Package 'cmapR'

Title: CMap Tools in R
Description: The Connectivity Map (CMap) is a massive resource of perturbational gene expression profiles built by researchers at the Broad Institute and funded by the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Please visit https://clue.io for more information. The cmapR package implements methods to parse, manipulate, and write common CMap data objects, such as annotated matrices and collections of gene sets.
Authors: Ted Natoli [aut, cre]
Maintainer: Ted Natoli <[email protected]>
License: file LICENSE
Version: 1.19.0
Built: 2024-11-18 03:24:38 UTC
Source: https://github.com/bioc/cmapR

Help Index


Align the rows and columns of two (or more) matrices

Description

Align the rows and columns of two (or more) matrices

Usage

align_matrices(m1, m2, ..., L = NULL, na.pad = TRUE, as.3D = TRUE)

Arguments

m1

a matrix with unique row and column names

m2

a matrix with unique row and column names

...

additional matrices with unique row and column names

L

a list of matrix objects. If this is given, m1, m2, and ... are ignored

na.pad

boolean indicating whether to pad the combined matrix with NAs for rows/columns that are not shared by m1 and m2.

as.3D

boolean indicating whether to return the result as a 3D array. If FALSE, will return a list.

Value

an object containing the aligned matrices. Will either be a list or a 3D array

Examples

# construct some example matrices
m1 <- matrix(rnorm(20), nrow=4)
rownames(m1) <- letters[1:4]
colnames(m1) <- LETTERS[1:5]
m2 <- matrix(rnorm(20), nrow=5)
rownames(m2) <- letters[1:5]
colnames(m2) <- LETTERS[1:4]
m1
m2

# align them, padding with NA and returning a 3D array
align_matrices(m1, m2)

# align them, not padding and retuning a list
align_matrices(m1, m2, na.pad=FALSE, as.3D=FALSE)

Add annotations to a GCT object

Description

Given a GCT object and either a data.frame or a path to an annotation table, apply the annotations to the gct using the given keyfield.

Usage

annotate.gct(...)

annotate_gct(g, annot, dim = "row", keyfield = "id")

## S4 method for signature 'GCT'
annotate_gct(g, annot, dim = "row", keyfield = "id")

Arguments

...

arguments passed on to annotate_gct

g

a GCT object

annot

a data.frame or path to text table of annotations

dim

either 'row' or 'column' indicating which dimension of g to annotate

keyfield

the character name of the column in annot that matches the row or column identifiers in g

Value

a GCT object with annotations applied to the specified dimension

See Also

Other GCT utilities: melt.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

gct_path <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
# read the GCT file, getting the matrix only
g <- parse_gctx(gct_path, matrix_only=TRUE)
# separately, read the column annotations and then apply them using
# annotate_gct
cdesc <- read_gctx_meta(gct_path, dim="col")
g <- annotate_gct(g, cdesc, dim="col", keyfield="id")

An example table of metadata, as would be parsed from or parse.gctx. Initially all the columns are of type character.

Description

An example table of metadata, as would be parsed from or parse.gctx. Initially all the columns are of type character.

Usage

cdesc_char

Format

An object of class data.frame with 368 rows and 8 columns.


Check whether test_names are columns in the data.frame df

Description

Check whether test_names are columns in the data.frame df

Usage

check_colnames(test_names, df, throw_error = TRUE)

Arguments

test_names

a vector of column names to test

df

the data.frame to test against

throw_error

boolean indicating whether to throw an error if any test_names are not found in df

Value

boolean indicating whether or not all test_names are columns of df

Examples

check_colnames(c("pert_id", "pert_iname"), cdesc_char) # TRUE
check_colnames(c("pert_id", "foobar"),
  cdesc_char, throw_error=FALSE)# FALSE, suppress error

Check for duplicates in a vector

Description

Check for duplicates in a vector

Usage

check_dups(x, name = "")

Arguments

x

the vector

name

the name of the object to print in an error message if duplicates are found

Value

silently returns NULL

Examples

# this will throw an erorr, let's catch it
tryCatch(
  check_dups(c("a", "b", "c", "a", "d")),
  error=function(e) print(e)
  )

Collapse the rows or columns of a matrix using weighted averaging

Description

This is equivalent to the 'modz' procedure used in collapsing replicates in traditional L1000 data processing. The weight for each replicate is computed as its normalized average correlation to the other replicates in the set.

Usage

distil(m, dimension = "col", method = "spearman")

Arguments

m

a numeric matrix where the rows or columns are assumed to be replicates

dimension

the dimension to collapse. either 'row' or 'col'

method

the correlation method to use

Value

a list with the following elements

values

a vector of the collapsed values

correlations

a vector of the pairwise correlations

weights

a vector of the computed weights

Examples

m <- matrix(rnorm(30), ncol=3)
distil(m)

An example of a GCT object with row and column metadata and gene expression values in the matrix.

Description

An example of a GCT object with row and column metadata and gene expression values in the matrix.

Usage

ds

Format

An object of class GCT of length 1.


Exract elements from a GCT matrix

Description

extract the elements from a GCT object where the values of row_field and col_field are the same. A concrete example is if g represents a matrix of signatures of genetic perturbations, and you wan to extract all the values of the targeted genes.

Usage

extract.gct(...)

extract_gct(
  g,
  row_field,
  col_field,
  rdesc = NULL,
  cdesc = NULL,
  row_keyfield = "id",
  col_keyfield = "id"
)

Arguments

...

arguments passed on to extract_gct

g

the GCT object

row_field

the column name in rdesc to search on

col_field

the column name in cdesc to search on

rdesc

a data.frame of row annotations

cdesc

a data.frame of column annotations

row_keyfield

the column name of rdesc to use for annotating the rows of g

col_keyfield

the column name of cdesc to use for annotating the rows of g

Value

a list of the following elements

mask

a logical matrix of the same dimensions as ds@mat indicating which matrix elements have been extracted

idx

an array index into ds@mat representing which elements have been extracted

vals

a vector of the extracted values

Examples

# get the values for all targeted genes from a 
# dataset of knockdown experiments 
res <- extract_gct(kd_gct, row_field="pr_gene_symbol",
  col_field="pert_mfc_desc")
str(res)
stats::quantile(res$vals)

Initialize an object of class GCT

Description

Initialize an object of class GCT

Usage

GCT(
  mat = NULL,
  rdesc = NULL,
  cdesc = NULL,
  src = NULL,
  rid = NULL,
  cid = NULL,
  matrix_only = FALSE
)

Arguments

mat

a matrix

rdesc

a data.frame of row metadata

cdesc

a data.frame of column metadata

src

path to a GCT file to read

rid

vector of character identifiers for rows

cid

vector of character identifiers for columns

matrix_only

logical indicating whether to read just the matrix data from src

Details

If mat is provided, rid and cid are treated as the row and column identifiers for the matrix and are assigned to the rid and cid slots of the GCT object.

If mat is not provided but src is provided, rid and cid are treated as filters. Data will be read from the file path provided to src and will then be restricted to the character ids or integer indices provided to rid and cid. In a similar manner, matrix_only controls whether the row and column metadata are also read from the src file path.

Value

a GCT object

See Also

Other GCTX parsing functions: append.dim(), fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

# an empty object
(g <- GCT())
# with a matrix
# note we must specify row and column ids
(g <- GCT(mat=matrix(rnorm(100), nrow=10),
          rid=letters[1:10], cid=letters[1:10]))
# from file
gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
(g <- GCT(src=gct_file))

An S4 class to represent a GCT object

Description

The GCT class serves to represent annotated matrices. The mat slot contains said data and the rdesc and cdesc slots contain data frames with annotations about the rows and columns, respectively

Slots

mat

a numeric matrix

rid

a character vector of row ids

cid

a character vector of column ids

rdesc

a data.frame of row descriptors

rdesc

a data.frame of column descriptors

src

a character indicating the source (usually file path) of the data

See Also

parse_gctx, write_gctx, read_gctx_meta, read_gctx_ids

visit http://clue.io/help for more information on the GCT format


An example collection of gene sets as used in the Lamb 2006 CMap paper.

Description

An example collection of gene sets as used in the Lamb 2006 CMap paper.

Usage

gene_set

Format

An object of class list of length 8.

