Title: | A Better Way To Explore What Is Best |
---|---|
Description: | bettr provides a set of interactive visualization methods to explore the results of a benchmarking study, where typically more than a single performance measures are computed. The user can weight the performance measures according to their preferences. Performance measures can also be grouped and aggregated according to additional annotations. |
Authors: | Federico Marini [aut] , Charlotte Soneson [aut, cre] |
Maintainer: | Charlotte Soneson <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.3.0 |
Built: | 2025-01-02 05:44:28 UTC |
Source: | https://github.com/bioc/bettr |
Assemble all bettr input into a SummarizedExperiment
object. This
has the advantage of keeping all data together in a single object, and can
be used as input to bettr
or bettrGetReady
, instead of
providing the individual components.
assembleSE( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL )
assembleSE( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL )
df |
A |
idCol |
Character scalar, indicating the name of the column of |
metrics |
Character vector, indicating which of the
columns of |
initialWeights |
Named numeric vector providing initial weights for
each metric to use for aggregating them into a final score. Must contain
one entry per metric included in |
initialTransforms |
Named list with initial values of transformation parameters for each metric. Each list entry should correspond to one metric, and take the form of a list with up to four elements, named: * **flip**: Logical scalar; whether or not to flip the sign of the metric values. Defaults to `FALSE`. * **offset**: Numeric scalar; offset to add to the (flipped) metric values. Defaults to `0`. * **transform**: Character scalar; one of 'None', 'z-score', '\[0,1\]', '\[-1,1\]', 'Rank', 'Rank+\[0,1\]' or 'z-score+\[0,1\]', indicating which transform to apply to the metric values (after any flipping and/or adding the offset). Defaults to 'None'. * **cuts**: Numeric vector or `NULL`; the cut points that will be used to bin the metric values (after the other transformations). Defaults to `NULL`. Only values deviating from the defaults need to be explicitly specified, the others will be initialized to their default values. |
metricInfo |
|
metricColors |
Named list with colors used for columns of
|
idInfo |
|
idColors |
Named list with colors used for columns of |
A SummarizedExperiment object with rows corresponding to methods and columns corresponding to metrics.
Charlotte Soneson
df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) bettrSE <- assembleSE(df = df, metricInfo = metricInfo, idInfo = idInfo)
df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) bettrSE <- assembleSE(df = df, metricInfo = metricInfo, idInfo = idInfo)
Launch bettr app to explore and aggregate performance metrics
bettr( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL, weightResolution = 0.05, bstheme = "darkly", appTitle = "bettr", bettrSE = NULL )
bettr( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL, weightResolution = 0.05, bstheme = "darkly", appTitle = "bettr", bettrSE = NULL )
df |
A |
idCol |
Character scalar, indicating the name of the column of |
metrics |
Character vector, indicating which of the
columns of |
initialWeights |
Named numeric vector providing initial weights for
each metric to use for aggregating them into a final score. Must contain
one entry per metric included in |
initialTransforms |
Named list with initial values of transformation parameters for each metric. Each list entry should correspond to one metric, and take the form of a list with up to four elements, named: * **flip**: Logical scalar; whether or not to flip the sign of the metric values. Defaults to `FALSE`. * **offset**: Numeric scalar; offset to add to the (flipped) metric values. Defaults to `0`. * **transform**: Character scalar; one of 'None', 'z-score', '\[0,1\]', '\[-1,1\]', 'Rank', 'Rank+\[0,1\]' or 'z-score+\[0,1\]', indicating which transform to apply to the metric values (after any flipping and/or adding the offset). Defaults to 'None'. * **cuts**: Numeric vector or `NULL`; the cut points that will be used to bin the metric values (after the other transformations). Defaults to `NULL`. Only values deviating from the defaults need to be explicitly specified, the others will be initialized to their default values. |
metricInfo |
|
metricColors |
Named list with colors used for columns of
|
idInfo |
|
idColors |
Named list with colors used for columns of |
weightResolution |
Numeric scalar in (0,1), giving the resolution at which weights can be specified using the sliders in the interface. |
bstheme |
Character scalar giving the bootswatch theme for the app (see https://bootswatch.com/). Default 'darkly'. |
appTitle |
Character scalar giving the title that will be used for the app. Defaults to 'bettr'. |
bettrSE |
A |
A shiny application
Charlotte Soneson
df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2), metric3 = factor(c("a", "a", "b"))) initialTransforms <- list(metric1 = list(flip = TRUE, offset = 4)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) metricColors <- list(Group = c(G1 = "red", G2 = "blue")) if (interactive()) { bettr(df = df, idCol = "Method", metrics = c("metric1", "metric2", "metric3"), initialTransforms = initialTransforms, metricInfo = metricInfo, metricColors = metricColors, idInfo = idInfo) }
df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2), metric3 = factor(c("a", "a", "b"))) initialTransforms <- list(metric1 = list(flip = TRUE, offset = 4)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) metricColors <- list(Group = c(G1 = "red", G2 = "blue")) if (interactive()) { bettr(df = df, idCol = "Method", metrics = c("metric1", "metric2", "metric3"), initialTransforms = initialTransforms, metricInfo = metricInfo, metricColors = metricColors, idInfo = idInfo) }
Prepare input data for plotting with bettr. This function replicates the steps that are performed in the shiny app.
