Package 'autonomics'

Title: Unified Statistical Modeling of Omics Data
Description: This package unifies access to Statistal Modeling of Omics Data. Across linear modeling engines (lm, lme, lmer, limma, and wilcoxon). Across coding systems (treatment, difference, deviation, etc). Across model formulae (with/without intercept, random effect, interaction or nesting). Across omics platforms (microarray, rnaseq, msproteomics, affinity proteomics, metabolomics). Across projection methods (pca, pls, sma, lda, spls, opls). Across clustering methods (hclust, pam, cmeans). It provides a fast enrichment analysis implementation. And an intuitive contrastogram visualisation to summarize contrast effects in complex designs.
Authors: Aditya Bhagwat [aut, cre], Richard Cotton [ctb], Shahina Hayat [ctb], Laure Cougnaud [ctb], Witold Szymanski [ctb], Vanessa Beutgen [ctb], Willem Ligtenberg [ctb], Hinrich Goehlmann [ctb], Karsten Suhre [ctb], Johannes Graumann [aut, sad]
Maintainer: Aditya Bhagwat <[email protected]>
License: GPL-3
Version: 1.15.10
Built: 2024-11-20 03:07:19 UTC
Source: https://github.com/bioc/autonomics

Help Index


Extract coefficient features

Description

Extract coefficient features

Usage

.extract_p_features(
  object,
  coefs,
  p = 0.05,
  fit = fits(object),
  combiner = "|",
  verbose = TRUE
)

.extract_fdr_features(
  object,
  coefs,
  fdr = 0.05,
  fit = fits(object),
  combiner = "|",
  verbose = TRUE
)

.extract_effectsize_features(
  object,
  coefs,
  effectsize = 1,
  fit = fits(object),
  combiner = "|",
  verbose = TRUE
)

.extract_sign_features(
  object,
  coefs,
  sign,
  fit = fits(object)[1],
  combiner = "|",
  verbose = TRUE
)

.extract_n_features(
  object,
  coefs,
  combiner = "|",
  n,
  fit = fits(object)[1],
  verbose = TRUE
)

extract_coef_features(
  object,
  fit = fits(object)[1],
  coefs = default_coefs(object, fit = fit),
  combiner = "|",
  p = 1,
  fdr = 1,
  effectsize = 0,
  sign = c(-1, +1),
  n = 4,
  verbose = TRUE
)

Arguments

object

SummarizedXExperiment

coefs

subset of coefs(object)

p

p threshold

fit

subset of fits(object)

combiner

'|' or '&': how to combine multiple fits/coefs

verbose

TRUE or FALSE

fdr

fdr threshold

effectsize

effectsize threshold

sign

effect sign

n

number of top features (Inf means all)

Value

SummarizedExperiment

Examples

# Read and Fit
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% fit_limma()
    fdt(object) %<>% add_adjusted_pvalues('fdr')
# Single coef
    object0 <- object
    object %<>% .extract_p_features(         coefs = 't1-t0', p = 0.05)
    object %<>% .extract_fdr_features(       coefs = 't1-t0', fdr = 0.05)
    object %<>% .extract_effectsize_features(coefs = 't1-t0', effectsize = 1)
    object %<>% .extract_sign_features(      coefs = 't1-t0', sign = -1)
    object %<>% .extract_n_features(         coefs = 't1-t0', n = 1)
    object <- object0
    object %<>%  extract_coef_features(
                   coefs = 't1-t0', p = 0.05, fdr = 0.05, effectsize = 1, sign = -1, n = 1)
# Multiple coefs
    object <- object0
    object %<>% .extract_p_features(         coefs = c('t1-t0', 't2-t0'), p = 0.05)
    object %<>% .extract_fdr_features(       coefs = c('t1-t0', 't2-t0'), fdr = 0.01)
    object %<>% .extract_effectsize_features(coefs = c('t1-t0', 't2-t0'), effectsize = 1)
    object %<>% .extract_sign_features(      coefs = c('t1-t0', 't2-t0'), sign = -1)
    object %<>% .extract_n_features(         coefs = c('t1-t0', 't2-t0'), n = 1)
    object <- object0
    object %<>%  extract_coef_features(
                   coefs = c('t1-t0', 't2-t0'), p = 0.05, fdr = 0.01, effectsize = 1, sign = -1, n = 1)

