Title: | cancer outlier Gene Profile Sets |
---|---|
Description: | Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies |
Authors: | Yingying Wei, Michael Ochs |
Maintainer: | Yingying Wei <[email protected]> |
License: | GPL-2 |
Version: | 1.51.0 |
Built: | 2024-10-30 05:29:41 UTC |
Source: | https://github.com/bioc/coGPS |
Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies
Yingying Wei, Michael Ochs Maintainer: Yingying Wei <[email protected]>
Wei, Y., Hennessey, P., Gaykalova, D., Califano, J.A., Ochs, M.F., (2011) Cancer Outlier Gene Profile Sets Elucidate Pathways in Head and Neck Squamous Cell Carcinoma.
These functions are not part of the package application programming interface and are not recommended to be used by the users.
plotCOPA
plotCOPA
Generate an outlier gene list for each patient restricted to the top PCOPA scored genes
PatientSpecificGeneList(exprslist, alpha, side, type,TopGeneNum)
PatientSpecificGeneList(exprslist, alpha, side, type,TopGeneNum)
exprslist |
Each element of |
alpha |
Significance level for P-value. |
side |
A vector specifying the definition of P-value in each of the study, which could be either |
type |
A vector specifying whether the outlier pattern is |
TopGeneNum |
a number specifying the top number of outlier genes scored by PCOPA to be included in the generation of individual outlier gene list for each patient. |
outliergene_bypatient |
a list whose length equals the number of tumor samples (patients). each element of the list is a list of length equaling to the length of |
Yingying Wei
Wei, Y., Hennessey, P., Gaykalova, D., Califano, J.A., Ochs, M.F., (2011) Cancer Outlier Gene Profile Sets Elucidate Pathways in Head and Neck Squamous Cell Carcinoma.
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #generate an outlier gene list for each patient restricted to the top PCOPA scored genes IndividualList7<-PatientSpecificGeneList(trylist,0.05,side=c("up","down","up"),type="subtype",TopGeneNum=100)
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #generate an outlier gene list for each patient restricted to the top PCOPA scored genes IndividualList7<-PatientSpecificGeneList(trylist,0.05,side=c("up","down","up"),type="subtype",TopGeneNum=100)
Calculate P-value based statistics for outlier gene detection in dataset merged from multiple studies and give out outlier gene list for each patient.
PCOPA(exprslist, alpha, side, type)
PCOPA(exprslist, alpha, side, type)
exprslist |
Each element of |
alpha |
Significance level for P-value. |
side |
A vector specifying the definition of P-value in each of the study, which could be either |
type |
A vector specifying whether the outlier pattern is |
PCOPAstatistics |
the P-value based outlier gene detection statistics |
outliergene_bypatient |
a list whose length equals the number of tumor samples (patients). each element of the list is a list of length equaling to the length of |
Yingying Wei
Wei, Y., Hennessey, P., Gaykalova, D., Califano, J.A., Ochs, M.F., (2011) Cancer Outlier Gene Profile Sets Elucidate Pathways in Head and Neck Squamous Cell Carcinoma.
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #calculate P-value based statistics for outlier gene detection and output the outlier gene list for each patient a7<-PCOPA(trylist,0.05,side=c("up","down","up"),type="subtype")
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #calculate P-value based statistics for outlier gene detection and output the outlier gene list for each patient a7<-PCOPA(trylist,0.05,side=c("up","down","up"),type="subtype")
Run permutations by randomly shuffling the sample class labels and calculate a vector of PCOPA values for each permutation.
permCOPA(exprslist, alpha=0.05, side, type, perms=100)
permCOPA(exprslist, alpha=0.05, side, type, perms=100)
exprslist |
Each element of |
alpha |
Significance level for P-value. |
side |
A vector specifying the definition of P-value in each of the study, which could be either |
type |
A vector specifying whether the outlier pattern is |
perms |
Number of permutations to run. |
permResult |
A matrix where each row correspond to a gene and each column correspond to one permutation. |
Michael Ochs
Wei, Y., Hennessey, P., Gaykalova, D., Califano, J.A., Ochs, M.F., (2011) Cancer Outlier Gene Profile Sets Elucidate Pathways in Head and Neck Squamous Cell Carcinoma.
