Package 'coMET'

Title: coMET: visualisation of regional epigenome-wide association scan (EWAS) results and DNA co-methylation patterns
Description: Visualisation of EWAS results in a genomic region. In addition to phenotype-association P-values, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. It can be used to other omic-wide association scans as lon:g as the data can be translated to genomic level and for any species.
Authors: Tiphaine C. Martin [aut,cre], Thomas Hardiman [aut], Idil Yet [aut], Pei-Chien Tsai [aut], Jordana T. Bell [aut]
Maintainer: Tiphaine Martin <[email protected]>
License: GPL (>= 2)
Version: 1.39.0
Built: 2024-12-19 03:41:04 UTC
Source: https://github.com/bioc/coMET

Help Index


visualisation of regional epigenome-wide association scan (EWAS) results and DNA co-methylation patterns (and also for other omic-WAS)

Description

coMET is an R package for visualising EWAS results in a genomic region. Along with phenotype-association plots, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets (other omic-WAS results) in any species.

Details

Package: coMET
Type: Package
Version: 1.11.5
Date: 2018-04-16
License: GPL (>=2)

coMET is an R package that can generate regional plots of EWAS results, DNA co-methylation patterns, and genomic information. A coMET figure includes 3 panels with a plot of P-values from EWAS, customized annotation tracks, and a triangle heatmap plot which demonstrates the correlation structure of DNA methylation at the CpG sites in the genomic region. Plots are created as PDF or EPS files.

Author(s)

Tiphaine C. Martin, Thomas Hardiman, Idil Yet, Pei-Chien Tsai, Jordana T. Bell

Maintainer: Tiphaine Martin <[email protected]>

Website: http://www.epigen.kcl.ac.uk/comet

References

Martin, T.C, Yet, I, Tsai, P-C, Bell, J.T., coMET: visualisation of regional epigenome-wide association scan results and DNA co-methylation patterns, BMC bioinformatics, 2015.

Examples

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt")
myinfofile <- file.path(extdata, "cyp1b1_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")

chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg38"

if(interactive()){
    genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE)
    snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end,
                dataset="hsapiens_snp_som",showId=FALSE)
    strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end,
                strand, dataset="hsapiens_structvar_som")
    clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end)
    clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end)
    gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end)
    geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end)
    listgviz <- list(genetrack,snptrack,strutrack,clinVariant,
                 clinCNV,gwastrack,geneRtrack)
    comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
      cormatrix.file=mycorrelation, cormatrix.type="listfile",
      mydata.large.file=myexpressfile, mydata.large.type="listfile",
      tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE)
} else {
    data(geneENSEMBLtrack)
    data(snpBiomarttrack)
    data(ISCAtrack)
    data(strucBiomarttrack)
    data(ClinVarCnvTrack)
    data(clinVarMaintrack)
    data(GWASTrack)
    data(GeneReviewTrack)

    listgviz <- list(genetrack,snptrack,strutrack,clinVariant,
                    clinCNV,gwastrack,geneRtrack)
    comet(config.file=configfile, mydata.file=myinfofile, mydata.type="listfile",
        cormatrix.file=mycorrelation, cormatrix.type="listfile",
        mydata.large.file=myexpressfile, mydata.large.type="listfile",
        tracks.gviz=listgviz,
        verbose=FALSE, print.image=FALSE,disp.pvalueplot=TRUE)
}

Creates a binding motif track from ENSEMBL

Description

Creates a binding motif track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

bindingMotifsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay="all",
datasetEnsembl = NULL, title="Binding Motifs ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

featureDisplay

A vector of regulatory features to be displayed, such as Egr1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CTCF"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Egr1","CTCF")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl

Allows the user to manually set which data set is used if required.

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "CTCF"

if(interactive()){
 bindMotifsBiomartTrackSingle<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,
 end,featureDisplay)
  plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(bindMotifsBiomartTrackSingle)
  plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

######

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- c("CTCF","Egr1")

if(interactive()){
 bindMotifsBiomartTrackMultiple<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay)
  plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(bindMotifsBiomartTrackMultiple)
  plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

######

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "all"

if(interactive()){
 bindMotifsBiomartTrackAll<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay)
  plotTracks(bindMotifsBiomartTrackAll, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(bindMotifsBiomartTrackAll)
  plotTracks(bindMotifsBiomartTrackAll, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

Creates a TF motif track from ENCODE

Description

Creates a track of TF motifs from ENCODE using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

ChIPTF_ENCODE(gen="hg19", chr, start, end, bedFilePath,
featureDisplay='all', motifColorFile, type_stacking='dense',
showId=FALSE,just_group="above", title="TF motifs ENCODE")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

featureDisplay

A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

motifColorFile

The path of the BED file with 2 columns ( the first for motif name and the second for the color in hex format without \# in the beginning) with a header.

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

showId

logical. say if we write the name of group

just_group

position. say where we write the name of group (choice in c("above","righ","left"))

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<-"chr1"
start <- 1000
end <- 329000


if(interactive()){
    extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
    bedFilePath <- file.path(extdata, "ENCODE/motifs1000_matches_ENCODE.txt")
    motif_color <- file.path(extdata, "ENCODE/TFmotifs_colors.csv")
    chipTFtrack <- ChIPTF_ENCODE(gen,chr,start, end, bedFilePath,
    featureDisplay=c("AHR::ARNT::HIF1A_1","AIRE_1","AIRE_2","AHR::ARNT_1"),
    motif_color,type_stacking="squish",showId=TRUE)
    plotTracks(chipTFtrack, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
    data(chipTFtrack)
    plotTracks(chipTFtrack, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

Creating multiple chromHMM tracks from the UCSC genome browser

Description

Create multiple chromHMM Broad tracks by connecting to the UCSC genome browser using the GViz bioconductor package

Usage

chromatinHMMAll_UCSC(gen, chr, start, end, mySession, color='coMET',
pattern = NULL, table.name = NULL)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in region of interest (the smallest value)

end

the last position in region of interest (the biggest value)

mySession

the object session from the function browserSession of rtracklayer

color

the colour scheme used for plots. By defult this is set to 'coMET' to allow easy indentifcation of differnent elements. The colour scheme set by UCSC can also be used. Consult userguide for table of colours.

pattern

the pattern of the track to visualise

table.name

the name of the table from the track

Value

list of AnnotationTrack objects of GViz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper

See Also

chromatinHMMOne_UCSC

Examples

library("Gviz")
    library(rtracklayer)
    gen <- "hg19"
    chr <- "chr2"
    start <- 38290160
    end <- 38313219
    if(interactive()){
        BROWSER.SESSION="UCSC"
        mySession <- browserSession(BROWSER.SESSION)
        genome(mySession) <- gen
        track.name="Broad ChromHMM"
        tablestrack<-ucscTables(gen, track=track.name)
        table.name<-tablestrack[1]
        PATTERN.REGULATION<-"GM12878"

        chromhmmPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,mySession,
        color='coMET',PATTERN.REGULATION)
        plotTracks(chromhmmPattern, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")

        chromhmmNoPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,
        mySession,color='coMET')
        plotTracks(chromhmmNoPattern, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
    } else {

        data(chromhmmPattern)
        plotTracks(chromhmmPattern, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")

        data(chromhmmNoPattern)
        plotTracks(chromhmmNoPattern, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
    }

Creating one chromHMM track from the UCSC genome browser

Description

Create one track of only one type of chromHMM Broad element from the UCSC genome browser using the Gviz bioconductor package

Usage

chromatinHMMOne_UCSC(gen, chr, start, end, mySession, color="coMET",
title="ENCODE/Broad chromHMM", table.name = NULL)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in region of interest (the smallest value)

end

the last position in region of interest (the biggest value)

mySession

the object session from the function browserSession of rtracklayer

color

the color scheme used for plots. By defult this is set to 'coMET' to allow easy indentifcation of differnent elements. The color scheme set by UCSC can also be used. Consult userguide for table of colors.

title

Name of tracks

table.name

the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper

See Also

chromatinHMMAll_UCSC

Examples

library("Gviz")
    library("rtracklayer")
    gen <- "hg19"
    chr <- "chr2"
    start <- 38290160
    end <- 38303219
    color <- "coMET"

    if(interactive()) {
        BROWSER.SESSION="UCSC"
        mySession <- browserSession(BROWSER.SESSION)
        genome(mySession) <- gen
        track.name="Broad ChromHMM"
        tablestrack<-ucscTables(gen, track.name)
        table.name<-tablestrack[1]
        chromhmmtrackone<-chromatinHMMOne_UCSC(gen,chr,start,end
        ,mySession,color="coMET",table.name)
        plotTracks(chromhmmtrackone, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
    }else {
        data(chromhmmtrackone)
        plotTracks(chromhmmtrackone, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
    }

Creates a ChromHMM track from a file of RoadMap

Description

Creates a ChromHMM track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

chromHMM_RoadMap(gen="hg19",chr, start, end, bedFilePath,
featureDisplay = 'all', colorcase='roadmap15',
title=" chromHMM RoadMap")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The file path to the .BED file containing the data to be visualised

featureDisplay

A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the 'State & Acronym' column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

colorcase

the type of colors used to visualise different elements contained in ROADmap data with 15-,18-,25- states. choice between roadmap15, roadmap18, comet18, roadmap25 and comet25.