Source

Lamb et al 2006 doi:10.1126/science.1132939


Extract the or set row or column ids of a GCT object

Description

Extract the or set row or column ids of a GCT object

Usage

ids(g, dimension = "row")

## S4 method for signature 'GCT'
ids(g, dimension = "row")

ids(g, dimension = "row") <- value

## S4 replacement method for signature 'GCT'
ids(g, dimension = "row") <- value

Arguments

g

the GCT object

dimension

the dimension to extract/update ['row' or 'column']

value

a character vector

Value

a vector of row ids

See Also

Other GCT accessor methods: mat(), meta()

Examples

# extract rids
rids <- ids(ds)
# extract column ids
cids <- ids(ds, "column")
# set rids
ids(ds) <- as.character(1:length(rids))
# set cids
ids(ds, "column") <- as.character(1:length(cids))

Check if x is a whole number

Description

Check if x is a whole number

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x

number to test

tol

the allowed tolerance

Value

boolean indicating whether x is tol away from a whole number value

Examples

is.wholenumber(1)
is.wholenumber(0.5)

An example GCT object of knockdown experiments targeting a subset of landmark genes.

Description

An example GCT object of knockdown experiments targeting a subset of landmark genes.

Usage

kd_gct

Format

An object of class GCT of length 1.


Read an LXB file and return a matrix

Description

Read an LXB file and return a matrix

Usage

lxb2mat(lxb_path, columns = c("RID", "RP1"), newnames = c("barcode_id", "FI"))

Arguments

lxb_path

the path to the lxb file

columns

which columns in the lxb file to retain

newnames

what to name these columns in the returned matrix

Value

a matrix

See Also

Other CMap parsing functions: parse.gmt(), parse.gmx(), parse.grp(), write_gmt(), write_grp()

Examples

lxb_path <- system.file("extdata", "example.lxb", package="cmapR")
lxb_data <- lxb2mat(lxb_path)
str(lxb_data)

Extract or set the matrix of GCT object

Description

Extract or set the matrix of GCT object

Usage

mat(g)

## S4 method for signature 'GCT'
mat(g)

mat(g) <- value

## S4 replacement method for signature 'GCT'
mat(g) <- value

Arguments

g

the GCT object

value

a numeric matrix

Value

a matrix

See Also

Other GCT accessor methods: ids(), meta()

Examples

# get the matrix
m <- mat(ds)
# set the matrix
mat(ds) <- matrix(0, nrow=nrow(m), ncol=ncol(m))

Transform a GCT object in to a long form data.table (aka 'melt')

Description

Utilizes the melt.data.table function to transform the matrix into long form. Optionally can include the row and column annotations in the transformed data.table.

Usage

melt.gct(...)

melt_gct(
  g,
  suffixes = NULL,
  remove_symmetries = FALSE,
  keep_rdesc = TRUE,
  keep_cdesc = TRUE,
  ...
)

## S4 method for signature 'GCT'
melt_gct(
  g,
  suffixes = NULL,
  remove_symmetries = FALSE,
  keep_rdesc = TRUE,
  keep_cdesc = TRUE,
  ...
)

Arguments

...

further arguments passed along to data.table::merge

g

the GCT object

suffixes

the character suffixes to be applied if there are collisions between the names of the row and column descriptors

remove_symmetries

boolean indicating whether to remove the lower triangle of the matrix (only applies if g@mat is symmetric)

keep_rdesc

boolean indicating whether to keep the row descriptors in the final result

keep_cdesc

boolean indicating whether to keep the column descriptors in the final result

Value

a data.table object with the row and column ids and the matrix values and (optinally) the row and column descriptors

See Also

Other GCT utilities: annotate.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

# simple melt, keeping both row and column meta
head(melt_gct(ds))

# update row/colum suffixes to indicate rows are genes, columns experiments
head(melt_gct(ds, suffixes = c("_gene", "_experiment")))

# ignore row/column meta
head(melt_gct(ds, keep_rdesc = FALSE, keep_cdesc = FALSE))

Merge two GCT objects together

Description

Merge two GCT objects together

Usage

## S3 method for class 'gct'
merge(...)

merge_gct(g1, g2, dim = "row", matrix_only = FALSE)

## S4 method for signature 'GCT,GCT'
merge_gct(g1, g2, dim = "row", matrix_only = FALSE)

Arguments

...

arguments passed on to merge_gct

g1

the first GCT object

g2

the second GCT object

dim

the dimension on which to merge (row or column)

matrix_only

boolean idicating whether to keep only the data matrices from g1 and g2 and ignore their row and column meta data

Value

a GCT object

See Also

Other GCT utilities: annotate.gct(), melt.gct(), rank.gct(), subset.gct()

Examples

# take the first 10 and last 10 rows of an object
# and merge them back together
(a <- subset_gct(ds, rid=1:10))
(b <- subset_gct(ds, rid=969:978))
(merged <- merge_gct(a, b, dim="row"))

Extract the or set metadata of a GCT object

Description

Extract the or set metadata of a GCT object

Usage

meta(g, dimension = "row")

## S4 method for signature 'GCT'
meta(g, dimension = "row")

meta(g, dimension = "row") <- value

## S4 replacement method for signature 'GCT'
meta(g, dimension = "row") <- value

Arguments

g

the GCT object

dimension

the dimension to extract/update ['row' or 'column']

value

a data.frame

Value

a data.frame

See Also

Other GCT accessor methods: ids(), mat()

Examples

# extract rdesc
rdesc <- meta(ds)
# extract cdesc
cdesc <- meta(ds, dim="column")
# set rdesc
meta(ds) <- data.frame(x=sample(letters, nrow(rdesc), replace=TRUE))
# set cdesc
meta(ds, dim="column") <- data.frame(x=sample(letters, nrow(cdesc),
  replace=TRUE))

Pad a matrix with additional rows/columns of NA values

Description

Pad a matrix with additional rows/columns of NA values

Usage

na_pad_matrix(m, row_universe = NULL, col_universe = NULL)

Arguments

m

a matrix with unique row and column names

row_universe

a vector with the universe of possible row names

col_universe

a vector with the universe of possible column names

Value

a matrix

Examples

m <- matrix(rnorm(10), nrow=2)
rownames(m) <- c("A", "B")
colnames(m) <- letters[1:5]
na_pad_matrix(m, row_universe=LETTERS, col_universe=letters)

Parse a GCTX file into the workspace as a GCT object

Description

Parse a GCTX file into the workspace as a GCT object

Usage

parse.gctx(...)

parse_gctx(fname, rid = NULL, cid = NULL, matrix_only = FALSE)

Arguments

...

arguments passed on to parse_gctx

fname

path to the GCTX file on disk

rid

either a vector of character or integer row indices or a path to a grp file containing character row indices. Only these indicies will be parsed from the file.

cid

either a vector of character or integer column indices or a path to a grp file containing character column indices. Only these indicies will be parsed from the file.

matrix_only

boolean indicating whether to parse only the matrix (ignoring row and column annotations)

Details

parse_gctx also supports parsing of plain text GCT files, so this function can be used as a general GCT parser.

Value

a GCT object

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), process_ids(), read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
(ds <- parse_gctx(gct_file))

# matrix only
(ds <- parse_gctx(gct_file, matrix_only=TRUE))

# only the first 10 rows and columns
(ds <- parse_gctx(gct_file, rid=1:10, cid=1:10))

Read a GMT file and return a list

Description

Read a GMT file and return a list

Usage

parse.gmt(...)

parse_gmt(fname)

Arguments

...

arguments passed on to parse_gmt

fname

the file path to be parsed

Details

parse_gmt returns a nested list object. The top level contains one list per row in fname. Each of these is itself a list with the following fields: - head: the name of the data (row in fname) - desc: description of the corresponding data - len: the number of data items - entry: a vector of the data items

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMT file format

Other CMap parsing functions: lxb2mat(), parse.gmx(), parse.grp(), write_gmt(), write_grp()

Examples

gmt_path <- system.file("extdata", "query_up.gmt", package="cmapR")
gmt <- parse_gmt(gmt_path)
str(gmt)

Read a GMX file and return a list

Description

Read a GMX file and return a list

Usage

parse.gmx(...)

parse_gmx(fname)

Arguments

...

arguments passed on to parse_gmx

fname

the file path to be parsed

Details

parse_gmx returns a nested list object. The top level contains one list per column in fname. Each of these is itself a list with the following fields: - head: the name of the data (column in fname) - desc: description of the corresponding data - len: the number of data items - entry: a vector of the data items

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMX file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.grp(), write_gmt(), write_grp()

Examples

gmx_path <- system.file("extdata", "lm_probes.gmx", package="cmapR")
gmx <- parse_gmx(gmx_path)
str(gmx)

Read a GRP file and return a vector of its contents

Description

Read a GRP file and return a vector of its contents

Usage

parse.grp(...)

parse_grp(fname)

Arguments

...

arguments passed on to parse_grp

fname

the file path to be parsed

Value

a vector of the contents of fname

See Also

Visit http://clue.io/help for details on the GRP file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), write_gmt(), write_grp()

Examples

grp_path <- system.file("extdata", "lm_epsilon_n978.grp", package="cmapR")
values <- parse_grp(grp_path)
str(values)

