The biobroom
package contains methods for converting
standard objects in Bioconductor into a “tidy format”. It serves as a
complement to the popular broom package, and follows
the same division
(tidy
/augment
/glance
) of tidying
methods.
“Tidy data” is a data analysis paradigm that focuses on keeping data formatted as a single observation per row of a data table. For further information, please see Hadley Wickham’s seminal paper on the subject. “Tidy” is not a normative statement about the quality of an object’s structure. Rather, it is a technical specification about the choice of rows and columns. A tidied data frame is not “better” than an S4 object; it simply allows analysis with a different set of tools.
Tidying data makes it easy to recombine, reshape and visualize bioinformatics analyses. Objects that can be tidied include
ExpressionSet
object,GRanges
and GRangesList
objects,RangedSummarizedExperiment
object,MSnSet
object,limma
,
edgeR
, and DESeq2
,qvalue
object for multiple hypothesis testing.We are currently working on adding more methods to existing Bioconductor objects. If any bugs are found please contact the authors or visit our github page. Otherwise, any questions can be answered on the Bioconductor support site.
The biobroom
package can be installed by typing in a R
terminal:
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("biobroom")
To find out more about the provided objects:
The qvalue
package is a popular package to estimate q-values and local false
discovery rates. To get started, we can load the hedenfalk
dataset included in the qvalue
package:
## [1] "call" "pi0" "qvalues" "pvalues" "lfdr"
## [6] "pi0.lambda" "lambda" "pi0.smooth"
qobj
is a qvalue
object, generated from the
p-values contained in the hedenfalk
dataset. If we wanted
to use a package such as dplyr
or ggplot
, we
would need to convert the results into a data frame. The
biobroom
package makes this conversion easy by using the
tidy
, augment
and glance
functions:
tidy
returns one row for each choice of the tuning
parameter lambda.augment
returns one row for each provided p-value,
including the computed q-value and local false discovery rate.glance
returns a single row containing the estimated
pi0
.Applying these functions to qobj
:
## # A tibble: 6 × 3
## lambda smoothed pi0
## <dbl> <lgl> <dbl>
## 1 0.05 FALSE 0.852
## 2 0.1 FALSE 0.807
## 3 0.15 FALSE 0.782
## 4 0.2 FALSE 0.756
## 5 0.25 FALSE 0.731
## 6 0.3 FALSE 0.714
## # A tibble: 6 × 3
## p.value q.value lfdr
## <dbl> <dbl> <dbl>
## 1 0.0121 0.0882 0.168
## 2 0.0750 0.209 0.413
## 3 0.995 0.668 1
## 4 0.0418 0.162 0.309
## 5 0.846 0.632 1
## 6 0.252 0.372 0.693
## # A tibble: 1 × 2
## pi0 lambda
## <dbl> <dbl>
## 1 0.670 0.95
The original data, or in this example the gene names, can be inputted
into augment
using the data
argument:
## # A tibble: 6 × 4
## gene p.value q.value lfdr
## <int> <dbl> <dbl> <dbl>
## 1 1 0.0121 0.0882 0.168
## 2 2 0.0750 0.209 0.413
## 3 3 0.995 0.668 1
## 4 4 0.0418 0.162 0.309
## 5 5 0.846 0.632 1
## 6 6 0.252 0.372 0.693
The tidied data can be used to easily create plots:
library(ggplot2)
# use augmented data to compare p-values to q-values
ggplot(augment(qobj), aes(p.value, q.value)) + geom_point() +
ggtitle("Simulated P-values versus Computed Q-values") + theme_bw()
Additionally, we can extract out important information such as significant genes under a false discovery rate threshold:
library(dplyr)
# Find significant genes under 0.05 threshold
sig.genes <- augment(qobj) %>% filter(q.value < 0.05)