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to RoadMap Epigenome

Examples

library("Gviz")
chr <- "chr1"
start <- 4500000
end <- 4600000
featureDisplay <- "7_Enh"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
  chromHMM_RoadMapSingle <- chromHMM_RoadMap(gen="hg19",chr,start, end,
  bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' )
  plotTracks(chromHMM_RoadMapSingle, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(chromHMM_RoadMapSingle)
  plotTracks(chromHMM_RoadMapSingle, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

######

library("Gviz")
chr <- "chr22"
start <- 38291000
end <- 38301200
featureDisplay <- c("7_Enh","13_ReprPC")

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
  chromHMM_RoadMapMultiple <- chromHMM_RoadMap(gen="hg19",chr,start, end,
  bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' )
  plotTracks(chromHMM_RoadMapMultiple, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(chromHMM_RoadMapMultiple)
  plotTracks(chromHMM_RoadMapMultiple, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")
chr <- "chr22"
start <- 38291000
end <- 38301200
featureDisplay <- "all"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
  chromHMM_RoadMapAll <- chromHMM_RoadMap(gen="hg19",chr,start, end,
  bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15' )
  plotTracks(chromHMM_RoadMapAll, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(chromHMM_RoadMapAll)
  plotTracks(chromHMM_RoadMapAll, from = start, to = end,
  fontfamily="sans",fontfamily.title="sans")
}

Removing "chr" to the chromosome number from UCSC to transform it to ENSEMBL chromosome format

Description

Removing "chr" at the beginning of the chromosome number

Usage

chrUCSC2ENSEMBL(chr)

Arguments

chr

the chromosome number in UCSC format

Value

the number of chromosome at ENSEMBL format

Author(s)

Tiphaine Martin

Examples

chr<-"chr7"
    chrUCSC2ENSEMBL(chr)

Create one track of the genomic positions of variants from the ClinVar database (CNV only)

Description

Create one track of the genomic positions of variants from the ClinVar database (CNV only, Variants excluded) using the Gviz bioconductor package

Usage

ClinVarCnv_UCSC(gen, chr, start, end, title="ClinVar Variants", showId = FALSE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in region of interest (the smallest value)

end

the last position in region of interest (the biggest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=clinvar

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, CoreillCNV_UCSC, COSMIC_UCSC, ClinVarMain_UCSC

Examples

library("Gviz")
chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg38"
if(interactive()){
    clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end)
    plotTracks(clinCNV, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}else {
    data(ClinVarCnvTrack)
    plotTracks(clinCNV, from = start, to =end,
             fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of variants from the ClinVar database (variants only)

Description

Create one track of the genomic positions of variants from the ClinVar database (Variants only, CNV excluded) using the Gviz bioconductor package

Usage

ClinVarMain_UCSC(gen, chr, start, end, title="ClinVar Variants", showId=FALSE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in region of interest (the smallest value)

end

the last position in region of interest (the biggest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=clinvar

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, CoreillCNV_UCSC, COSMIC_UCSC, ClinVarCnv_UCSC

Examples

library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 100000
end <- 10000000

if(interactive()) {
    clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end)
    plotTracks(clinVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}else{
    data(clinVarMaintrack)
    plotTracks(clinVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}

col2HSV: converts a color to HSV in hexadecimal notation

Description

col2HSV converts an R color (or a set of colors) into an HSV color model, and then returns the color names in hexadeciaml notation

Usage

col2HSV(color)

Arguments

color

an R color name or a color in hexadecimal notation

Value

A character vector with the color(s) name(s) in hexadecimal notation

Author(s)

Gaston Sanchez

Examples

# convert 'tomato'
col2HSV("tomato")

Visualize EWAS results in a genomic region of interest

Description

coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.

Usage

comet(mydata.file = NULL, mydata.format = "site", mydata.type = "file",
    mydata.large.file = NULL, mydata.large.format = "site",
    mydata.large.type = "listfile", cormatrix.file = NULL,
    cormatrix.method = "spearman", cormatrix.format = "raw",
    cormatrix.color.scheme = "bluewhitered",cormatrix.conf.level=0.05,
    cormatrix.sig.level= 1, cormatrix.adjust="none",
    cormatrix.type = "listfile", mydata.ref = NULL,
    start = NULL, end = NULL, zoom = FALSE, lab.Y = "log",
    pval.threshold = 1e-05,pval.threshold.2 = 0,disp.pval.threshold = 1,
    disp.association = FALSE, disp.association.large = FALSE,
    disp.region = FALSE, disp.region.large = FALSE,
    disp.beta.association = FALSE, disp.beta.association.large = FALSE, factor.beta = 0.3,
    symbols = "circle-fill",
    symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL,
    use.colors = TRUE , disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL,
    disp.mydata = TRUE, biofeat.user.file = NULL, biofeat.user.type = NULL,
    biofeat.user.type.plot = NULL,
    genome = "hg19", dataset.gene = "hsapiens_gene_ensembl",
    tracks.gviz = NULL,
    disp.mydata.names = TRUE, disp.color.bar = TRUE, disp.phys.dist = TRUE,
    disp.legend = TRUE, disp.marker.lines = TRUE, disp.cormatrixmap = TRUE,
    disp.pvalueplot =TRUE, disp.type = "symbol", disp.mult.lab.X = FALSE,
    disp.connecting.lines = TRUE, palette.file = NULL, image.title = NULL,
    image.name = "coMET", image.type = NULL, image.size = 3.5,
    fontsize.gviz=5, font.factor = 1,
    symbol.factor = NULL, print.image = TRUE, connecting.lines.factor = 1.5,
    connecting.lines.adj = 0.01, connecting.lines.vert.adj = -1,
    connecting.lines.flex = 0, config.file = NULL, verbose = FALSE)

Arguments

mydata.file

Name of the info file describing the coMET parameters

mydata.format

Format of the input data in mydata.file. There are 4 different options: site, region, site_asso, region_asso.

mydata.type

Format of mydata.file. There are 2 different options: FILE or MATRIX.

mydata.large.file

Name of additional info files describing the coMET parameters. File names should be comma-separated. It is optional, but if you add some, they need to be file(s) in tabular format with a header. Additional info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.large.format.

mydata.large.format

Format of additional data to be visualised in the p-value plot. Format should be comma-separated. There are 4 different options for each file: site, region, site_asso, region_asso.

mydata.large.type

Format of mydata.large.file. There are 2 different options: listfile or listdataframe.

cormatrix.file

Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.

cormatrix.method

Options for calculating the correlation matrix: spearman, pearson and kendall

cormatrix.format

Format of the input cormatrix.file. TThere are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix)

cormatrix.color.scheme

Color scheme options: heat, bluewhitered, cm, topo, gray, bluetored

cormatrix.conf.level

Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.

cormatrix.sig.level

Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1.

cormatrix.adjust

indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none"

cormatrix.type

Format of cormatrix.file. There are 2 different options: listfile or listdataframe.

mydata.ref

The name of the referenceomic feature (e.g. CpG-site) listed in mydata.file

start

The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features.

end

the last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features.

zoom

Default=False

lab.Y

Scale of the y-axis. Options: log or ln

pval.threshold

Significance threshold to be displayed as a red dashed line

pval.threshold.2

the second significance threshold to be displayed as a orange dashed line

disp.pval.threshold

Display only the findings that pass the value put in disp.pval.threshold

disp.association

This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color.

disp.association.large

This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color.

disp.region

This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.region.large

This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.beta.association

This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown.

disp.beta.association.large

This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is ththe default size of symbole; if TRUE, the effect direction is shown.

factor.beta

Factor to visualise the size of beta. Default value = 0.3.