bettrGetReady( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL, scoreMethod = "weighted mean", idOrdering = "high-to-low", showOnlyTopIds = FALSE, nbrTopIds = 10, idTopNGrouping = NULL, keepIds = NULL, metricGrouping = NULL, metricCollapseGroup = FALSE, metricCollapseMethod = "mean", bettrSE = NULL )
bettrGetReady( df, idCol = "Method", metrics = setdiff(colnames(df), idCol), initialWeights = NULL, initialTransforms = list(), metricInfo = NULL, metricColors = NULL, idInfo = NULL, idColors = NULL, scoreMethod = "weighted mean", idOrdering = "high-to-low", showOnlyTopIds = FALSE, nbrTopIds = 10, idTopNGrouping = NULL, keepIds = NULL, metricGrouping = NULL, metricCollapseGroup = FALSE, metricCollapseMethod = "mean", bettrSE = NULL )
df |
A |
idCol |
Character scalar, indicating the name of the column of |
metrics |
Character vector, indicating which of the
columns of |
initialWeights |
Named numeric vector providing initial weights for
each metric to use for aggregating them into a final score. Must contain
one entry per metric included in |
initialTransforms |
Named list with initial values of transformation parameters for each metric. Each list entry should correspond to one metric, and take the form of a list with up to four elements, named: * **flip**: Logical scalar; whether or not to flip the sign of the metric values. Defaults to `FALSE`. * **offset**: Numeric scalar; offset to add to the (flipped) metric values. Defaults to `0`. * **transform**: Character scalar; one of 'None', 'z-score', '\[0,1\]', '\[-1,1\]', 'Rank', 'Rank+\[0,1\]' or 'z-score+\[0,1\]', indicating which transform to apply to the metric values (after any flipping and/or adding the offset). Defaults to 'None'. * **cuts**: Numeric vector or `NULL`; the cut points that will be used to bin the metric values (after the other transformations). Defaults to `NULL`. Only values deviating from the defaults need to be explicitly specified, the others will be initialized to their default values. |
metricInfo |
|
metricColors |
Named list with colors used for columns of
|
idInfo |
|
idColors |
Named list with colors used for columns of |
scoreMethod |
Character scalar specifying the scoring method, that is,
how to aggregate scores across metrics. Should be one of
|
idOrdering |
Character scalar indicating whether methods should be
ranked with highest aggregated scores on top ( |
showOnlyTopIds |
Logical scalar indicating whether to only retain the top N methods (ranked by the aggregated score). |
nbrTopIds |
If |
idTopNGrouping |
If |
keepIds |
Character vector indicating which methods (a subset of the
values in |
metricGrouping |
A character scalar providing the name of a column in
|
metricCollapseGroup |
A logical scalar indicating whether metric
values should be collapsed within each group defined by
|
metricCollapseMethod |
If |
bettrSE |
A |
A list of objects, which can be directly used as inputs for the bettr plotting functions. See the man page for the respective plotting function for more details.