head(sig.genes)
## # A tibble: 6 × 3
## p.value q.value lfdr
## <dbl> <dbl> <dbl>
## 1 0.000713 0.0232 0.0366
## 2 0.00175 0.0365 0.0597
## 3 0.00265 0.0429 0.0752
## 4 0.00116 0.0301 0.0476
## 5 0.00298 0.0448 0.0803
## 6 0.00235 0.0397 0.0704
To demonstrate tidying on DESeq2
objects we have used
the published airway
RNA-Seq experiment, available as a
package from Bioconductor:
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("airway")
Import the airway
dataset:
airway_se
is a SummarizedExperiment
object,
which is a type of object used by the DESeq2
package. Next,
we create a DESeqDataSet
object and show the output of
tidying this object:
## # A tibble: 6 × 3
## gene sample count
## <chr> <chr> <int>
## 1 ENSG00000000003 SRR1039508 679
## 2 ENSG00000000005 SRR1039508 0
## 3 ENSG00000000419 SRR1039508 467
## 4 ENSG00000000457 SRR1039508 260
## 5 ENSG00000000460 SRR1039508 60
## 6 ENSG00000000938 SRR1039508 0
Only the gene counts are outputted since there has been no analysis
performed. We perform an analysis on the data and then tidy
the resulting object:
# differential expression analysis
deseq <- DESeq(airway_dds)
results <- results(deseq)
# tidy results
tidy_results <- tidy(results)
head(tidy_results)
## # A tibble: 6 × 7
## gene baseMean estimate stderror statistic p.value p.adjusted
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ENSG00000000003 709. 0.381 0.101 3.79 0.000152 0.00128
## 2 ENSG00000000005 0 NA NA NA NA NA
## 3 ENSG00000000419 520. -0.207 0.112 -1.84 0.0653 0.196
## 4 ENSG00000000457 237. -0.0379 0.143 -0.264 0.792 0.911
## 5 ENSG00000000460 57.9 0.0882 0.287 0.307 0.759 0.895
## 6 ENSG00000000938 0.318 1.38 3.50 0.394 0.694 NA
As an example to show how easy it is to manipulate the resulting
object, tidy_results
, we can use ggplot2
to
create a volcano plot of the p-values:
ggplot(tidy_results, aes(x=estimate, y=log(p.value),
color=log(baseMean))) + geom_point(alpha=0.5) +
ggtitle("Volcano Plot For Airway Data via DESeq2") + theme_bw()
##edgeR objects
Here we use the hammer
dataset included in
biobroom
package. edgeR
can be used to perform
differential expression analysis as follows:
library(edgeR)
data(hammer)
hammer.counts <- Biobase::exprs(hammer)[, 1:4]
hammer.treatment <- Biobase::phenoData(hammer)$protocol[1:4]
y <- DGEList(counts=hammer.counts,group=hammer.treatment)
y <- calcNormFactors(y)
y <- estimateCommonDisp(y)
y <- estimateTagwiseDisp(y)
et <- exactTest(y)
The results of the analysis are stored in et
, which is
an DGEExact
object. We can tidy
this object
using biobroom
:
## # A tibble: 6 × 4
## gene estimate logCPM p.value
## <chr> <dbl> <dbl> <dbl>
## 1 ENSRNOG00000000001 2.65 1.49 0.00000131
## 2 ENSRNOG00000000007 -0.409 -0.226 1
## 3 ENSRNOG00000000008 2.22 -0.407 0.129
## 4 ENSRNOG00000000009 0 -1.31 1
## 5 ENSRNOG00000000010 0.0331 1.79 1
## 6 ENSRNOG00000000012 -3.39 0.0794 0.00375
glance
shows a summary of the experiment: the number of
genes found significant (at a specified alpha
), and which
contrasts were compared to get the results.
## significant comparison
## 1 6341 control/L5 SNL
Additionally, we can can easily manipulate the resulting object and
create a volcano plot of the p-values using ggplot2
:
ggplot(tidy(et), aes(x=estimate, y=log(p.value), color=logCPM)) +
geom_point(alpha=0.5) + ggtitle("Volcano Plot for Hammer Data via EdgeR") +
theme_bw()
##limma objects
To demonstrate how biobroom
works with
limma
objects, we generate some simulated data to test the
tidier for limma
objects.