symbols

The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle

symbols.large

The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.s., square-fill. Example: circle,diamond-fill,triangle

sample.labels

Labels for the sample described in mydata.file to include in the legend

sample.labels.large

Labels for the sample described in mydata.large.file to include in the legend

use.colors

Use the colors defined or use the grey color scheme

disp.color.ref

Logical option TRUE or FALSE (TRUE default). if TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black.

color.list

List of colors for displaying the P-value symbols related to the data in mydata.file

color.list.large

List of colors for displaying the P-value symbols related to the data in mydata.large.file

disp.mydata

logical option TRUE or FALSE. TRUE (default). If TRUE, the P-value plot is shown; if FALSE the plot will be defined by GViz

biofeat.user.file

Name of data file to visualise in the tracks. File names should be comma-separated.

biofeat.user.type

Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneregionTrack.

biofeat.user.type.plot

Format of the plot if the data are shown with the Gviz's function called DataTrack (comma-separated)

genome

The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37),"grch38" (GRCh38)

dataset.gene

The gene names from ENSEMBL. e.g. hsapiens_gene

tracks.gviz

list of tracks created by Gviz.

disp.mydata.names

logical option TRUE or FALSE. If True (default), the names of the CpG sites are displayed.

disp.color.bar

Color legend for the correlation matrix (range -1 to 1). Default: blue-white-red

disp.phys.dist

logical option (TRUE or FALSE). TRUE (default).Display the bp distance on the plots

disp.legend

logical option TRUE or FALSE. TRUE (default) Display the sample labels and corresponding symbols on the lower right side

disp.marker.lines

logical option TRUE or FALSE. TRUE (default), if FALSE the red line for pval.threshold is not shown

disp.cormatrixmap

logical option TRUE or FALSE. TRUE (default), if FALSE correlation matrix is not shown

disp.pvalueplot

logical option (TRUE or FALSE). TRUE (default), if FALSE the pvalue plot is not shown

disp.type

Default: symbol

disp.mult.lab.X

logical option TRUE or FALSE. FALSE (default).Display evenly spaced X-axis labels; up to 5 labels are shown.

disp.connecting.lines

logical option TRUE or FALSE. TRUE (default) displays connecting lines between p-value plot and correlation matrix

palette.file

File that contains color scheme for the heatmap. Colors are hexidecimal HTML color codes; one color per line; if you do not want to use this option, use the color defined by the option cormatrix.color.scheme

image.title

Title of the plot

image.name

The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type.

image.type

Options: pdf or eps

image.size

Default: 3.5 inches. Possible sizes : 3.5 or 7

fontsize.gviz

Font size of writing in annotation track. Default value =5

font.factor

Font size of the sample labels. Range: 0-1

symbol.factor

Size of the symbols. Range: 0-1

print.image

Print image in file or not.

connecting.lines.factor

Length of the connecting lines. Range: 0-2

connecting.lines.adj

Position of the connecting lines horizontally. Negative values shift the connecting lines to the left and positive values shift the lines to the right. Range: (-1;1) option -1 means no connecting lines.

connecting.lines.vert.adj

Position of the connecting lines vertically. Can be used to vertically adjust the position of the connecting lines in relation to the CpG-site names. Negative value shift the connecting lines down. Range: (-0.5 - 0), option -1 mean the default value related to the plot size (-0.5 for 3.5 plot size; -0.7 for 7.5 plot size)

connecting.lines.flex

Adjusts the spread of the connecting lines. Range: 0-2

config.file

Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP)

verbose

logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.

Details

The function is limited to visualize 120 omic features.

Value

Create a plot in pdf or eps format depending to some options

Author(s)

Tiphaine Martin

References

http://epigen.kcl.ac.uk/comet/

See Also

comet.web,comet.list

Examples

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt")
myinfofile <- file.path(extdata, "cyp1b1_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")

chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg38"

if(interactive()){
    cat("interactive")
    genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE)
    snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end,
                dataset="hsapiens_snp_som",showId=FALSE)
    strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end,
                strand, dataset="hsapiens_structvar_som")
    clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end)
    clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end)
    gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end)
    geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end)
    listgviz <- list(genetrack,snptrack,strutrack,clinVariant,
                 clinCNV,gwastrack,geneRtrack)
    comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
      cormatrix.file=mycorrelation, cormatrix.type="listfile",
      mydata.large.file=myexpressfile, mydata.large.type="listfile",
      tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE)
} else {
    cat("Non interactive")
    data(geneENSEMBLtrack)
    data(snpBiomarttrack)
    data(ISCAtrack)
    data(strucBiomarttrack)
    data(ClinVarCnvTrack)
    data(clinVarMaintrack)
    data(GWASTrack)
    data(GeneReviewTrack)
    listgviz <- list(genetrack,snptrack,strutrack,clinVariant,
                clinCNV,gwastrack,geneRtrack)
    comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
       cormatrix.file=mycorrelation, cormatrix.type="listfile",
        mydata.large.file=myexpressfile,  mydata.large.type="listfile",
        tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE,disp.pvalueplot=FALSE)
}

List the correlations between omic features

Description

coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks. In addition, the function comet.list gives the list of correlations between omic features

Usage

comet.list(cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw",
    cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none",
    cormatrix.type = "listdataframe", cormatrix.output="cormatrix_list",
    config.file = NULL, verbose = FALSE)

Arguments

cormatrix.file

Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.

cormatrix.method

Options for calculating the correlation matrix: spearman, pearson and kendall. Default value= spearman

cormatrix.format

Format of the input cormatrix.file. TThere are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix)

cormatrix.conf.level

Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.

cormatrix.sig.level

Significant level to visualise the correlation. If the correlation has a pvalue below the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1.

cormatrix.adjust

indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none"

cormatrix.type

Format of cormatrix.file. There are 2 different options: listfile or listdataframe.

cormatrix.output

The path and the name of the output file without the extension

config.file

Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=".

verbose

logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.

Value

Create a list of correlation between omic features

Author(s)

Tiphaine Martin

References

http://epigen.kcl.ac.uk/comet/

See Also

comet.web,comet

Examples

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")
myoutput <- file.path(extdata, "cyp1b1_res37_cormatrix_list_BH05.txt")


comet.list(cormatrix.file=mycorrelation,cormatrix.method = "spearman",
           cormatrix.format= "raw", cormatrix.conf.level=0.05,
           cormatrix.sig.level= 0.05, cormatrix.adjust="BH",
           cormatrix.type = "listfile", cormatrix.output=myoutput,
           verbose=FALSE)

Visualize EWAS results in a genomic region of interest with predefined annotation tracks

Description

coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.

Usage

comet.web(mydata.file = NULL, mydata.format = c("site", "region",
"site_asso", "region_asso"),
        mydata.large.file = NULL,
        mydata.large.format = c("site", "region", "site_asso", "region_asso"),
        cormatrix.file = NULL, cormatrix.method = c("spearman", "pearson", "kendall"),
        cormatrix.format = c("cormatrix", "raw","raw_rev"),
        cormatrix.color.scheme = "heat", cormatrix.conf.level=0.05,
        cormatrix.sig.level= 1, cormatrix.adjust="none",mydata.ref = NULL,
        genome="hg19", start = NULL, end = NULL, zoom = FALSE, lab.Y = "log",
        pval.threshold = 1e-07, pval.threshold.2 = 0,  disp.pval.threshold = 1,
        disp.association= FALSE, disp.association.large = FALSE,
        disp.beta.association = "FALSE", disp.beta.association.large = "FALSE",
        factor.beta = 0.3,
        disp.region = FALSE, disp.region.large = FALSE, symbols = "circle-fill",
        symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL,
        use.colors = TRUE, disp.color.ref = TRUE, color.list = NULL,
        color.list.large = NULL, biofeat.user.file = NULL,
        biofeat.user.type = c("GeneRegion", "Annotation", "Data"),
        biofeat.user.type.plot = NULL,
        list.tracks = "geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP",
        pattern.regulation = "GM12878",
        image.title = NULL, image.name = "coMET", image.type = c("pdf", "eps"),
        image.size = 3.5, fontsize.gviz=5, font.factor = 1,
        print.image = FALSE, config.file = NULL, verbose = FALSE)

Arguments

.

mydata.file

Name of the info file describing the coMET parameters. It is mandatory and has to be a file in tabular format with a header. Info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.format.

mydata.format

Format of the input data in mydata.file. There are 4 different options: site, region, site_asso, region_asso.

mydata.large.file

Name of additional info files describing the coMET parameters. File names should be comma-separated. It is optional, but if you add some, they need to be file(s) in tabular format with a header. Additional info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column(optional) and it can be either a numeric value (positive or negative values) or only direction sign ("+", "-"). The number of columns and their types are defined but the option mydata.large.format.