Charlotte Soneson
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo, metricGrouping = "Group", metricCollapseGroup = TRUE)
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo, metricGrouping = "Group", metricCollapseGroup = TRUE)
Create a bar/polar plot. The input arguments for this functions are
typically generated using bettrGetReady
, which ensures that
all required columns are available.
makeBarPolarPlot( bettrList = NULL, plotdata, scoredata, idCol, metricCol = "Metric", valueCol = "ScaledValue", weightCol = "Weight", scoreCol = "Score", metricGroupCol = "metricGroup", metricColors, metricCollapseGroup = FALSE, metricGrouping = "---", methods = NULL, labelSize = 10, showComposition = FALSE, scaleFactorPolars = 1 )
makeBarPolarPlot( bettrList = NULL, plotdata, scoredata, idCol, metricCol = "Metric", valueCol = "ScaledValue", weightCol = "Weight", scoreCol = "Score", metricGroupCol = "metricGroup", metricColors, metricCollapseGroup = FALSE, metricGrouping = "---", methods = NULL, labelSize = 10, showComposition = FALSE, scaleFactorPolars = 1 )
bettrList |
A |
plotdata |
A |
scoredata |
A |
idCol |
Character scalar indicating which column of |
metricCol |
Character scalar indicating which column of |
valueCol |
Character scalar indicating which column of |
weightCol |
Character scalar indicating which column of |
scoreCol |
Character scalar indicating which column of |
metricGroupCol |
Character scalar indicating which column of
|
metricColors |
Named list with colors used for the metrics and
any other metric annotations. Typically obtained as
|
metricCollapseGroup |
Logical scalar indicating whether metrics
should be collapsed by the group variable provided by
|
metricGrouping |
Character scalar indicating the column of
|
methods |
Character vector containing the methods for which to make
polar plots. If |
labelSize |
Numeric scalar providing the size of the labels in the plot. |
showComposition |
Logical scalar indicating whether to show the composition of the score in the bar plots. This is only interpretable if the scores are obtained via a weighted mean approach. |
scaleFactorPolars |
Numeric scalar giving the scale factor determining the size of the polar plots. |
A ggplot
object.
Charlotte Soneson
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeBarPolarPlot(bettrList = prepData, showComposition = TRUE)
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeBarPolarPlot(bettrList = prepData, showComposition = TRUE)
Create a summary heatmap. The input arguments for this functions are
typically generated using bettrGetReady
, which ensures that
all required columns are available.
makeHeatmap( bettrList = NULL, plotdata, scoredata, idCol, metricCol = "Metric", valueCol = "ScaledValue", weightCol = "Weight", scoreCol = "Score", metricGroupCol = "metricGroup", metricInfo, metricColors, idInfo, idColors, metricCollapseGroup = FALSE, metricGrouping = "---", labelSize = 10, showRowNames = TRUE, plotType = "Heatmap", rownamewidth_cm = 6, colnameheight_cm = 6 )
makeHeatmap( bettrList = NULL, plotdata, scoredata, idCol, metricCol = "Metric", valueCol = "ScaledValue", weightCol = "Weight", scoreCol = "Score", metricGroupCol = "metricGroup", metricInfo, metricColors, idInfo, idColors, metricCollapseGroup = FALSE, metricGrouping = "---", labelSize = 10, showRowNames = TRUE, plotType = "Heatmap", rownamewidth_cm = 6, colnameheight_cm = 6 )
bettrList |
A |
plotdata |
A |
scoredata |
A |
idCol |
Character scalar indicating which column of |
metricCol |
Character scalar indicating which column of |
valueCol |
Character scalar indicating which column of |
weightCol |
Character scalar indicating which column of |
scoreCol |
Character scalar indicating which column of |
metricGroupCol |
Character scalar indicating which column of
|
metricInfo |
|
metricColors |
Named list with colors used for the metrics and
any other metric annotations. Typically obtained as
|
idInfo |
|
idColors |
Named list with colors used for methods and any other
method annotations. Typically obtained as |
metricCollapseGroup |
Logical scalar indicating whether metrics
should be collapsed by the group variable provided by
|
metricGrouping |
Character scalar indicating the column of
|
labelSize |
Numeric scalar providing the size of the labels in the plot. |
showRowNames |
Logical scalar indicating whether to show row (method) names in the heatmap. |
plotType |
Either |
rownamewidth_cm , colnameheight_cm
|
Numeric scalars defining the width of row names and height of column names, in cm. |
A HeatmapList
object.