Clean Merge

Description

Clean Merge

Usage

.merge(dt1, dt2, by)

Arguments

dt1

data.table

dt2

data.table

by

string

Examples

require(data.table)
dt1 <- data.table(feature_id = c('PG1', 'PG2'), gene    = c('G1', 'G2'))
dt2 <- data.table(feature_id = c('PG1', 'PG2'), protein = c('P1', 'P2'))
dt1 %<>% .merge(dt2, by = 'feature_id')
dt1

Read compound discoverer files as-is

Description

Read compound discoverer files as-is

Usage

.read_compounddiscoverer(
  file,
  quantity = guess_compounddiscoverer_quantity(file),
  colname_format = NULL,
  mod_extract = NULL,
  verbose = TRUE
)

Arguments

file

compoumd discoverer file

quantity

string

colname_format

function to reformat column names

mod_extract

function to extract MS modi from sample names

verbose

TRUE / FALSE

Value

data.table


Read compound discoverer masslist files as-is

Description

Read compound discoverer masslist files as-is

Usage

.read_compounddiscoverer_masslist(file, verbose = TRUE)

Arguments

file

compoumd discoverer masslist file

verbose

TRUE / FALSE

Value

data.table


Read diann

Description

Read diann

Usage

.read_diann_precursors(file, Lib.PG.Q = 0.01, verbose = TRUE)

.read_diann_proteingroups(file, Lib.PG.Q = 0.01)

read_diann_proteingroups(
  file,
  Lib.PG.Q = 0.01,
  simplify_snames = TRUE,
  contaminants = character(0),
  impute = FALSE,
  plot = FALSE,
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  formula = as.formula("~ subgroup"),
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

read_diann(...)

Arguments

file

'report.tsv' file

Lib.PG.Q

Lib.PG.Q cutoff

verbose

TRUE or FALSE

simplify_snames

TRUE or FALSE: simplify (drop common parts in) samplenames ?

contaminants

character vector: contaminant uniprots

impute

TRUE or FALSE: impute group-specific NA values?

plot

TRUE or FALSE

pca

TRUE or FALSE: run pca ?

pls

TRUE or FALSE: run pls ?

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

formula

model formula

block

model blockvar: string or NULL

coefs

model coefficients of interest: character vector or NULL

contrasts

coefficient contrasts of interest: character vector or NULL

palette

color palette: named string vector

...

used to maintain deprecated functions

Value

data.table or SummarizedExperiment

Examples

# Read
   file <- download_data('dilution.report.tsv')
   .read_diann_precursors(file)         #    precursors longdt
   .read_diann_proteingroups(file)      # proteingroups longdt
   fdt(read_diann_proteingroups(file))  # proteingroups sumexp
# Compare
    PR <- .read_diann_precursors(file)
    PG <- .read_diann_proteingroups(file)
    PG[intensity==top1] # matches      : 24975 (85%) proteingroups
    PG[intensity!=top1] # doesnt match :  4531 (15%) proteingroups
    RUN <- 'IPT_HeLa_1_DIAstd_Slot1-40_1_9997'
    PR[uniprot=='Q96JP5;Q96JP5-2' & run == RUN, 1:6] #    match:    8884 ==   8884
    PR[uniprot=='P36578'          & run == RUN, 1:6] # no match:  650887 != 407978
    PR[intensity != top1][feature_id == unique(feature_id)[1]][run == unique(run)[1]][1:2, 1:6]
    PR[intensity != top1][feature_id == unique(feature_id)[2]][run == unique(run)[1]][1:2, 1:6]
    PR[intensity != top1][feature_id == unique(feature_id)[3]][run == unique(run)[1]][1:3, 1:6]

Read proteingroups/phosphosites as-is

Description

Read proteingroups/phosphosites as-is

Usage

.read_maxquant_proteingroups(
  file,
  quantity = guess_maxquant_quantity(file),
  verbose = TRUE
)

.read_maxquant_phosphosites(
  file,
  profile,
  quantity = guess_maxquant_quantity(file),
  verbose = TRUE
)

Arguments

file

proteingroups / phosphosites file

quantity

string

verbose

TRUE / FALSE

profile

proteingroups file

Value

data.table

Examples

profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics')
prodt <- .read_maxquant_proteingroups(file = profile)
fosdt <- .read_maxquant_phosphosites( file = fosfile, profile = profile)