mydata.large.format

Format of additional data to be visualised in the p-value plot. Format should be comma-separated.There are 4 different options for each file: site, region, site_asso, region_asso.

cormatrix.file

Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.

cormatrix.method

A character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.

cormatrix.format

A character string indicating which format of the input cormatrix.file is to be used. There are three options: raw file (raw if CpG sites are by column and samples by row or row_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix)

cormatrix.color.scheme

A character string indicating which Color scheme options is to be used: heat, bluewhitered, cm, topo, gray, bluetored

cormatrix.conf.level

Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.

cormatrix.sig.level

Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1.

cormatrix.adjust

indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none"

mydata.ref

The name of the reference omic feature (e.g. CpG-site) listed in mydata.file

genome

The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37),"grch38" (GRCh38)

start

The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features.

end

the last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features.

zoom

logical option TRUE or FALSE. FALSE (default)

lab.Y

Scale of the y-axis. Options: log or ln

pval.threshold

Significance threshold to be displayed as a red dashed line. Default value = 1e-7

pval.threshold.2

the second significance threshold to be displayed as a orange dashed line. Default value= 0 (no printed)

disp.pval.threshold

Display only the findings that pass the value put in disp.pval.threshold

disp.association

This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color.

disp.association.large

This logical option works only if mydata.large.file contains the effect direction (MYDATA.large.FORMA=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color.

disp.beta.association

This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown.

disp.beta.association.large

This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is ththe default size of symbole; if TRUE, the effect direction is shown.

factor.beta

Factor to visualise the size of beta. Default value = 0.3.

disp.region

This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.region.large

This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

symbols

The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle

symbols.large

The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.s., square-fill. Example: circle,diamond-fill,triangle

sample.labels

Labels for the sample described in mydata.file to include in the legend

sample.labels.large

Labels for the sample described in mydata.large.file to include in the legend

use.colors

Use the colors defined or use the grey color scheme

disp.color.ref

Logical option TRUE or FALSE (TRUE default). if TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black.

color.list

List of colors for displaying the P-value symbols related to the data in mydata.file

color.list.large

List of colors for displaying the P-value symbols related to the data in mydata.large.file

biofeat.user.file

Name of data file to visualise in the tracks. File names should be comma-separated.

biofeat.user.type

Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneRegionTrack.

biofeat.user.type.plot

Format of the plot if the data are shown with the Gviz's function called DataTrack (comma-separated)

list.tracks

List of annotation tracks to visualise. Options include geneENSEMBL, CGI, ChromHMM, DNAse, RegENSEMBL, SNP, transcriptENSEMBL, SNPstoma, SNPstru, SNPstrustoma, BindingMotifENSEMBL, otherRegulatoryENSEMBL, regulatoryEvidenceENSEMBL, regulatoryFeaturesENSEMBL, regulatorySegmeENSEMBL, miRNAENSEMBL, ImprintedtissuesGenes, COSMIC, GAD, ClinVar, GeneReviews, GWAS, ClinVarCNV, GCcontent, genesUCSC, xenogenesUCSC, SegDuplication,RepeatElt.

pattern.regulation

The cell/tissue or the list of cells/tissues to visualise in the regulation region defined by Broad ChromHMM

image.title

Title of the plot

image.name

The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type.

image.type

Options: pdf or eps

image.size

Default: 3.5 inches. Possible sizes : 3.5 or 7

fontsize.gviz

Font size of writing in annotation track. Default value =5

font.factor

Font size of the sample labels. Range: 0-1

print.image

Print image in file or not.

config.file

Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL,SNP)

verbose

logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.

Details

The function is limited to visualize 120 omic features.

Value

Create a plot in pdf or eps format depending to some options

Author(s)

Tiphaine Martin

References

http://epigen.kcl.ac.uk/comet/

See Also

comet,comet.list

Examples

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1b1_zoom_4webserver.txt")
myinfofile <- file.path(extdata, "cyp1b1_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")

comet.web(config.file=configfile, mydata.file=myinfofile, cormatrix.file=mycorrelation,
    mydata.large.file=myexpressfile, print.image=FALSE,verbose=FALSE)

Complementary or opposite color

Description

Complementary or opposite color scheme is formed by colors that are opposite each other on the color wheel (example: red and green). The high contrast of complementary colors creates a vibrant look that must be managed well so it is not jarring.

Usage

complementary(color, plot = TRUE, bg = "white",
    labcol = NULL, cex = 0.8, title = TRUE)

Arguments

color

an R color name or color in hexadecimal notation

plot

logical value indicating whether to plot a color wheel with the generated scheme

bg

background color of the plot. Used only when plot=TRUE

labcol

color for the labels (i.e. names of the colors). Used only when plot=TRUE

cex

numeric value indicating the character expansion of the labels

title

logical value indicating whether to display a title in the plot. Used ony when plot=TRUE

Details

The complementary color is obtained following a color wheel with 12 colors, each one spaced at 30 degrees from each other. Complementary color schemes are tricky to use in large doses, but work well when you wnat something to stand out. In addition, omplementary colors are really bad for text.

Value

A character vector with the given color and the complementary color in hexadecimal notation

Author(s)

Gaston Sanchez

Examples

# complementary color of 'tomato' with no plot
opposite("tomato", plot = FALSE)

# complementary color of 'tomato' with color wheel
opposite("tomato", bg = "gray30")

Create one track of the genomic positions of CNV in chromosomal aberration and inherited disorders from the NIGMS Human Genetic Cell Repository data

Description

Create one track of the genomic positions of copy-number variants (CNVs) in chromosomal aberration and inherited disorder cell lines from the NIGMS Human Genetic Cell Repository using the Gviz bioconductor package.

Usage

CoreillCNV_UCSC(gen, chr, start, end,title="Coriell CNVs", showId=FALSE)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=coriellDelDup

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, COSMIC_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC

Examples

library("Gviz")
gen <- "hg19"
chrom <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
    coreilVariant<-CoreillCNV_UCSC(gen,chrom,start,end)
    plotTracks(coreilVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
} else {
     data(coreilVarianttrack)
    plotTracks(coreilVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of variants from COSMIC [obselete]

Description

[obselete] No more possible to extract COSMIC data from UCSC.

Create one track of the genomic positions of variants from COSMIC, the "Catalogue Of Somatic Mutations In Cancer" in extracting data from UCSC and using the Gviz bioconductor package.

Usage

COSMIC_UCSC(gen, chr, start, end,title= "COSMIC", showId=FALSE)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38)

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cosmic

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples

library("Gviz")
chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg19"
if(interactive()){
    cosmicVariant<-COSMIC_UCSC(gen,chrom,start,end)
    plotTracks(cosmicVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}else {
    data(cosmicVarianttrack)
    plotTracks(cosmicVariant, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}

create track CpG Island from UCSC

Description

create track CpG Island from UCSC using the Gviz bioconductor package

Usage

cpgIslands_UCSC(gen, chr, start, end, title="CpG Islands UCSC")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

Name of tracks

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cpgIslandSuper

Examples

library("Gviz")
chrom <- "chr2"
start <- 100000
end <- 1000000
gen <- "hg38"

if(interactive()) {
    cpgIstrack<-cpgIslands_UCSC(gen, chrom, start, end)
    plotTracks(cpgIstrack, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}else {
    data(cpgIslandtrack)
    plotTracks(cpgIstrack, from = start, to =end,
    fontfamily="sans",fontfamily.title="sans")
}

Creates a track of DNA motif positional bias in digital genomic Footprinting Sites (DGFP) from a file of RoadMap

Description

Creates a DGFP track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

dgfootprints_RoadMap(gen="hg19", chr, start, end, bedFilePath,
tissueGroupDisplay='Blood & T-cell',showId=FALSE, type_stacking="dense",
title= "DGFP RoadMap")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The file path to the .BED file containing the data to be visualised

tissueGroupDisplay

the group of tissue visualised among list("Neurosph","Epithelial","IMR90","Thymus","Heart","Brain","Digestive","Muscle","Other","iPSC","HSC & B-cell","Blood & T-cell"="ES-deriv")

showId

logical. say if we write the name of group

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to RoadMap Epigenome

Examples

library("Gviz")
chr <- "chr1"
start <- 236728
end <- 238778
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/CD3-DS17198.hg19_subset.bed")

if(interactive()){
  dgfootprints_RoadMapSingle <- dgfootprints_RoadMap(gen,chr,start, end,
  bedFilePath, tissueGroupDisplay='Blood & T-cell' )
  plotTracks(dgfootprints_RoadMapSingle, from = start, to = end,
    fontfamily="sans",fontfamily.title="sans")
} else {
  data(dgfootprints_RoadMapSingle)
  plotTracks(dgfootprints_RoadMapSingle, from = start, to = end,
    fontfamily="sans",fontfamily.title="sans")
}