Charlotte Soneson
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeHeatmap(bettrList = prepData, plotType = "Heatmap") makeHeatmap(bettrList = prepData, plotType = "Dot plot")
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeHeatmap(bettrList = prepData, plotType = "Heatmap") makeHeatmap(bettrList = prepData, plotType = "Dot plot")
Create a parallel coordinates plot. The input arguments for this functions
are typically generated using bettrGetReady
, which ensures
that all required columns are available.
makeParCoordPlot( bettrList = NULL, plotdata, idCol, metricCol = "Metric", valueCol = "ScaledValue", metricGroupCol = "metricGroup", metricColors, idColors, methods = NULL, metricGrouping = "---", highlightMethod = NULL, labelSize = 10 )
makeParCoordPlot( bettrList = NULL, plotdata, idCol, metricCol = "Metric", valueCol = "ScaledValue", metricGroupCol = "metricGroup", metricColors, idColors, methods = NULL, metricGrouping = "---", highlightMethod = NULL, labelSize = 10 )
bettrList |
A |
plotdata |
A |
idCol |
Character scalar indicating which column of |
metricCol |
Character scalar indicating which column of |
valueCol |
Character scalar indicating which column of |
metricGroupCol |
Character scalar indicating which column of
|
metricColors |
Named list with colors used for the metrics and
any other metric annotations. Typically obtained as
|
idColors |
Named list with colors used for methods and any other
method annotations. Typically obtained as |
methods |
Character vector containing the methods to include.
If |
metricGrouping |
Character scalar indicating the column of
|
highlightMethod |
Character scalar indicating a method that should be highlighted in the plot. |
labelSize |
Numeric scalar providing the size of the labels in the plot. |
A ggplot
object.
Charlotte Soneson
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeParCoordPlot(bettrList = prepData, highlightMethod = "M2")
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makeParCoordPlot(bettrList = prepData, highlightMethod = "M2")
Create a polar plot. The input arguments for this functions are
typically generated using bettrGetReady
, which ensures that
all required columns are available.
makePolarPlot( bettrList = NULL, plotdata, idCol, metricCol = "Metric", valueCol = "ScaledValue", metricGroupCol = "metricGroup", metricColors, metricCollapseGroup = FALSE, metricGrouping = "---", labelSize = 10 )
makePolarPlot( bettrList = NULL, plotdata, idCol, metricCol = "Metric", valueCol = "ScaledValue", metricGroupCol = "metricGroup", metricColors, metricCollapseGroup = FALSE, metricGrouping = "---", labelSize = 10 )
bettrList |
A |
plotdata |
A |
idCol |
Character scalar indicating which column of |
metricCol |
Character scalar indicating which column of |
valueCol |
Character scalar indicating which column of |
metricGroupCol |
Character scalar indicating which column of
|
metricColors |
Named list with colors used for the metrics and
any other metric annotations. Typically obtained as
|
metricCollapseGroup |
Logical scalar indicating whether metrics
should be collapsed by the group variable provided by
|
metricGrouping |
Character scalar indicating the column of
|
labelSize |
Numeric scalar providing the size of the labels in the plot. |
A ggplot
object.
Charlotte Soneson
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makePolarPlot(bettrList = prepData)
## Generate example data df <- data.frame(Method = c("M1", "M2", "M3"), metric1 = c(1, 2, 3), metric2 = c(3, 1, 2)) metricInfo <- data.frame(Metric = c("metric1", "metric2", "metric3"), Group = c("G1", "G2", "G2")) idInfo <- data.frame(Method = c("M1", "M2", "M3"), Type = c("T1", "T1", "T2")) prepData <- bettrGetReady(df = df, idCol = "Method", metricInfo = metricInfo, idInfo = idInfo) makePolarPlot(bettrList = prepData)