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #run 2 permutations perma7<-permCOPA(trylist,0.05,side=c("up","down","up"),type="subtype",perms=2)
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #run 2 permutations perma7<-permCOPA(trylist,0.05,side=c("up","down","up"),type="subtype",perms=2)
It first sorts the expression value among the baseline samples(e.g. normal ones) and comparison group (e.g. tumor ones)seperately for selected gene
, and then plot the sorted expression values.
The first argument
should be the same one as for
; the second argument
should be an output of PCOPA; the third argument
determines how far we would go down the top ranked list; and the last argument
is a vector specifying the titles for each graph corresponds to a specific study.
PlotTopPCOPA(exprslist, PCOPAresult, topcut, typelist)
PlotTopPCOPA(exprslist, PCOPAresult, topcut, typelist)
exprslist |
Each element of |
PCOPAresult |
Output of PCOPA. |
topcut |
Cutoff of top ranked gene list. |
typelist |
A vector specifying the titles for each graph corresponds to a specific study. |
Michael Ochs, Yingying Wei
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #calculate P-value based statistics for outlier gene detection and output the outlier gene list for each patient a7<-PCOPA(trylist,0.05,side=c("up","down","up"),type="subtype") #plot expression patterns of top ranked genes. PlotTopPCOPA(trylist,a7,topcut=1,typelist=c("Exon","Methy","CNV"))
#read in data data(Exon_exprs_matched) data(Methy_exprs_matched) data(CNV_exprs_matched) data(Exon_classlab_matched) data(Methy_classlab_matched) data(CNV_classlab_matched) head(Exon_exprs_matched) #exprslist[[i]]$exprs should be in matrix format Exon_exprs<-as.matrix(Exon_exprs_matched) Methy_exprs<-as.matrix(Methy_exprs_matched) CNV_exprs<-as.matrix(CNV_exprs_matched) #exprslist[[i]]$classlab should be in vector format Exon_classlab<-unlist(Exon_classlab_matched) Methy_classlab<-unlist(Methy_classlab_matched) CNV_classlab<-unlist(CNV_classlab_matched) #make an exprslist consisting 3 studies trylist<-list() trylist[[1]]<-list(exprs=Exon_exprs,classlab=Exon_classlab) trylist[[2]]<-list(exprs=Methy_exprs,classlab=Methy_classlab) trylist[[3]]<-list(exprs=CNV_exprs,classlab=CNV_classlab) #calculate P-value based statistics for outlier gene detection and output the outlier gene list for each patient a7<-PCOPA(trylist,0.05,side=c("up","down","up"),type="subtype") #plot expression patterns of top ranked genes. PlotTopPCOPA(trylist,a7,topcut=1,typelist=c("Exon","Methy","CNV"))
Here we present an example of coGPS analysis.
Exon_exprs_matched |
Expression data for 44 tumors and 25 normals. Each row indicates a gene with row name showing gene name and each column indicates a sample with column name showing sample name. |
Exon_class_matched |
A length 69 vector showing status of corresponding exon samples, 0 for normals and 1 for tumors. |
Methy_exprs_matched |
Methylation data for 44 tumors and 25 normals. |
Methy_class_matched |
A length 69 vector showing status of corresponding methylation samples, 0 for normals and 1 for tumors. |
CNV_exprs_matched |
Copy number data for 44 tumors and 25 normals. |
CNV_class_matched |
A length 69 vector showing status of corresponding copy number samples, 0 for normals and 1 for tumors. |
Hs.gmtl.c1 |
Broad Institute C1 Positional Gene Sets. |
In this application, the columns of each data type are matched. In other words, the first columns of Exon_exprs_matched, Methy_exprs_matched and CNV_exprs_matched correspond to the same patient. And hence the Exon_class_matched, Methy_class_matched and CNV_class_matched are identical. However, suppose in applications that we are not concerned with the outlier gene list for each patient, we can leave with the samples (columns) unmatched.