Creation of an UCSC's DNase clusters track - obselete function

Description

Creation of DNase cluster track from a connection to UCSC genome browser in using the GViz bioconductor package. Obselete function

Usage

DNAse_UCSC(gen, chr, start, end, mySession, title="DNA cluster",
track.name = "DNase Clusters", table.name = NULL)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

mySession

the object session from the function browserSession of rtracklayer

title

Name of tracks

track.name

the name of the track DNAse_UCSC. "DNase Clusters"(default)

table.name

the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeDNAseSuper

Examples

# library("Gviz")
# library("rtracklayer")

# gen <- "hg19"
# chr <- "chr7"
# start <- 38290160
# end <- 38303219
# if(interactive()){
#   BROWSER.SESSION="UCSC"
#   mySession <- browserSession(BROWSER.SESSION)
#   genome(mySession) <- gen
#   track.name="Broad ChromHMM"
#   tablestrack<-tableNames(ucscTableQuery(mySession, track=track.name))
#   table.name<-tablestrack[1]
#   dnasetrack<-DNAse_UCSC(gen,chr,start,end,mySession)
#   plotTracks(dnasetrack, from = start, to =end,
#                                   fontfamily="sans",fontfamily.title="sans")
# }else {
#     data(dnasetrack)
#    plotTracks(dnasetrack, from = start, to =end,
#                                   fontfamily="sans",fontfamily.title="sans")
# }

Creates a enhancer/promoter track from FANTOM

Description

Creates a track of promoters/enhancers from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

DNaseI_FANTOM(gen="hg19", chr, start, end, bedFilePath,
featureDisplay='enhancer', stacking_type="dense",
title=" DNaseI Fantom")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

featureDisplay

A vector of regulatory features to be displayed, such as enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("enhancer","promoter")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

stacking_type

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<- "chr1"
start <- 6000000
end <- 6500000

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
enhFantomFile <- file.path(extdata,
"/FANTOM/human_permissive_enhancers_phase_1_and_2_example970.bed")

if(interactive()){
 enhFANTOMtrack <- DNaseI_FANTOM(gen,chr,start, end,
 enhFantomFile, featureDisplay='enhancer')
  plotTracks(enhFANTOMtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(enhFANTOMtrack)
  plotTracks(enhFANTOMtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a promoter/enhancer regions track from a file of RoadMap

Description

Creates a track of promoter/enhancer regions from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

DNaseI_RoadMap(gen="hg19", chr, start, end, bedFilePath,
featureDisplay='promotor',showId=TRUE, type_stacking="dense",
title = "DNaseI RoadMap")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The file path to the .BED file containing the data to be visualised

featureDisplay

A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the 'State & Acronym' column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId

Allows to visualise the Id of DNAse group.

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to RoadMap Epigenome

Examples

library("Gviz")
chr <- "chr2"
start <- 38300049
end <- 38302592
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/regions_prom_E063.bed")

if(interactive()){
  DNaseI_RoadMapSingle <- DNaseI_RoadMap(gen,chr,start, end,
  bedFilePath, featureDisplay='promotor'  )
  plotTracks(DNaseI_RoadMapSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(DNaseI_RoadMapSingle)
  plotTracks(DNaseI_RoadMapSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a track from a file for eQTL data

Description

Creates a track from a BED file for eQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

eQTL(gen,chr, start, end, bedFilePath, featureDisplay, showId=FALSE,
type_stacking="squish",just_group="above", title="eQTL" )

Arguments

gen

the name of the genome.

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The file path to the .BED file containing the data to be visualised

featureDisplay

A vector of eQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CpG"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("SNP","CpG")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId

Allows to visualise the Id of eQTL group.

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

just_group

position. say where we write the name of group (choice in c("above","righ","left"))

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
chr <- "chr15"
start <- 74889136
end <-   75018200
featureDisplay <- "SNP"
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
  eQTLTrackSingle <- eQTL(gen,chr,start, end, bedFilePath, 
  featureDisplay = featureDisplay )
  plotTracks(eQTLTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(eQTLTrackSingle)
  plotTracks(eQTLTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

###########

library("Gviz")
chr <- "chr15"
start <- 74889136
end <-   75018200
featureDisplay <- c("SNP","mRNA_pheno")
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
  eQTLTrackMultiple <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay )
  plotTracks(eQTLTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(eQTLTrackMultiple)
  plotTracks(eQTLTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

######

library("Gviz")
chr <- "chr15"
start <- 74889136
end <-   75018200
featureDisplay <- "all"
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
  eQTLTrackAll <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay )
  plotTracks(eQTLTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(eQTLTrackAll)
  plotTracks(eQTLTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a eQTL track from GTEx

Description

Creates a track of eQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

eQTL_GTEx(gen="hg19",chr,start, end, bedFilePath, featureDisplay = 'all',
showId=FALSE, type_stacking="squish",just_group="above",title="eQTL GTEX")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

featureDisplay

A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId

logical. say if we write the name of group

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

just_group

position. say where we write the name of group (choice in c("above","righ","left"))

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<-"chr3"
start <- 132423172
end <- 132442807
extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "/GTEX/eQTL_Uterus_Analysis_extract100.snpgenes")

if(interactive()){
 eGTexTrackall <- eQTL_GTEx(gen,chr,start, end, bedFilePath,
 featureDisplay="all", showId=TRUE,just_group="left")
  plotTracks(eGTexTrackall, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(eGTexTrackall)
  plotTracks(eGTexTrackall, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

if(interactive()){
 eGTexTrackSNP <- eQTL_GTEx(gen,chr,start, end, bedFilePath,
 featureDisplay="SNP", showId=TRUE,just_group="left")
  plotTracks(eGTexTrackSNP, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(eGTexTrackSNP)
  plotTracks(eGTexTrackSNP, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of variants from the Genetic Association Database (GAD)

Description

Create one track of the genomic positions of variants from the Genetic Association Database (GAD) (archive of human genetic association studies of complex diseases and disorders) using the Gviz bioconductor package

Usage

GAD_UCSC(gen, chr, start, end,title="GAD", showId=FALSE)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gad

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen2 <- "hg19"
chrom2 <- "chr2"
start2 <- 38290160
end2 <- 38303219

if(interactive()) {
  gadtrack<-GAD_UCSC(gen=gen2 ,chr=chrom2 ,start=start2 ,end=end2)
  plotTracks(gadtrack, from = start2, to =end2,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(gadtrack)
   plotTracks(gadtrack, from = start2, to =end2,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of GC content from UCSC

Description

Create a track of GC content from UCSC using the Gviz bioconductor package

Usage

gcContent_UCSC(gen, chr, start, end, title="GC Percent")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

Name of tracks

Value

A UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gc5Base

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()){
  gctrack<-gcContent_UCSC(gen,chr,start,end)
  plotTracks(gctrack,from= start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(gctrack)
  plotTracks(gctrack,from= start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of variants from GeneReviews

Description

Create one track of the genomic positions of variants from GeneReviews using the Gviz bioconductor package

Usage

GeneReviews_UCSC(gen, chr, start, end,title="GeneReviews", showId=FALSE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=geneReviews

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 10000000
end <- 100000000
if(interactive()){
  geneRtrack <-GeneReviews_UCSC(gen,chrom,start,end,showId=TRUE)
  plotTracks(geneRtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(GeneReviewTrack)
  plotTracks(geneRtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genes in the genomic regions of interest from EMSEMBL

Description

Create one track of the genes in the genomic regions of interest from EMSEMBL using the Gviz bioconductor package

Usage

genes_ENSEMBL(gen, chr, start, end, showId=FALSE,title="genes (ENSEMBL)")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

showId

Show the ID of the genetic elements

title

Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg19"
chrom <- "chr2"
start <- 38290160
end <- 38303219
if(interactive()) {
  genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE)
  plotTracks(genetrack, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(geneENSEMBLtrack)
  plotTracks(genetrack, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
}

Obtain the genes names in the genomic regions of interest from ENSEMBL

Description

Obtain the genes names in the genomic regions of interest from ENSEMBL

Usage

genesName_ENSEMBL(gen, chr, start, end, dataset)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

dataset

Name of the database to select genes

Details

Can be null

Value

List of name of genes found in this region of interest.

Author(s)

Tiphaine Martin

References

go to ENSEMBL

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()){
  dataset<- "hsapiens_gene_ensembl"
  geneNameEnsembl<- genesName_ENSEMBL(gen,chr,start,end,dataset)
  geneNameEnsembl
} else {
  data(geneNameEnsembl)
  geneNameEnsembl
}

Create one track of the genomic positions of variants from the GWAS catalog

Description

Create one track of the genomic positions of variants from the NHGRI Catalog of Published Genome-Wide Association Studies using the Gviz bioconductor package

Usage

GWAScatalog_UCSC(gen, chr, start, end, title="GWAS Catalog", showId=FALSE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gwasCatalog

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

ISCA_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 10000
end <- 100000

if(interactive()) {
  gwastrack <-GWAScatalog_UCSC(gen,chrom,start,end)
  plotTracks(gwastrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(GWASTrack)
  plotTracks(gwastrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a HiC matrix from a file (Rao et al., 2014)

Description

Creates a HiC matrix from Rao et al.,2014.

Usage

HiCdata2matrix( chr, start, end, bedFilePath)

Arguments

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("corrplot")
gen <- "hg19"
chr<-"chr1"
start <- 5000000
end <- 9000000

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "HiC/chr1_1mb.RAWobserved")

if(interactive()){
  matrix_HiC_Rao <- HiCdata2matrix(chr,start, end, bedFilePath)
cor_matrix_HiC <- cor(matrix_HiC_Rao)
diag(cor_matrix_HiC)<-1
corrplot(cor_matrix_HiC, method = "circle")
} else {
  data(matrix_HiC_Rao)
  cor_matrix_HiC <- cor(matrix_HiC_Rao)
diag(cor_matrix_HiC)<-1
corrplot(cor_matrix_HiC, method = "circle")
}

Create multiple tracks of histone modifications from the UCSC genome browser

Description

Create multiple tracks of histone modifications from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package

Usage

HistoneAll_UCSC(gen, chr, start, end, mySession, pattern = NULL,
          track.name = "Broad Histone", table.name = NULL)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

mySession

the object session from the function browserSession of rtracklayer

pattern

The cell type

track.name

the name of the track, for example: "Broad Histone"

table.name

the name of the table from the track

Value

A list of AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

HistoneOne_UCSC,

Examples

library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38313219

if(interactive()){
  BROWSER.SESSION="UCSC"
  mySession <- browserSession(BROWSER.SESSION)
  genome(mySession) <- gen
  pattern1 <- "GM12878"

  histonalltrack<-HistoneAll_UCSC(gen,chr,start,end,mySession,
  pattern=pattern1,track.name="Broad Histone")
  plotTracks(histonalltrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(histonalltrack)
  plotTracks(histonalltrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of one histone modification profile from the UCSC genome browser

Description

Create one track of one histone modification profile from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package

Usage

HistoneOne_UCSC(gen, chr, start, end, mySession, title="Broad Histone",
track.name = "Broad Histone", table.name = NULL)

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

mySession

the object session from the function browserSession of rtracklayer

title

Name of tracks

track.name

the name of the track, for example: "Broad Histone"

table.name

the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=wgEncodeHistoneSuper

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

HistoneAll_UCSC

Examples

library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()) {
  BROWSER.SESSION="UCSC"
  mySession <- browserSession(BROWSER.SESSION)
  genome(mySession) <- gen
  histoneonetrack<-HistoneOne_UCSC(gen,chr,start,end,mySession)
  plotTracks(histoneonetrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(histoneonetrack)
  plotTracks(histoneonetrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a imprinted genes track from GTEx

Description

Creates a track of imprinted genes from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

imprintedGenes_GTEx(gen="hg19", chr,start, end, tissues="all",
classification="all",showId=FALSE, title="Imprinted genes GTEx")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

tissues

list of tissues among 33 tissues in GTEx

classification

list of classification from 5 types (biallelic, consistent with biallelic, consistent with imprinting, imprinted, NC)

showId

logical. say if we write the name of group

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen<-"hg19"
chr<- "chr6"
start <- 144251437
end <- 144330541

if(interactive()){
   allIGtrack <- imprintedGenes_GTEx(gen,chr,start, end,
   tissues="all", classification="imprinted",showId=TRUE)
   allimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end,
   tissues="all", classification="imprinted",showId=TRUE)
   StomachIGtrack <-imprintedGenes_GTEx(gen,chr,start, end,
   tissues="Stomach", classification="all",showId=TRUE)
   PancreasIGtrack <- imprintedGenes_GTEx(gen,chr,start, end,
   tissues="Pancreas", classification="all",showId=TRUE)
   PancreasimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start, end,
   tissues="Pancreas", classification="biallelic",showId=TRUE)

   imprintinglist <- list(allIGtrack,allimprintedIGtrack,
   StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack)

  plotTracks(imprintinglist, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")

} else {

  data(allIGtrack)
  data(allimprintedIGtrack)
  data(StomachIGtrack)
  data(PancreasIGtrack)
  data(PancreasimprintedIGtrack)

   imprintinglist <- list(allIGtrack,allimprintedIGtrack,
   StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack)

  plotTracks(imprintinglist, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genes in the genomic regions of interest from EMSEMBL

Description

Create one track of the genes in the genomic regions of interest from EMSEMBL using the Gviz bioconductor package

Usage

interestGenes_ENSEMBL(gen, chr, start, end, interestfeatures,interestcolor,
showId=FALSE,title="genes (ENSEMBL)")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

interestfeatures

A data frame with 3 columns: start of features, end of features, and type of features

interestcolor

A list with the color for each new features defined

showId

Show the ID of the genetic elements

title

Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg19"
chr <- "chr15"
start <- 75011669
end <- 75019876
interestfeatures <- rbind(c("75011883","75013394","bad"),c("75013932","75014410","good"))
interestcolor <- list("bad"="red", "good"="green")

if(interactive()) {
  interestgenesENSMBLtrack<-interestGenes_ENSEMBL(gen,chr,start,end,
  interestfeatures,interestcolor,showId=TRUE)
  plotTracks(interestgenesENSMBLtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(interestgenesENSMBLtrack)
  plotTracks(interestgenesENSMBLtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a track of transcripts from ENSEMBL

Description

Create a track to visualize different transcripts from ENSEMBL using the Gviz bioconductor package

Usage

interestTranscript_ENSEMBL(gen, chr, start, end,interestfeatures,
interestcolor,showId = FALSE, title="transcripts ENSEMBL")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

interestfeatures

A data frame with 3 columns: start of features, end of features, and type of features

interestcolor

A list with the color for each new features defined

showId

Show the ID of the genetic elements

title

Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC,

Examples

library("Gviz")
gen <- "hg19"
chr <- "chr15"
start <- 75011669
end <- 75019876
interestfeatures <- rbind(c("75017782","75017835","bad"),c("75013755","75013844","good"))
interestcolor <- list("bad"="red", "good"="green")

if(interactive()){
  interesttransENSMBLtrack<-interestTranscript_ENSEMBL(gen,chr,start,end,
  interestfeatures,interestcolor,showId=TRUE)
  plotTracks(interesttransENSMBLtrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(interesttransENSMBLtrack)
  plotTracks(interesttransENSMBLtrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of variants from ISCA [obselete database]

Description

Create one track of the genomic positions of variants from International Standards for Cytogenomic Arrays (ISCA) Consortium using the Gviz bioconductor package (obselete datbase, Impossible to access to data from UCSC from September 2015)

Usage

ISCA_UCSC(gen, chr, start, end, mySession, table.name,title="ISCA", showId=FALSE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

mySession

the object session from the function browserSession of rtracklayer

table.name

A table of ISCAT classifications: iscaBenign, iscaCuratedBenign, iscaCuratedPathogenic, iscaLikelyBenign, iscaLikelyPathogenic, iscaPathGainCum, iscaPathLossCum, iscaPathogenic, iscaUncertain

title

The name of the annotation track

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=iscaComposite

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

# Oboselet function

library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38292433
end <- 38305492

if(interactive()){
  BROWSER.SESSION="UCSC"
  mySession <- browserSession(BROWSER.SESSION)
  genome(mySession) <- gen
  iscatrack <-ISCA_UCSC(gen,chrom,start,end,mySession,title="ISCA", table="iscaPathogenic")
  plotTracks(iscatrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(ISCAtrack_Grch38)
  plotTracks(iscatrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a track of known genes from the UCSC genome browser

Description

Create a track of known genes from the UCSC genome browser using the Gviz bioconductor package

Usage

knownGenes_UCSC(gen, chr, start, end,title="UCSC known Genes", showId=TRUE)

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

Name of tracks

showId

Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=knownGene

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

ISCA_UCSC, GWAScatalog_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()) {
  genesUcsctrack<-knownGenes_UCSC(gen,chr,start,end,showId=TRUE)
  plotTracks(genesUcsctrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}else {
  data(genesUcsctrack)
  plotTracks(genesUcsctrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a track from a file for metQTL data

Description

Creates a track from a BED file for metQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

metQTL(gen, chr, start, end, bedFilePath, featureDisplay, showId=FALSE,
type_stacking="squish",just_group="above", title="metQTL")

Arguments

gen

the name of the genome. Default value=hg19

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The file path to the .BED file containing the data to be visualised

featureDisplay

A vector of metQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CpG"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("SNP","CpG")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId

Allows the visualization of the Id of metQTL group.

type_stacking

Sets the type of stacking used by Gviz for plots. By default this is set to 'squish'. For more information see Gviz user guide.

just_group

position. say where we write the name of group (choice in c("above","righ","left"))

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <-   75018200
featureDisplay <- "trans_local_metQTL"
type_stacking <- "squish"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
mqtlbedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
  metQTLTrackSingle <- metQTL(gen,chr,start, end,mqtlbedFilePath,
  featureDisplay = featureDisplay )
  plotTracks(metQTLTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(metQTLTrackSingle)
  plotTracks(metQTLTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

###

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <-   75018200

featureDisplay <- c("trans_local_metQTL","CpG")

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
  metQTLTrackMultiple <- metQTL(gen,chr,start, end, bedFilePath,
  featureDisplay = featureDisplay )
  plotTracks(metQTLTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(metQTLTrackMultiple)
  plotTracks(metQTLTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <-   75018200

featureDisplay <- "all"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
  metQTLTrackAll <- metQTL(gen,chr,start, end, bedFilePath,
  featureDisplay = featureDisplay )
  plotTracks(metQTLTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(metQTLTrackAll)
  plotTracks(metQTLTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a track of miRNA target regions from ENSEMBL

Description

Creates a track of miRNA target regions from ENSEMBL using the Gviz bioconductor package.

Usage

miRNATargetRegionsBiomart_ENSEMBL(gen, chr, start, end, showId=FALSE,
datasetEnsembl = "hsapiens_mirna_target_feature",
title="miRNA Target Regions ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

showId

Show the ID of the genetic elements

datasetEnsembl

Allows the user to manually set which data set is used if required.Default=hsapiens_mirna_target_feature

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 1000000
end <- 20000000


if(interactive()){
 miRNATargetRegionsBiomartTrack<-miRNATargetRegionsBiomart_ENSEMBL(gen,chr,start,end,
                                      datasetEnsembl = "hsapiens_mirna_target_feature")
  plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(miRNATargetRegionsBiomartTrack)
  plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a track of other regulatory regions from ENSEMBL

Description

Creates a track from ENSEMBL of other regulatory regions using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr, start, end,
featureDisplay = "all",datasetEnsembl = "hsapiens_external_feature",
title="Other Regulatory Regions ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

featureDisplay

A vector of regulatory features to be displayed, such as Enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are two possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Enhancer"), only the name of the specific feature is required. Second, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl

Allows the user to manually set which data set is used if required.

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 100000
end <- 5000000
featureDisplay <- "Enhancer"

if(interactive()){
 otherRegulatoryRegionsTrackSingle<-otherRegulatoryRegionsBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(otherRegulatoryRegionsTrackSingle)
  plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

########

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 100000
end <- 5000000
featureDisplay <- "all"

if(interactive()){
 otherRegulatoryRegionsTrackAll<-otherRegulatoryRegionsBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(otherRegulatoryRegionsTrackAll)
  plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")

}

Pizza color wheel

Description

This function displays a color wheel with specified colors

Usage

pizza(colors, bg = "gray95", border = NA,
    init.angle = 105, cex = 0.8, lty = 1, labcol = NULL,
    ...)

Arguments

colors

a vector with R color names of colors in hexadecimal notation

bg

background color of the plot. Default "gray95"

border

color of the border separating the pizza slices

init.angle

integer value indicating the start angle (in degrees) for the slices

cex

numeric value indicating the character expansion of the labels

lty

argument passed to polygon which draws each slice

labcol

color for the labels (i.e. names of the colors)

...

graphical parameters (par) can be given as argument to pizza

Details

This function is based on the pie function

Author(s)

Gaston Sanchez

Examples

# pizza color wheel for rainbow colors
pizza(rainbow(7))

# pizza color wheel for tomato (18 colors)
pizza(setColors("tomato", 18), bg = "gray20", cex = 0.7)

Creates a psiQTL track from GTEx

Description

Creates a track of psiQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

psiQTL_GTEx(gen,chr,start, end, bedFilePath, featureDisplay = 'all',
showId=FALSE, type_stacking="squish",just_group="above", title="psiQTL GTEX")

Arguments

gen

the name of the genome.

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

featureDisplay

A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId

logical. say if we write the name of group

type_stacking

Object of class"character", the stacking type of overlapping items on the final plot.One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz

just_group

position. say where we write the name of group (choice in c("above","righ","left"))

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<-"chr13"
start <- 52713837
end <- 52715894
extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
psiQTLFilePath <- file.path(extdata, "/GTEX/psiQTL_Assoc-total.AdiposeTissue.txt")


if(interactive()){
  psiGTexTrackall<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath,
  featureDisplay = 'all', showId=TRUE, type_stacking="squish",
  just_group="above" )
  plotTracks(psiGTexTrackall, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(psiGTexTrackall)
  plotTracks(psiGTexTrackall, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

if(interactive()){
 psiGTexTrackSNP<- psiQTL_GTEx(gen,chr,start, end, psiQTLFilePath,
 featureDisplay = 'SNP', showId=TRUE, type_stacking="squish",
 just_group="left")
  plotTracks(psiGTexTrackSNP, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(psiGTexTrackSNP)
  plotTracks(psiGTexTrackSNP, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a track of RefSeq genes from the UCSC genome browser

Description

Create a track of RefSeq genes from the UCSC genome browser using the Gviz bioconductor package

Usage

refGenes_UCSC(gen, chr, start, end, title="Ref Genes UCSC", track = "refGene",
IdType="Ref", showId=TRUE)

Arguments

gen

The name of the genome

chr

The chromosome of interest

start

The first position in the region of interest (the smallest value)

end

The last position in the region of interest (the largest value)

title

Name of tracks

track

the name of table in UCSC for the group "Genes and Gene Prediction"

IdType

When set to 'ref' shows the gene reference, when set to "name" shows the gene name

showId

Shows the ID or name of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=knownGene

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

ISCA_UCSC, GWAScatalog_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL, knownGenes_UCSC

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38203219
end <- 38303219
IdType <- "name"
track <- "refGene"

if(interactive()) {
  genesUcsctrack<-refGenes_UCSC(gen,chr,start,end,track,IdType)
  plotTracks(genesUcsctrack, from = start, to =end)
}else {
  data(genesUcsctrack)
  plotTracks(genesUcsctrack, from = start, to =end)
}

Create a regulation track from ENSEMBL

Description

Create a 'Regulation' track from ENSEMBL using the Gviz bioconductor package

Usage

regulationBiomart_ENSEMBL(gen, chr, start, end,title="Regulation ENSEMBL")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

Name of tracks

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation biomart

Examples

library("Gviz")
gen <- "hg19"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()){
  regulationENSEMBLtrack<-regulationBiomart_ENSEMBL(gen,chr,start,end)
  plotTracks(regulationENSEMBLtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulationENSEMBLtrack)
  plotTracks(regulationENSEMBLtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a regulatory feature track from ENSEMBL

Description

Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

regulatoryEvidenceBiomart_ENSEMBL (gen, chr, start, end,
featureDisplay = "all", datasetEnsembl = "hsapiens_annotated_feature",
title="Other Regulatory Regions ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

featureDisplay

A vector of regulatory features to be displayed, such as DNase1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "DNase1"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("CTCF","DNase1")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl

Allows the user to manually set which data set is used if required.

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 40000
end <- 50000
featureDisplay <- "H3K27me3"

if(interactive()){
 regulatoryEvidenceBiomartTrackSingle <- regulatoryEvidenceBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryEvidenceBiomartTrackSingle)
  plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 40000
end <- 100000
featureDisplay <- c("H3K27me3","H3K36me3")

if(interactive()){
 regulatoryEvidenceBiomartTrackMultiple<-regulatoryEvidenceBiomart_ENSEMBL (gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryEvidenceBiomartTrackMultiple)
  plotTracks(regulatoryEvidenceBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 50000
end <- 100000
featureDisplay <- "all"
if(interactive()){
 regulatoryEvidenceBiomartTrackAll<-regulatoryEvidenceBiomart_ENSEMBL (gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryEvidenceBiomartTrackAll)
  plotTracks(regulatoryEvidenceBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")

}

Creates a regulatory feature track from ENSEMBL

Description

Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

regulatoryFeaturesBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all",
datasetEnsembl = "hsapiens_regulatory_feature",
title="Regulatory Features ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

featureDisplay

A vector of regulatory features to be displayed, such as Promoter. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Promoter"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("TF binding site","Promoter")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl

Allows the user to manually set which data set is used if required.Default=hsapiens_regulatory_feature

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 500000
featureDisplay <- "Enhancer"

if(interactive()){
 regulatoryFeaturesBiomartTrackSingle<-regulatoryFeaturesBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryFeaturesBiomartTrackSingle)
  plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 100000
featureDisplay <- c("CTCF Binding Site","Enhancer")

if(interactive()){
 regulatoryFeaturesBiomartTrackMultiple<-regulatoryFeaturesBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryFeaturesBiomartTrackMultiple)
  plotTracks(regulatoryFeaturesBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

#####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "all"
if(interactive()){
 regulatoryFeaturesBiomartTrackAll<-regulatoryFeaturesBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatoryFeaturesBiomartTrackAll)
  plotTracks(regulatoryFeaturesBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")

}

Creates a binding motif track from ENSEMBL [obselete]

Description

[obselete] Creates a track of regulatory segments from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

regulatorySegmentsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = 'all',
datasetEnsembl = "hsapiens_external_feature",
title="External Regulatory ENSEMBL")

Arguments

gen

The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

featureDisplay

A vector of regulatory features to be displayed, such as Predicted heterochomatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochomatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochomatin")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl

Allows the user to manually set which data set is used if required.Default=hsapiens_segmentation_feature

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "CTCF enriched"

if(interactive()){
 regulatorySegmentsBiomartTrackSingle<-regulatorySegmentsBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatorySegmentsBiomartTrackSingle)
  plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- c("CTCF enriched","Predicted Promoter Flank")

if(interactive()){
 regulatorySegmentsBiomartTrackMultiple<-regulatorySegmentsBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatorySegmentsBiomartTrackMultiple)
  plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

####

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "all"
if(interactive()){
 regulatorySegmentsBiomartTrackAll<-regulatorySegmentsBiomart_ENSEMBL(gen,
 chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatorySegmentsBiomartTrackAll)
  plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")

}

Create one track of the genomic positions of regions from repeatMasker_UCSC

Description

Create one track of the genomic positions of regions from repeatMasker_UCSC using the Gviz bioconductor package

Usage

repeatMasker_UCSC(gen, chr, start, end, title="RepeatMasker",
showId=FALSE,type_stacking="full")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

showId

Show the ID of the genetic elements

type_stacking

the type of stacking data for this track. More information go to Gviz (the option "stacking")

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=rmsk

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
  rmtrack <-repeatMasker_UCSC(gen,chr,start,end,showId=TRUE)
  plotTracks(rmtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(repeatMaskerTrack)
  plotTracks(rmtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create one track of the genomic positions of regions from segmentalDups_UCSC

Description

Create one track of the genomic positions of regions from segmentalDups_UCSC using the Gviz bioconductor package

Usage

segmentalDups_UCSC(gen, chr, start, end,title="Segmental Dups UCSC")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

The name of the annotation track

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=rmsk

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 100000
end <- 200000

if(interactive()){
  DupTrack <-segmentalDups_UCSC(gen,chr,start,end)
  plotTracks(DupTrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(DupTrack)
  plotTracks(DupTrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Set Colors for a color wheel

Description

This function set a given number of colors to create a color wheel

Usage

setColors(color, num)

Arguments

color

an R color name or a color in hexadecimal notation

num

integer value indicating how many colors to be added to the wheel

Value

A character vector with the given color and the set of colors to create a wheel color

Author(s)

Gaston Sanchez

See Also

col2HSV

Examples

# create a color wheel based on 'tomato'
setColors("tomato", 12)

# set 7 colors for '#3D6DCC'
setColors("#3D6DCC", 7)

Create a short variation track from ENSEMBL

Description

Create a 'Short Variation' track from ENSEMBL using the Gviz bioconductor package

Usage

snpBiomart_ENSEMBL(gen,chr, start, end, dataset, showId=FALSE, title = "SNPs ENSEMBL")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

dataset

The name of the database. Example "hsapiens_snp_som"

showId

Show the the ID of element or not

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

Go to ENSEMBL Biomart

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
  snptrack <- snpBiomart_ENSEMBL(gen,chr, start, end,
                       dataset="hsapiens_snp",showId=FALSE)
  plotTracks(snptrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(snpBiomarttrack)
  plotTracks(snptrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a SNP track from UCSC

Description

Create a SNP track from UCSC using the Gviz bioconductor package

Usage

snpLocations_UCSC(gen, chr, start, end,title= "SNPs UCSC", track="All SNPs(142)")

Arguments

gen

the name of the genome. Data is not currently available for GRCh38 (hg38).

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

title

Name of tracks

track

The name of the database. Default "All SNPs(142)"

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=snp141

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()) {
  snpUCSCtrack<-snpLocations_UCSC(gen,chr,start,end,"All SNPs(142)")
  plotTracks(snpUCSCtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(snpUCSCtrack)
  plotTracks(snpUCSCtrack, from = start, to =end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a structural variation track from ENSEMBL

Description

Create a 'Structural Variation' track from ENSEMBL using the Gviz bioconductor package

Usage

structureBiomart_ENSEMBL(gen, chr, start, end, strand, dataset,
showId=FALSE, title = "Structural variation")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

strand

the strand to extract structure data for

dataset

The name of the database. Example "hsapiens_structvar_som"

showId

Show the the ID of the element

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

Go to ENSEMBL Biomart

http://bioconductor.org/packages/release/bioc/html/Gviz.html

See Also

snpLocations_UCSC, snpBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
  strutrack <- structureBiomart_ENSEMBL(chr, start, end,
                              strand, dataset="hsapiens_structvar_som")
  plotTracks(strutrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}else {
  data(strucBiomarttrack)
  plotTracks(strutrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Creates a TFBS motif track from FANTOM

Description

Creates a track of TFBS motifs from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

TFBS_FANTOM(gen, chr, start, end, bedFilePath,title="TF motif FANTOM5")

Arguments

gen

the name of the genome.

chr

The chromosome of interest

start

The starting position in the region of interest (the smallest value)

end

The end position in the region of interest (the largest value)

bedFilePath

The path of the BED file from Kheradpour and Kellis, 2014.

title

The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<- "chr1"
start <- 6000000
end <- 6500000

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
AP1FantomFile <- file.path(extdata, "FANTOM/Fantom_hg19.AP1_MA0099.2.sites_example970.txt")

if(interactive()){
  tfbsFANTOMtrack <- TFBS_FANTOM(gen,chr,start, end, AP1FantomFile)
  plotTracks(tfbsFANTOMtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(tfbsFANTOMtrack)
  plotTracks(tfbsFANTOMtrack, from = start, to = end,
                                   fontfamily="sans",fontfamily.title="sans")
}

Create a track of transcripts from ENSEMBL

Description

Create a track to visualize different transcripts from ENSEMBL using the Gviz bioconductor package

Usage

transcript_ENSEMBL(gen, chr, start, end,showId = FALSE, title="transcripts ENSEMBL")

Arguments

gen

the name of the genome

chr

the chromosome of interest

start

the first position in the region of interest (the smallest value)

end

the last position in the region of interest (the largest value)

showId

Show the ID of the genetic elements

title

Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://bioconductor.org/packages/release/bioc/html/Gviz.html

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC,

Examples

library("Gviz")
gen <- "hg19"
chr <- "chr2"
start <- 32290160
end <- 33303219

if(interactive()){
  transENSMBLtrack<-transcript_ENSEMBL(gen,chr,start,end,showId=TRUE)
  plotTracks(transENSMBLtrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
} else {
  data(transENSMBLtrack)
  plotTracks(transENSMBLtrack, from=start, to=end,
                                   fontfamily="sans",fontfamily.title="sans")
}