Title: | Fast Sequence Mapping in High-Throughput shRNA and CRISPR Screens |
---|---|
Description: | This Rcpp-based package implements a highly efficient data structure and algorithm for performing alignment of short reads from CRISPR or shRNA screens to reference barcode library. Sequencing error are considered and matching qualities are evaluated based on Phred scores. A Bayes' classifier is employed to predict the originating barcode of a read. The package supports provision of user-defined probability models for evaluating matching qualities. The package also supports multi-threading. |
Authors: | Jiaxing Lin [aut, cre], Jeremy Gresham [aut], Jichun Xie [aut], Kouros Owzar [aut], Tongrong Wang [ctb], So Young Kim [ctb], James Alvarez [ctb], Jeffrey S. Damrauer [ctb], Scott Floyd [ctb], Joshua Granek [ctb], Andrew Allen [ctb], Cliburn Chan [ctb] |
Maintainer: | Jiaxing Lin <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.29.0 |
Built: | 2024-12-19 03:06:57 UTC |
Source: | https://github.com/bioc/bcSeq |
This Rcpp
-based package implements highly efficient data structure and
algorithms for performing the alignment of short 'CRISPR' or shRNA screens
reads to library barcodes based on user specified mismatch, insert and delete
tolerance. Matching qualities are then evaluated based on Phred
score. A
Bayers' classifier is employed to determine the originating barcode of a read.
We support user-defined probability model for evaluting matching qualities as
well as flexible output.The alignment also support multiple-thread to reduce
the processing time in the C++
implementation.
Package: | bcSeq |
Type: | Package |
Version: | 1.5.9 |
Date: | 2019-04-23 |
License: | GPL-3 |
Please see the example function calls below, or refer to the individual function documentation or the included vignette for more information. The package vignette serves as a tutorial for using this package.
Jiaxing Lin, Jeremy Gresham, Tongrong Wang, So Young Kim, James Alvarez, Jeffrey S. Damrauer, Scott Floyd, Joshua Granek, Andrew Allen, Cliburn Chan, Jichun Xie, Kouros Owzar
Maintainer: Jiaxing Lin <[email protected]>
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 15 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 100 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./counthamming.csv" #res <- bcSeq_hamming(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE) outFile <- "./countedit.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7, userProb = NULL)
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 15 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 100 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./counthamming.csv" #res <- bcSeq_hamming(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE) outFile <- "./countedit.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7, userProb = NULL)
This a function for aligning CRISPR barcode reads to library, or similar problems using edit distance to evaluate the distance between a read and a barcode for the error toleration.
bcSeq_edit(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL, numThread = 4, count_only = TRUE, gap_left = 3, ext_left = 1, gap_right = 3, ext_right = 1, pen_max = 6, userProb = NULL, detail_info = FALSE)
bcSeq_edit(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL, numThread = 4, count_only = TRUE, gap_left = 3, ext_left = 1, gap_right = 3, ext_right = 1, pen_max = 6, userProb = NULL, detail_info = FALSE)
sampleFile |
(string) sample filename, needs to be a fastq file. |
libFile |
(string) library filename, needs to be a fasta or fastq file. |
outFile |
(string) output filename. |
misMatch |
(integer) the number of maximum mismatches or indels allowed in the alignment. |
tMat |
(two column dataframe) prior probability of a mismatch given a sequence. The first column is the prior sequence, the second column is the error rate. The default value for all prior sequences is 1/3. |
numThread |
(integer) the number of threads for parallel computing, default 4. |
count_only |
(bool) option for controlling function returns, default to be
|
gap_left |
(double) Penalty score for delete a base for the reads. |
ext_left |
(double) Penalty score for extending deletion of base for the reads. |
gap_right |
(double) Penalty score for delete a base for the barcodes. |
ext_right |
(double) Penalty score for extending deletion of base for the barcodes. |
pen_max |
(double) Max penalty allowed for a alignment. |
userProb |
(function) a function to compute the alignment probability
with 3 arguments |
detail_info |
(bool) option for controlling function returns, default to
be |
default |
No objects are returned to R, instead, a csv count table is created and written to files. The .csv file contains two columns, the first column is the sequences of the barcodes, and the second columns is the number of reads that aligned to the barcodes. |
count_only = FALSE |
If set to |
The user need to perform the removing of any adapter sequence before and after the barcode for the fastq file.
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 20 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./count_edit.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, userProb = NULL, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7) #### The user defined probability model function is a modeling #### of the alignment probability and the penalty encounted #### due to the edit distance between a read and a candidata #### barcode. The user define probability model function serves #### as a combined evaluation of the alignment quality by #### considering both the alignment probability and the edit #### distance penalty. #### the user defined function has three arguements #### (1) val: a double vector indicates the alignment probabilities #### between a read and its candidate barcodes based on #### edit distance. #### (2) pens: a double vector indicates the penalties of edit distance #### between a read and its candidate barcodes for the alignment #### based on edit distance. #### (3) m: a double scalor indicating the weight for alignment #### probabilities and edit distance penalty to determine #### the final alignment quality that can be used as #### as clasifier. #### User can also constuct a more complexed model by only keeping the #### function signature. #### Example function in R useP <-function(m, val, pens) { val * (1 - log(2) + log(1 + m / (m + pens) ) ) } #### Example function in C++(can be ported to R using Rcpp packages) #library(Rcpp) #cppFunction( #'NumericVector cpp_fun(int m, NumericVector val, NumericVector pens) { # int n = val.size(); # NumericVector out(n); # for(int i = 0; i < n; ++i) { # out[i] = val[i] * (1 - log(2) + # log(1 + m / (m + pens[i]) ) ); # } # return out; #}') outFile <- "./count_edit_2.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, userProb = useP, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7)
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 20 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./count_edit.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, userProb = NULL, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7) #### The user defined probability model function is a modeling #### of the alignment probability and the penalty encounted #### due to the edit distance between a read and a candidata #### barcode. The user define probability model function serves #### as a combined evaluation of the alignment quality by #### considering both the alignment probability and the edit #### distance penalty. #### the user defined function has three arguements #### (1) val: a double vector indicates the alignment probabilities #### between a read and its candidate barcodes based on #### edit distance. #### (2) pens: a double vector indicates the penalties of edit distance #### between a read and its candidate barcodes for the alignment #### based on edit distance. #### (3) m: a double scalor indicating the weight for alignment #### probabilities and edit distance penalty to determine #### the final alignment quality that can be used as #### as clasifier. #### User can also constuct a more complexed model by only keeping the #### function signature. #### Example function in R useP <-function(m, val, pens) { val * (1 - log(2) + log(1 + m / (m + pens) ) ) } #### Example function in C++(can be ported to R using Rcpp packages) #library(Rcpp) #cppFunction( #'NumericVector cpp_fun(int m, NumericVector val, NumericVector pens) { # int n = val.size(); # NumericVector out(n); # for(int i = 0; i < n; ++i) { # out[i] = val[i] * (1 - log(2) + # log(1 + m / (m + pens[i]) ) ); # } # return out; #}') outFile <- "./count_edit_2.csv" #res <- bcSeq_edit(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 4, count_only = TRUE, userProb = useP, # gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1, # pen_max = 7)
This a function for aligning CRISPR barcode reads to library, or similar problems using hamming distance to evaluate the distance between a read and a barcode for the error toleration.
bcSeq_hamming(sampleFile, libFile, outFile, misMatch=2, tMat = NULL, numThread = 4, count_only = TRUE, detail_info = FALSE)
bcSeq_hamming(sampleFile, libFile, outFile, misMatch=2, tMat = NULL, numThread = 4, count_only = TRUE, detail_info = FALSE)
sampleFile |
(string) sample filename, needs to be a fastq file |
libFile |
(string) library filename, needs to be a fasta or fastq file. |
outFile |
(string) output filename. |
misMatch |
(integer) the number of maximum mismatches or indels allowed in the alignment. |
tMat |
(two column dataframe) prior probability of a mismatch given a sequence. The first column is the prior sequence, the second column is the error rate. The default value for all prior sequences is 1/3. |
numThread |
(integer) the number of threads for parallel computing, default 4. |
count_only |
(bool) option for function returns, default to be
|
detail_info |
(bool) option for controlling function returns, default to
be |
default |
No objects are returned to R, instead, a csv count table is created and written to files. The .csv file contains two columns, the first column is the sequences of the barcodes, and the second columns is the number of reads that aligned to the barcodes. |
count_only = FALSE |
If set to |
The user need to perform the removing of any adaptor sequence before and after the barcode for the fastq file.
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 40 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./count_hamming.csv" #res <- bcSeq_hamming(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 1, count_only = TRUE)
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 40 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./count_hamming.csv" #res <- bcSeq_hamming(rFName, lFName, outFile, misMatch = 2, # tMat = NULL, numThread = 1, count_only = TRUE)
This a function for triming reads with adaptor. The sequencing within [start, end] will be written to the output file.
trimRead(inputFile,outputFile, start, end)
trimRead(inputFile,outputFile, start, end)
inputFile |
(string) filename for the library sequences, needs to be a fasta or fastq file. |
outputFile |
(string) output filename. |
start |
(integer) starting position. |
end |
(integer) ending position. |
default |
No objects are returned to R |
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 40 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./readFile_trimReaded.fastq" trimRead(rFName, outFile, 5,15)
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 40 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } write(Barcodes, lFName) #### Generate reads and phred score rFName <- "./readFile.fastq" numOfReads <- 800 Reads <- rep(NA, numOfReads*4) for (i in 1:numOfReads){ Reads[4*i-3] <- paste0("@read_ID_",i) Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1, replace=TRUE, prob=seq(1:numOfBars))] Reads[4*i-1] <- "+" Reads[4*i] <- paste(rawToChar(as.raw( 33+sample(20:30, length(bases),replace=TRUE))), collapse='') } write(Reads, rFName) #### perform alignment outFile <- "./readFile_trimReaded.fastq" trimRead(rFName, outFile, 5,15)
This a function for removing the duplicated barcodes in the library file that will be used for the bcSeq alignment.
uniqueBar(inputFile,outputFile)
uniqueBar(inputFile,outputFile)
inputFile |
(string) filename for the library sequences, needs to be a fasta or fastq file. |
outputFile |
(string) output filename. |
default |
No objects are returned to R |
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 20 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } Barcodes <- rbind(Barcodes, Barcodes) write(Barcodes, lFName) outFile <- "./libFile_unique.fasta" uniqueBar(lFName, outFile)
#### Generate barcodes lFName <- "./libFile.fasta" bases <- c(rep('A', 4), rep('C',4), rep('G',4), rep('T',4)) numOfBars <- 20 Barcodes <- rep(NA, numOfBars*2) for (i in 1:numOfBars){ Barcodes[2*i-1] <- paste0(">barcode_ID: ", i) Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = '') } Barcodes <- rbind(Barcodes, Barcodes) write(Barcodes, lFName) outFile <- "./libFile_unique.fasta" uniqueBar(lFName, outFile)