Title: | Explores single cell copy number profiles in the context of a single cell tree |
---|---|
Description: | CellScape facilitates interactive browsing of single cell clonal evolution datasets. The tool requires two main inputs: (i) the genomic content of each single cell in the form of either copy number segments or targeted mutation values, and (ii) a single cell phylogeny. Phylogenetic formats can vary from dendrogram-like phylogenies with leaf nodes to evolutionary model-derived phylogenies with observed or latent internal nodes. The CellScape phylogeny is flexibly input as a table of source-target edges to support arbitrary representations, where each node may or may not have associated genomic data. The output of CellScape is an interactive interface displaying a single cell phylogeny and a cell-by-locus genomic heatmap representing the mutation status in each cell for each locus. |
Authors: | Shixiang Wang [aut, cre] , Maia Smith [aut] |
Maintainer: | Shixiang Wang <[email protected]> |
License: | GPL-3 |
Version: | 1.31.0 |
Built: | 2024-11-01 06:10:50 UTC |
Source: | https://github.com/bioc/cellscape |
cellscape
explores single cell copy number profiles in the
context of a single cell phylogeny.
cellscape( cnv_data = NULL, mut_data = NULL, mut_data_matrix = NULL, mut_order = NULL, tree_edges, gtype_tree_edges = NULL, sc_annot = NULL, clone_colours = "NA", timepoint_title = "Timepoint", clone_title = "Clone", xaxis_title = "Time Point", yaxis_title = "Clonal Prevalence", phylogeny_title = "Clonal Phylogeny", value_type = NULL, node_type = "Cell", display_node_ids = FALSE, prop_of_clone_threshold = 0.2, vaf_threshold = 0.05, show_warnings = TRUE, width = 900, height = 800 )
cellscape( cnv_data = NULL, mut_data = NULL, mut_data_matrix = NULL, mut_order = NULL, tree_edges, gtype_tree_edges = NULL, sc_annot = NULL, clone_colours = "NA", timepoint_title = "Timepoint", clone_title = "Clone", xaxis_title = "Time Point", yaxis_title = "Clonal Prevalence", phylogeny_title = "Clonal Phylogeny", value_type = NULL, node_type = "Cell", display_node_ids = FALSE, prop_of_clone_threshold = 0.2, vaf_threshold = 0.05, show_warnings = TRUE, width = 900, height = 800 )
cnv_data |
|
mut_data |
|
mut_data_matrix |
|
mut_order |
|
tree_edges |
Optional columns are:
|
gtype_tree_edges |
|
sc_annot |
Optional columns are:
|
clone_colours |
|
timepoint_title |
|
clone_title |
|
xaxis_title |
|
yaxis_title |
|
phylogeny_title |
|
value_type |
|
node_type |
|
display_node_ids |
|
prop_of_clone_threshold |
|
vaf_threshold |
|
show_warnings |
|
width |
|
height |
|
Interactive components:
Mouseover any single cell in the phylogeny to view its corresponding genomic profile in the heatmap, and vice versa.
Mouseover any part of the heatmap to view the CNV or VAF value for that copy number segment or mutation site, respectively.
Mouseover any branch of the phylogeny to view downstream single cells, both in the phylogeny and heatmap.
Mouseover any clone to view its corresponding single cells in the phylogeny and heatmap.
Click any node in the phylogeny to flip the order of its descendant branches.
Use the selection tool in the tool bar to select single cell genomic profiles and view their corresponding single cells in the phylogeny.
Use the tree trimming tool in the tool bar to remove any branch of the phylogeny by clicking it.
Use the switch view tool in the tool bar to change the phylogeny view from force-directed to unidirectional, and vice versa.
Use the re-root phylogeny tool to root the phylogeny at a clicked node.
Use the flip branch tool to vertically rotate any branch by clicking its root node.
If present, use the scale tree/graph tool in the tool bar to scale the phylogeny by the provided edge distances.
If time-series information is present such that the TimeScape is displayed below the CellScape, clones and time points are interactively linked in both views on mouseover.
Click the download buttons to download a PNG or SVG of the view.