Convert a GCT object's matrix to ranks

Description

Convert a GCT object's matrix to ranks

Usage

rank.gct(...)

rank_gct(g, dim = "col", decreasing = TRUE)

## S4 method for signature 'GCT'
rank_gct(g, dim = "col", decreasing = TRUE)

Arguments

...

arguments passed on to rank_gct

g

the GCT object to rank

dim

the dimension along which to rank (row or column)

decreasing

boolean indicating whether higher values should get lower ranks

Value

a modified version of g, with the values in the matrix converted to ranks

See Also

Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), subset.gct()

Examples

(ranked <- rank_gct(ds, dim="column"))
# scatter rank vs. score for a few columns
m <- mat(ds)
m_ranked <- mat(ranked)
plot(m[, 1:3], m_ranked[, 1:3],
  xlab="score", ylab="rank")

Read GCTX row or column ids

Description

Read GCTX row or column ids

Usage

read.gctx.ids(...)

read_gctx_ids(gctx_path, dim = "row")

Arguments

...

arguments passed on to read_gctx_ids

gctx_path

path to the GCTX file

dim

which ids to read (row or column)

Value

a character vector of row or column ids from the provided file

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(), read.gctx.meta(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
# row ids
rid <- read_gctx_ids(gct_file)
head(rid)
# column ids
cid <- read_gctx_ids(gct_file, dim="column")
head(cid)

Parse row or column metadata from GCTX files

Description

Parse row or column metadata from GCTX files

Usage

read.gctx.meta(...)

read_gctx_meta(gctx_path, dim = "row", ids = NULL)

Arguments

...

arguments passed on to read_gctx_meta

gctx_path

the path to the GCTX file

dim

which metadata to read (row or column)

ids

a character vector of a subset of row/column ids for which to read the metadata

Value

a data.frame of metadata

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(), write.gctx.meta(), write.gctx(), write.gct()

Examples

gct_file <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR") 
# row meta
row_meta <- read_gctx_meta(gct_file)
str(row_meta)
# column meta
col_meta <- read_gctx_meta(gct_file, dim="column")
str(col_meta)
# now for only the first 10 ids
col_meta_first10 <- read_gctx_meta(gct_file, dim="column",
ids=col_meta$id[1:10])
str(col_meta_first10)

Compoute robust z-scores

Description

robust zscore implementation takes in a 1D vector, returns 1D vector after computing robust zscores rZ = (x-med(x))/mad(x)

Usage

robust_zscore(x, min_mad = 1e-06, ...)

Arguments

x

numeric vector to z-score

min_mad

the minimum allowed MAD, useful for avoiding division by very small numbers

...

further options to median, max functions

Value

transformed version of x

Examples

(x <- rnorm(25))
(robust_zscore(x))

# with min_mad
(robust_zscore(x, min_mad=1e-4))

Subset a gct object using the provided row and column ids

Description

Subset a gct object using the provided row and column ids

Usage

## S3 method for class 'gct'
subset(...)

subset_gct(g, rid = NULL, cid = NULL)

## S4 method for signature 'GCT'
subset_gct(g, rid = NULL, cid = NULL)

Arguments

...

arguments passed on to subset_gct

g

a gct object

rid

a vector of character ids or integer indices for ROWS

cid

a vector of character ids or integer indices for COLUMNS

Value

a GCT object

See Also

Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), rank.gct()

Examples

# first 10 rows and columns by index
(a <- subset_gct(ds, rid=1:10, cid=1:10))

# first 10 rows and columns using character ids
# use \code{ids} to extract the ids
rid <- ids(ds)
cid <- ids(ds, dimension="col")
(b <- subset_gct(ds, rid=rid[1:10], cid=cid[1:10]))

identical(a, b) # TRUE

Threshold a numeric vector

Description

Threshold a numeric vector

Usage

threshold(x, minval, maxval)

Arguments

x

the vector

minval

minium allowed value

maxval

maximum allowed value

Value

a thresholded version of x

Examples

x <- rnorm(20)
threshold(x, -0.1, -0.1)

Transpose a GCT object

Description

Transpose a GCT object

Usage

transpose.gct(...)

transpose_gct(g)

## S4 method for signature 'GCT'
transpose_gct(g)

Arguments

...

arguments passed on to transpose_gct

g

the GCT object

Value

a modified verion of the input GCT object where the matrix has been transposed and the row and column ids and annotations have been swapped.