Read metabolon xlsxfile

Description

Read metabolon xlsxfile

Usage

.read_metabolon(
  file,
  sheet = "OrigScale",
  fidvar = "BIOCHEMICAL",
  sidvar = "(CLIENT_IDENTIFIER|Client ID)",
  sfile = NULL,
  by.x = "sample_id",
  by.y = NULL,
  groupvar = NULL,
  verbose = TRUE
)

read_metabolon(
  file,
  sheet = "OrigScale",
  fidvar = "BIOCHEMICAL",
  sidvar = "(CLIENT_IDENTIFIER|Client ID)",
  sfile = NULL,
  by.x = "sample_id",
  by.y = NULL,
  groupvar = NULL,
  fnamevar = "BIOCHEMICAL",
  kegg_pathways = FALSE,
  smiles = FALSE,
  impute = TRUE,
  plot = FALSE,
  pca = plot,
  pls = plot,
  label = "feature_id",
  fit = if (plot) "limma" else NULL,
  formula = as.formula("~ subgroup"),
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

Arguments

file

metabolon xlsx file

sheet

excel sheet (number or string)

fidvar

featureid var

sidvar

samplid var

sfile

sample file

by.x

'file' mergeby column

by.y

'sfile' mergeby column

groupvar

string

verbose

TRUE or FALSE

fnamevar

featurename fvar

kegg_pathways

TRUE or FALSE: add kegg pathways?

smiles

TRUE or FALSE: add smiles?

impute

TRUE or FALSE: impute group-specific NA values?

plot

TRUE or FALSE

pca

TRUE or FALSE

pls

TRUE or FALSE

label

fvar

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

formula

model formula

block

model blockvar: string or NULL

coefs

model coefficients of interest: character vector or NULL

contrasts

coefficient contrasts of interest: character vector or NULL

palette

NULL or colorvector

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
read_metabolon(file, plot = TRUE, block = 'Subject')

Read omics data from rectangular file

Description

Read omics data from rectangular file

Usage

.read_rectangles(
  file,
  sheet = 1,
  fid_rows,
  fid_cols,
  sid_rows,
  sid_cols,
  expr_rows,
  expr_cols,
  fvar_rows = NULL,
  fvar_cols = NULL,
  svar_rows = NULL,
  svar_cols = NULL,
  fdata_rows = NULL,
  fdata_cols = NULL,
  sdata_rows = NULL,
  sdata_cols = NULL,
  transpose = FALSE,
  verbose = TRUE
)

read_rectangles(
  file,
  sheet = 1,
  fid_rows,
  fid_cols,
  sid_rows,
  sid_cols,
  expr_rows,
  expr_cols,
  fvar_rows = NULL,
  fvar_cols = NULL,
  svar_rows = NULL,
  svar_cols = NULL,
  fdata_rows = NULL,
  fdata_cols = NULL,
  sdata_rows = NULL,
  sdata_cols = NULL,
  transpose = FALSE,
  sfile = NULL,
  sfileby = NULL,
  subgroupvar = character(0),
  verbose = TRUE
)

Arguments

file

string: name of text (txt, csv, tsv, adat) or excel (xls, xlsx) file

sheet

integer/string: only relevant for excel files

fid_rows

numeric vector: featureid rows

fid_cols

numeric vector: featureid cols

sid_rows

numeric vector: sampleid rows

sid_cols

numeric vector: sampleid cols

expr_rows

numeric vector: expr rows

expr_cols

numeric vector: expr cols

fvar_rows

numeric vector: fvar rows

fvar_cols

numeric vector: fvar cols

svar_rows

numeric vector: svar rows

svar_cols

numeric vector: svar cols

fdata_rows

numeric vector: fdata rows

fdata_cols

numeric vector: fdata cols

sdata_rows

numeric vector: sdata rows

sdata_cols

numeric vector: sdata cols

transpose

TRUE or FALSE (default)