Note:
See TimeScape repo (https://bitbucket.org/MO_BCCRC/timescape) for more information about TimeScape.
library("cellscape") # EXAMPLE 1 - TARGETED MUTATION DATA # single cell tree edges tree_edges <- read.csv(system.file("extdata", "targeted_tree_edges.csv", package = "cellscape" )) # targeted mutations targeted_data <- read.csv(system.file("extdata", "targeted_muts.csv", package = "cellscape" )) # genotype tree edges gtype_tree_edges <- data.frame("source" = c( "Ancestral", "Ancestral", "B", "C", "D" ), "target" = c("A", "B", "C", "D", "E")) # annotations sc_annot <- read.csv(system.file("extdata", "targeted_annots.csv", package = "cellscape" )) # mutation order mut_order <- scan(system.file("extdata", "targeted_mut_order.txt", package = "cellscape" ), what = character()) # run cellscape cellscape( mut_data = targeted_data, tree_edges = tree_edges, sc_annot = sc_annot, gtype_tree_edges = gtype_tree_edges, mut_order = mut_order ) # EXAMPLE 2 - COPY NUMBER DATA # single cell tree edges tree_edges <- read.csv(system.file("extdata", "cnv_tree_edges.csv", package = "cellscape" )) # cnv segments data cnv_data <- read.csv(system.file("extdata", "cnv_data.csv", package = "cellscape" )) # annotations sc_annot <- read.csv(system.file("extdata", "cnv_annots.tsv", package = "cellscape" ), sep = "\t") # custom clone colours clone_colours <- data.frame( clone_id = c("1", "2", "3"), colour = c("7fc97f", "beaed4", "fdc086") ) # run cellscape cellscape( cnv_data = cnv_data, tree_edges = tree_edges, sc_annot = sc_annot, width = 800, height = 475, show_warnings = FALSE, clone_colours = clone_colours )
library("cellscape") # EXAMPLE 1 - TARGETED MUTATION DATA # single cell tree edges tree_edges <- read.csv(system.file("extdata", "targeted_tree_edges.csv", package = "cellscape" )) # targeted mutations targeted_data <- read.csv(system.file("extdata", "targeted_muts.csv", package = "cellscape" )) # genotype tree edges gtype_tree_edges <- data.frame("source" = c( "Ancestral", "Ancestral", "B", "C", "D" ), "target" = c("A", "B", "C", "D", "E")) # annotations sc_annot <- read.csv(system.file("extdata", "targeted_annots.csv", package = "cellscape" )) # mutation order mut_order <- scan(system.file("extdata", "targeted_mut_order.txt", package = "cellscape" ), what = character()) # run cellscape cellscape( mut_data = targeted_data, tree_edges = tree_edges, sc_annot = sc_annot, gtype_tree_edges = gtype_tree_edges, mut_order = mut_order ) # EXAMPLE 2 - COPY NUMBER DATA # single cell tree edges tree_edges <- read.csv(system.file("extdata", "cnv_tree_edges.csv", package = "cellscape" )) # cnv segments data cnv_data <- read.csv(system.file("extdata", "cnv_data.csv", package = "cellscape" )) # annotations sc_annot <- read.csv(system.file("extdata", "cnv_annots.tsv", package = "cellscape" ), sep = "\t") # custom clone colours clone_colours <- data.frame( clone_id = c("1", "2", "3"), colour = c("7fc97f", "beaed4", "fdc086") ) # run cellscape cellscape( cnv_data = cnv_data, tree_edges = tree_edges, sc_annot = sc_annot, width = 800, height = 475, show_warnings = FALSE, clone_colours = clone_colours )
Get depth first search of a tree
Widget output function for use in Shiny
Widget render function for use in Shiny
Function to get data frame of pixels
function to get min and max values for each chromosome
function to get chromosome box pixel info
function to get the genome length
function to get the number of base pairs per pixel
function to get information (chr, start, end, mode_cnv) for each pixel
function to get mutation order for targeted data
function to get targeted heatmap information
function to find the mode of a vector
Function to process the user data
Function to check minimum dimensions
Function to check required inputs are present
check alpha value input is correct
check clonal_prev parameter data
check tree_edges parameter data
check genotype_position parameter
check clone_colours parameter
check perturbations parameter
get mutation data
function to replace spaces with underscores in all data frames & keep maps of original names to space-replaced names
dfs_tree(edges, cur_root, dfs_arr) cellscapeOutput(outputId, width = "100%", height = "400px") renderCnvTree(expr, env = parent.frame(), quoted = FALSE) getEmptyGrid(hm_sc_ids_ordered, ncols) getChromBounds(chroms, cnv_data) getChromBoxInfo(chrom_bounds, n_bp_per_pixel) getGenomeLength(chrom_bounds) getNBPPerPixel(ncols, chrom_bounds, genome_length) getCNVHeatmapForEachSC(cnv_data, chrom_bounds, n_bp_per_pixel) getMutOrder(mut_data) getTargetedHeatmapForEachSC(mut_data, mut_order, heatmapWidth) findMode(x) processUserData( clonal_prev, tree_edges, mutations, clone_colours, xaxis_title, yaxis_title, phylogeny_title, alpha, genotype_position, perturbations, sort, show_warnings, width, height ) checkMinDims(mutations, height, width) checkRequiredInputs(clonal_prev, tree_edges) checkAlpha(alpha) checkClonalPrev(clonal_prev) checkTreeEdges(tree_edges) checkGtypePositioning(genotype_position) checkCloneColours(clone_colours) checkPerts(perturbations) getMutationsData(mutations, tree_edges, clonal_prev, show_warnings = TRUE) replaceSpaces( clonal_prev, tree_edges, clone_colours, mutation_info, mutations, mutation_prevalences )
dfs_tree(edges, cur_root, dfs_arr) cellscapeOutput(outputId, width = "100%", height = "400px") renderCnvTree(expr, env = parent.frame(), quoted = FALSE) getEmptyGrid(hm_sc_ids_ordered, ncols) getChromBounds(chroms, cnv_data) getChromBoxInfo(chrom_bounds, n_bp_per_pixel) getGenomeLength(chrom_bounds) getNBPPerPixel(ncols, chrom_bounds, genome_length) getCNVHeatmapForEachSC(cnv_data, chrom_bounds, n_bp_per_pixel) getMutOrder(mut_data) getTargetedHeatmapForEachSC(mut_data, mut_order, heatmapWidth) findMode(x) processUserData( clonal_prev, tree_edges, mutations, clone_colours, xaxis_title, yaxis_title, phylogeny_title, alpha, genotype_position, perturbations, sort, show_warnings, width, height ) checkMinDims(mutations, height, width) checkRequiredInputs(clonal_prev, tree_edges) checkAlpha(alpha) checkClonalPrev(clonal_prev) checkTreeEdges(tree_edges) checkGtypePositioning(genotype_position) checkCloneColours(clone_colours) checkPerts(perturbations) getMutationsData(mutations, tree_edges, clonal_prev, show_warnings = TRUE) replaceSpaces( clonal_prev, tree_edges, clone_colours, mutation_info, mutations, mutation_prevalences )
edges |
– edges of tree |
cur_root |
– current root of the tree |
dfs_arr |
– array of depth first search results to be filled |
outputId |
– id of output |
width |
– width provided by user |
height |
– height provided by user |
expr |
– expression for Shiny |
env |
– environment for Shiny |
quoted |
– default is FALSE |
hm_sc_ids_ordered |
– array of single cell ids in order |
ncols |
– integer of number of columns (pixels) to fill |
chroms |
– vector of chromosome names |
cnv_data |
– data frame of copy number variant segments data |
chrom_bounds |
– data frame of chromosome boundaries |
n_bp_per_pixel |
– integer of number of base pairs per pixel |
genome_length |
– integer of length of the genome |
mut_data |
– data frame of mutations data |
mut_order |
– array of order of mutations for heatmap (chromosome:coordinate) |
heatmapWidth |
– number for width of the heatmap (in pixels) |
x |
– vector of numbers |
clonal_prev |
– clonal_prev data from user |
tree_edges |
– tree edges data from user |
mutations |
– mutations data from user |
clone_colours |
– clone_colours data from user |
xaxis_title |
– String (Optional) of x-axis title. Default is "Time Point". |
yaxis_title |
– String (Optional) of y-axis title. Default is "Clonal Prevalence". |
phylogeny_title |
– String (Optional) of Legend phylogeny title. Default is "Clonal Phylogeny". |
alpha |
– alpha provided by user |
genotype_position |
– genotype_position provided by user |
perturbations |
– perturbations provided by user |
sort |
– Boolean (Optional) of whether (TRUE) or not (FALSE) to vertically sort the genotypes by their emergence values (descending). Default is FALSE. Note that genotype sorting will always retain the phylogenetic hierarchy, and this parameter will only affect the ordering of siblings. |
show_warnings |
– Boolean (Optional) of Whether or not to show any warnings. Default is TRUE. |
mutation_info |
– processed mutation_info |
mutation_prevalences |
– mutation_prevalences data from user |
dfs_tree( data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), "1", c() ) cellscapeOutput(1, "100%", "300px") cellscapeOutput(1, "80%", "300px") findMode(c(1, 1, 19, 1)) checkMinDims(data.frame(chr = c("11"), coord = c(104043), VAF = c(0.1)), "700px", "700px") checkRequiredInputs( data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.1", "0.22", "0.08", "0.53", "0.009", "0.061", "1") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkRequiredInputs( data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkAlpha(4) checkAlpha(100) checkClonalPrev(data.frame(timepoint = c(1), clone_id = c(2), clonal_prev = c(0.1))) checkTreeEdges( data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkGtypePositioning("centre") checkCloneColours( data.frame( clone_id = c("1", "2", "3", "4"), colour = c("#beaed4", "#fdc086", "#beaed4", "#beaed4") ) ) checkPerts(data.frame(pert_name = c("New Drug"), prev_tp = c("Diagnosis"))) getMutationsData( data.frame( chrom = c("11"), coord = c(104043), VAF = c(0.1), clone_id = c(1), timepoint = c("Relapse") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ) ) replaceSpaces( mutations = data.frame( chrom = c("11"), coord = c(104043), VAF = c(0.1), clone_id = c(1), timepoint = c("Relapse") ), tree_edges = data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), clonal_prev = data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ), mutation_prevalences = list( "X:6154028" = data.frame(timepoint = c("Diagnosis"), VAF = c(0.5557)) ), mutation_info = data.frame(clone_id = c(1)), clone_colours = data.frame( clone_id = c("1", "2", "3", "4"), colour = c("#beaed4", "#fdc086", "#beaed4", "#beaed4") ) )
dfs_tree( data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), "1", c() ) cellscapeOutput(1, "100%", "300px") cellscapeOutput(1, "80%", "300px") findMode(c(1, 1, 19, 1)) checkMinDims(data.frame(chr = c("11"), coord = c(104043), VAF = c(0.1)), "700px", "700px") checkRequiredInputs( data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.1", "0.22", "0.08", "0.53", "0.009", "0.061", "1") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkRequiredInputs( data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkAlpha(4) checkAlpha(100) checkClonalPrev(data.frame(timepoint = c(1), clone_id = c(2), clonal_prev = c(0.1))) checkTreeEdges( data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ) ) checkGtypePositioning("centre") checkCloneColours( data.frame( clone_id = c("1", "2", "3", "4"), colour = c("#beaed4", "#fdc086", "#beaed4", "#beaed4") ) ) checkPerts(data.frame(pert_name = c("New Drug"), prev_tp = c("Diagnosis"))) getMutationsData( data.frame( chrom = c("11"), coord = c(104043), VAF = c(0.1), clone_id = c(1), timepoint = c("Relapse") ), data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ) ) replaceSpaces( mutations = data.frame( chrom = c("11"), coord = c(104043), VAF = c(0.1), clone_id = c(1), timepoint = c("Relapse") ), tree_edges = data.frame( source = c("1", "1", "2", "2", "5", "6"), target = c("2", "5", "3", "4", "6", "7") ), clonal_prev = data.frame( timepoint = c(rep("Diagnosis", 6), rep("Relapse", 1)), clone_id = c("1", "2", "3", "4", "5", "6", "7"), clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1") ), mutation_prevalences = list( "X:6154028" = data.frame(timepoint = c("Diagnosis"), VAF = c(0.5557)) ), mutation_info = data.frame(clone_id = c(1)), clone_colours = data.frame( clone_id = c("1", "2", "3", "4"), colour = c("#beaed4", "#fdc086", "#beaed4", "#beaed4") ) )