Examples

transpose_gct(ds)

Update the matrix of an existing GCTX file

Description

Update the matrix of an existing GCTX file

Usage

## S3 method for class 'gctx'
update(...)

update_gctx(x, ofile, rid = NULL, cid = NULL)

Arguments

...

arguments passed on to update_gctx

x

an array of data

ofile

the filename of the GCTX to update

rid

integer indices or character ids of the rows to update

cid

integer indices or character ids of the columns to update

Details

Overwrite the rows and columns of ofile as indicated by rid and cid respectively. rid and cid can either be integer indices or character ids corresponding to the row and column ids in ofile.

Value

silently returns NULL

Examples

## Not run: 
m <- matrix(rnorm(20), nrow=10)
# update by integer indices
update_gctx(m, ofile="my.gctx", rid=1:10, cid=1:2)
# update by character ids
row_ids <- letters[1:10]
col_ids <- LETTERS[1:2]
update_gctx(m, ofile="my.gctx", rid=row_ids, cid=col_ids)

## End(Not run)

Write a nested list to a GMT file

Description

Write a nested list to a GMT file

Usage

write_gmt(lst, fname)

Arguments

lst

the nested list to write. See details.

fname

the desired file name

Details

lst needs to be a nested list where each sub-list is itself a list with the following fields: - head: the name of the data - desc: description of the corresponding data - len: the number of data items - entry: a vector of the data items

Value

silently returns NULL

See Also

Visit http://clue.io/help for details on the GMT file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), parse.grp(), write_grp()

Examples

## Not run: 
write_gmt(gene_set, "gene_set.gmt")

## End(Not run)

Write a vector to a GRP file

Description

Write a vector to a GRP file

Usage

write_grp(vals, fname)

Arguments

vals

the vector of values to be written

fname

the desired file name

Value

silently returns NULL

See Also

Visit http://clue.io/help for details on the GRP file format

Other CMap parsing functions: lxb2mat(), parse.gmt(), parse.gmx(), parse.grp(), write_gmt()

Examples

## Not run: 
write_grp(letters, "letter.grp")

## End(Not run)

Write a GCT object to disk in GCT format

Description

Write a GCT object to disk in GCT format

Usage

write.gct(...)

write_gct(ds, ofile, precision = 4, appenddim = TRUE, ver = 3)

Arguments

...

arguments passed on to write_gct

ds

the GCT object

ofile

the desired output filename

precision

the numeric precision at which to save the matrix. See details.

appenddim

boolean indicating whether to append matrix dimensions to filename

ver

the GCT version to write. See details.

Details

Since GCT is text format, the higher precision you choose, the larger the file size. ver is assumed to be 3, aka GCT version 1.3, which supports embedded row and column metadata in the GCT file. Any other value passed to ver will result in a GCT version 1.2 file which contains only the matrix data and no annotations.

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx()

Examples

# note this will create a GCT file in your current directory
write_gct(ds, "dataset", precision=2)

Write a GCT object to disk in GCTX format

Description

Write a GCT object to disk in GCTX format

Usage

write.gctx(...)

write_gctx(
  ds,
  ofile,
  appenddim = TRUE,
  compression_level = 0,
  matrix_only = FALSE,
  max_chunk_kb = 1024
)

Arguments

...

arguments passed on to write_gctx

ds

a GCT object

ofile

the desired file path for writing

appenddim

boolean indicating whether the resulting filename will have dimensions appended (e.g. my_file_n384x978.gctx)

compression_level

integer between 1-9 indicating how much to compress data before writing. Higher values result in smaller files but slower read times.

matrix_only

boolean indicating whether to write only the matrix data (and skip row, column annotations)

max_chunk_kb

for chunking, the maximum number of KB a given chunk will occupy

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gct()

Examples

# note this will create a GCT file in your current directory
write_gctx(ds, "dataset")

Write a data.frame to a tab-delimited text file

Description

Write a data.frame to a tab-delimited text file

Usage

write.tbl(...)

write_tbl(tbl, ofile, ...)

Arguments

...

additional arguments passed on to write.table

tbl

the data.frame to be written

ofile

the desired file name

Details

This method simply calls write.table with some preset arguments that generate a unquoated, tab-delimited file without row names.

Value

silently returns NULL

See Also

write.table

Examples

## Not run: 
write_tbl(cdesc_char, "col_meta.txt")

## End(Not run)