# create random data and design
dat <- matrix(rnorm(1000), ncol=4)
dat[, 1:2] <- dat[, 1:2] + .5 # add an effect
rownames(dat) <- paste0("g", 1:nrow(dat))
des <- data.frame(treatment = c("a", "a", "b", "b"),
confounding = rnorm(4))
We then use lmFit
and eBayes
(functions
included in limma
) to fit a linear model and use
tidy
to convert the resulting object into tidy format:
lfit <- lmFit(dat, model.matrix(~ treatment + confounding, des))
eb <- eBayes(lfit)
head(tidy(lfit))
## # A tibble: 6 × 3
## gene term estimate
## <chr> <fct> <dbl>
## 1 g1 treatmentb 0.615
## 2 g2 treatmentb 2.60
## 3 g3 treatmentb -0.0290
## 4 g4 treatmentb 0.123
## 5 g5 treatmentb -0.130
## 6 g6 treatmentb 0.982
## # A tibble: 6 × 6
## gene term estimate statistic p.value lod
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 g1 treatmentb 0.615 0.639 0.523 -5.71
## 2 g2 treatmentb 2.60 2.70 0.00748 -2.53
## 3 g3 treatmentb -0.0290 -0.0301 0.976 -5.90
## 4 g4 treatmentb 0.123 0.128 0.898 -5.90
## 5 g5 treatmentb -0.130 -0.135 0.893 -5.90
## 6 g6 treatmentb 0.982 1.02 0.309 -5.42
Analysis can easily be performed from the tidied data. The package
ggplot2
can be used to make a volcano plot of the
p-values:
ggplot(tidy(eb), aes(x=estimate, y=log(p.value), color=statistic)) +
geom_point() + ggtitle("Nested Volcano Plots for Simulated Data Processed with limma") +
theme_bw()
##ExpressionSet objects
tidy
can also be run directly on
ExpressionSet
objects, as described in another popular
Bioconductor
package Biobase.
The
hammer
dataset we used above (which is included in the
biobroom
package) is an ExpressionSet
object,
so we’ll use that to demonstrate.
## # A tibble: 6 × 3
## gene sample value
## <chr> <chr> <int>
## 1 ENSRNOG00000000001 SRX020102 2
## 2 ENSRNOG00000000007 SRX020102 4
## 3 ENSRNOG00000000008 SRX020102 0
## 4 ENSRNOG00000000009 SRX020102 0
## 5 ENSRNOG00000000010 SRX020102 19
## 6 ENSRNOG00000000012 SRX020102 7
We can add the phenotype information by using the argument
addPheno
:
## # A tibble: 6 × 8
## gene sample sample.id num.tech.reps protocol strain Time value
## <chr> <chr> <fct> <dbl> <fct> <fct> <fct> <int>
## 1 ENSRNOG00000000001 SRX020… SRX020102 1 control Sprag… 2 mo… 2
## 2 ENSRNOG00000000007 SRX020… SRX020102 1 control Sprag… 2 mo… 4
## 3 ENSRNOG00000000008 SRX020… SRX020102 1 control Sprag… 2 mo… 0
## 4 ENSRNOG00000000009 SRX020… SRX020102 1 control Sprag… 2 mo… 0
## 5 ENSRNOG00000000010 SRX020… SRX020102 1 control Sprag… 2 mo… 19
## 6 ENSRNOG00000000012 SRX020… SRX020102 1 control Sprag… 2 mo… 7
Now we can easily visualize the distribution of counts for each
protocol by using ggplot2
:
ggplot(tidy(hammer, addPheno=TRUE), aes(x=protocol, y=log(value))) +
geom_boxplot() + ggtitle("Boxplot Showing Effect of Protocol on Expression")
##MSnSet Objects
tidy
can also be run directly on MSnSet
objects from MSnbase
, which as specialised containers for
quantitative proteomics data.
## # A tibble: 6 × 3
## protein sample.id value
## <chr> <chr> <dbl>
## 1 X1 iTRAQ4.114 1348.
## 2 X10 iTRAQ4.114 740.
## 3 X11 iTRAQ4.114 27638.
## 4 X12 iTRAQ4.114 31893.
## 5 X13 iTRAQ4.114 26144.
## 6 X14 iTRAQ4.114 6448.
## # A tibble: 6 × 5
## protein sample mz reporters value
## <chr> <chr> <dbl> <fct> <dbl>
## 1 X1 iTRAQ4.114 114. iTRAQ4 1348.
## 2 X10 iTRAQ4.114 114. iTRAQ4 740.
## 3 X11 iTRAQ4.114 114. iTRAQ4 27638.
## 4 X12 iTRAQ4.114 114. iTRAQ4 31893.
## 5 X13 iTRAQ4.114 114. iTRAQ4 26144.
## 6 X14 iTRAQ4.114 114. iTRAQ4 6448.
All biobroom tidy
and augment
methods return a tbl_df
by default (this prevents them from
printing many rows at once, while still acting like a traditional
data.frame
). To change this to a data.frame
or
data.table
, you can set the biobroom.return
option: