive()){ regulatorySegmentsBiomartTrackMultiple<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackMultiple) plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } #### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ regulatorySegmentsBiomartTrackAll<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackAll) plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "CTCF enriched" if(interactive()){ regulatorySegmentsBiomartTrackSingle<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackSingle) plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } #### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- c("CTCF enriched","Predicted Promoter Flank") if(interactive()){ regulatorySegmentsBiomartTrackMultiple<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackMultiple) plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } #### library("Gviz") gen <- "hg38" chr <- "chr1" start <- 10000 end <- 50000 featureDisplay <- "all" if(interactive()){ regulatorySegmentsBiomartTrackAll<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay) plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(regulatorySegmentsBiomartTrackAll) plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of regions from repeatMasker_UCSC using the Gviz bioconductor package
repeatMasker_UCSC(gen, chr, start, end, title="RepeatMasker", showId=FALSE,type_stacking="full")
repeatMasker_UCSC(gen, chr, start, end, title="RepeatMasker", showId=FALSE,type_stacking="full")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
showId |
Show the ID of the genetic elements |
type_stacking |
the type of stacking data for this track. More information go to Gviz (the option "stacking") |
An UcscTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=rmsk
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ rmtrack <-repeatMasker_UCSC(gen,chr,start,end,showId=TRUE) plotTracks(rmtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(repeatMaskerTrack) plotTracks(rmtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ rmtrack <-repeatMasker_UCSC(gen,chr,start,end,showId=TRUE) plotTracks(rmtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(repeatMaskerTrack) plotTracks(rmtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create one track of the genomic positions of regions from segmentalDups_UCSC using the Gviz bioconductor package
segmentalDups_UCSC(gen, chr, start, end,title="Segmental Dups UCSC")
segmentalDups_UCSC(gen, chr, start, end,title="Segmental Dups UCSC")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
The name of the annotation track |
An UcscTrack object of Gviz
Tiphaine Martin
Tom Hardiman
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=rmsk
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 100000 end <- 200000 if(interactive()){ DupTrack <-segmentalDups_UCSC(gen,chr,start,end) plotTracks(DupTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(DupTrack) plotTracks(DupTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 100000 end <- 200000 if(interactive()){ DupTrack <-segmentalDups_UCSC(gen,chr,start,end) plotTracks(DupTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(DupTrack) plotTracks(DupTrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
This function set a given number of colors to create a color wheel
setColors(color, num)
setColors(color, num)
color |
an R color name or a color in hexadecimal notation |
num |
integer value indicating how many colors to be added to the wheel |
A character vector with the given color and the set of colors to create a wheel color
Gaston Sanchez
# create a color wheel based on 'tomato' setColors("tomato", 12) # set 7 colors for '#3D6DCC' setColors("#3D6DCC", 7)
# create a color wheel based on 'tomato' setColors("tomato", 12) # set 7 colors for '#3D6DCC' setColors("#3D6DCC", 7)
Create a 'Short Variation' track from ENSEMBL using the Gviz bioconductor package
snpBiomart_ENSEMBL(gen,chr, start, end, dataset, showId=FALSE, title = "SNPs ENSEMBL")
snpBiomart_ENSEMBL(gen,chr, start, end, dataset, showId=FALSE, title = "SNPs ENSEMBL")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
dataset |
The name of the database. Example "hsapiens_snp_som" |
showId |
Show the the ID of element or not |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Go to ENSEMBL Biomart
http://bioconductor.org/packages/release/bioc/html/Gviz.html
snpLocations_UCSC
, structureBiomart_ENSEMBL
, COSMIC_UCSC
,
CoreillCNV_UCSC
, ClinVarMain_UCSC
,
ClinVarCnv_UCSC
,
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ snptrack <- snpBiomart_ENSEMBL(gen,chr, start, end, dataset="hsapiens_snp",showId=FALSE) plotTracks(snptrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(snpBiomarttrack) plotTracks(snptrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ snptrack <- snpBiomart_ENSEMBL(gen,chr, start, end, dataset="hsapiens_snp",showId=FALSE) plotTracks(snptrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(snpBiomarttrack) plotTracks(snptrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
Create a SNP track from UCSC using the Gviz bioconductor package
snpLocations_UCSC(gen, chr, start, end,title= "SNPs UCSC", track="All SNPs(142)")
snpLocations_UCSC(gen, chr, start, end,title= "SNPs UCSC", track="All SNPs(142)")
gen |
the name of the genome. Data is not currently available for GRCh38 (hg38). |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
title |
Name of tracks |
track |
The name of the database. Default "All SNPs(142)" |
An UcscTrack object of Gviz
Tiphaine Martin
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=snp141
http://bioconductor.org/packages/release/bioc/html/Gviz.html
snpLocations_UCSC
, structureBiomart_ENSEMBL
, COSMIC_UCSC
,
CoreillCNV_UCSC
, ClinVarMain_UCSC
,
ClinVarCnv_UCSC
,
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()) { snpUCSCtrack<-snpLocations_UCSC(gen,chr,start,end,"All SNPs(142)") plotTracks(snpUCSCtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(snpUCSCtrack) plotTracks(snpUCSCtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr7" start <- 38290160 end <- 38303219 if(interactive()) { snpUCSCtrack<-snpLocations_UCSC(gen,chr,start,end,"All SNPs(142)") plotTracks(snpUCSCtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") } else { data(snpUCSCtrack) plotTracks(snpUCSCtrack, from = start, to =end, fontfamily="sans",fontfamily.title="sans") }
Create a 'Structural Variation' track from ENSEMBL using the Gviz bioconductor package
structureBiomart_ENSEMBL(gen, chr, start, end, strand, dataset, showId=FALSE, title = "Structural variation")
structureBiomart_ENSEMBL(gen, chr, start, end, strand, dataset, showId=FALSE, title = "Structural variation")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
strand |
the strand to extract structure data for |
dataset |
The name of the database. Example "hsapiens_structvar_som" |
showId |
Show the the ID of the element |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
Go to ENSEMBL Biomart
http://bioconductor.org/packages/release/bioc/html/Gviz.html
snpLocations_UCSC
, snpBiomart_ENSEMBL
, COSMIC_UCSC
,
CoreillCNV_UCSC
, ClinVarMain_UCSC
,
ClinVarCnv_UCSC
,
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ strutrack <- structureBiomart_ENSEMBL(chr, start, end, strand, dataset="hsapiens_structvar_som") plotTracks(strutrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }else { data(strucBiomarttrack) plotTracks(strutrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg38" chr <- "chr2" start <- 38290160 end <- 38303219 if(interactive()){ strutrack <- structureBiomart_ENSEMBL(chr, start, end, strand, dataset="hsapiens_structvar_som") plotTracks(strutrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }else { data(strucBiomarttrack) plotTracks(strutrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
Creates a track of TFBS motifs from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.
TFBS_FANTOM(gen, chr, start, end, bedFilePath,title="TF motif FANTOM5")
TFBS_FANTOM(gen, chr, start, end, bedFilePath,title="TF motif FANTOM5")
gen |
the name of the genome. |
chr |
The chromosome of interest |
start |
The starting position in the region of interest (the smallest value) |
end |
The end position in the region of interest (the largest value) |
bedFilePath |
The path of the BED file from Kheradpour and Kellis, 2014. |
title |
The name of the annotation track |
An AnnotationTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
Got to BindingMotifsBiomart binding motif biomart
library("Gviz") gen <- "hg19" chr<- "chr1" start <- 6000000 end <- 6500000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) AP1FantomFile <- file.path(extdata, "FANTOM/Fantom_hg19.AP1_MA0099.2.sites_example970.txt") if(interactive()){ tfbsFANTOMtrack <- TFBS_FANTOM(gen,chr,start, end, AP1FantomFile) plotTracks(tfbsFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(tfbsFANTOMtrack) plotTracks(tfbsFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr<- "chr1" start <- 6000000 end <- 6500000 extdata <- system.file("extdata", package="coMET",mustWork=TRUE) AP1FantomFile <- file.path(extdata, "FANTOM/Fantom_hg19.AP1_MA0099.2.sites_example970.txt") if(interactive()){ tfbsFANTOMtrack <- TFBS_FANTOM(gen,chr,start, end, AP1FantomFile) plotTracks(tfbsFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") } else { data(tfbsFANTOMtrack) plotTracks(tfbsFANTOMtrack, from = start, to = end, fontfamily="sans",fontfamily.title="sans") }
Create a track to visualize different transcripts from ENSEMBL using the Gviz bioconductor package
transcript_ENSEMBL(gen, chr, start, end,showId = FALSE, title="transcripts ENSEMBL")
transcript_ENSEMBL(gen, chr, start, end,showId = FALSE, title="transcripts ENSEMBL")
gen |
the name of the genome |
chr |
the chromosome of interest |
start |
the first position in the region of interest (the smallest value) |
end |
the last position in the region of interest (the largest value) |
showId |
Show the ID of the genetic elements |
title |
Name of tracks |
A BiomartGeneRegionTrack object of Gviz
Tiphaine Martin
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene
ISCA_UCSC
, GWAScatalog_UCSC
, knownGenes_UCSC
,
genesName_ENSEMBL
, GeneReviews_UCSC
, GAD_UCSC
, genes_ENSEMBL
, xenorefGenes_UCSC
,
library("Gviz") gen <- "hg19" chr <- "chr2" start <- 32290160 end <- 33303219 if(interactive()){ transENSMBLtrack<-transcript_ENSEMBL(gen,chr,start,end,showId=TRUE) plotTracks(transENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(transENSMBLtrack) plotTracks(transENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }
library("Gviz") gen <- "hg19" chr <- "chr2" start <- 32290160 end <- 33303219 if(interactive()){ transENSMBLtrack<-transcript_ENSEMBL(gen,chr,start,end,showId=TRUE) plotTracks(transENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") } else { data(transENSMBLtrack) plotTracks(transENSMBLtrack, from=start, to=end, fontfamily="sans",fontfamily.title="sans") }