verbose

TRUE (default) or FALSE

sfile

sample file

sfileby

sample file mergeby column

subgroupvar

subgroupvar in sfile

Value

SummarizedExperiment

Examples

# RNASEQ
   file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
   read_rectangles( file, fid_rows = 2:25,     fid_cols = 2,
                          sid_rows = 1,        sid_cols = 5:28,
                         expr_rows = 2:25 ,   expr_cols = 5:28,
                         fvar_rows = 1,       fvar_cols = 1:4,
                        fdata_rows = 2:25 ,  fdata_cols = 1:4,   transpose = FALSE)
# LCMSMS PROTEINGROUPS
   file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
   read_rectangles(  file,
                     fid_rows = 2:21,    fid_cols = 383,
                     sid_rows = 1,       sid_cols = seq(124, 316, by = 6),
                    expr_rows = 2:21,   expr_cols = seq(124, 316, by = 6),
                    fvar_rows = 1,      fvar_cols = c(2, 6, 7, 383),
                   fdata_rows = 2:21,  fdata_cols = c(2, 6, 7, 383),
                   transpose  = FALSE )
# SOMASCAN
   file <- system.file('extdata/atkin.somascan.adat', package = 'autonomics')
   read_rectangles(file, fid_rows = 30,         fid_cols = 23:42,
                         sid_rows = 42:108,     sid_cols = 4,
                        expr_rows = 42:108,    expr_cols = 23:42,
                        fvar_rows = 28:40,     fvar_cols = 22,
                        svar_rows = 41,        svar_cols = 1:21,
                       fdata_rows = 28:40,    fdata_cols = 23:42,
                       sdata_rows = 42:108,   sdata_cols = 1:21,  transpose  = TRUE)
# METABOLON
   file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   read_rectangles(file, sheet = 2,
                     fid_rows = 11:30,     fid_cols = 2,
                     sid_rows = 4,         sid_cols = 15:81,
                    expr_rows = 11:30,    expr_cols = 15:81,
                    fvar_rows = 10,       fvar_cols = 1:14,
                    svar_rows = 1:10,     svar_cols = 14,
                   fdata_rows = 11:30,   fdata_cols = 1:14,
                   sdata_rows = 1:10,    sdata_cols = 15:81,
                    transpose = FALSE )

Read rnaseq counts/bams

Description

Read rnaseq counts/bams

Usage

.read_rnaseq_bams(
  dir,
  paired,
  genome,
  nthreads = detectCores(),
  sfile = NULL,
  by.y = NULL,
  ensdb = NULL,
  verbose = TRUE
)

.read_rnaseq_counts(
  file,
  fid_col = 1,
  sfile = NULL,
  by.y = NULL,
  ensdb = NULL,
  verbose = TRUE
)

read_rnaseq_bams(
  dir,
  paired,
  genome,
  nthreads = detectCores(),
  sfile = NULL,
  by.y = NULL,
  block = NULL,
  formula = as.formula("~ subgroup"),
  min_count = 10,
  pseudo = 0.5,
  ensdb = NULL,
  tpm = FALSE,
  cpm = TRUE,
  log2 = TRUE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  voom = cpm,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

read_rnaseq_counts(
  file,
  fid_col = 1,
  sfile = NULL,
  by.y = NULL,
  formula = as.formula("~ subgroup"),
  block = NULL,
  min_count = 10,
  pseudo = 0.5,
  tpm = FALSE,
  ensdb = NULL,
  cpm = !tpm,
  log2 = TRUE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  voom = cpm,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

Arguments

dir

read_rnaseq_bams: bam/sam dir

paired

read_rnaseq_bams: TRUE/FALSE : paired end reads ?

genome

read_rnaseq_bams: 'mm10', 'hg38', etc. or GTF file

nthreads

read_rnaseq_bams: nthreads used by Rsubread::featureCounts()

sfile

sample file

by.y

sample file mergeby column

ensdb

EnsDb with genesizes : e.g. AnnotationHub::AnnotationHub[['AH64923']]

verbose

TRUE or FALSE: message?

file

count file

fid_col

featureid column (number or string)

block

model blockvar: string or NULL

formula

model formula

min_count

min feature count required in some samples

pseudo

pseudocount added to prevent -Inf log2 values

tpm

TRUE or FALSE : add tpm to assays ( counts / libsize / genelength ) ?

cpm

TRUE or FALSE: add cpm to assays ( counts / effectivelibsize ) ?

log2

TRUE or FALSE: log2 transform ?

plot

TRUE or FALSE: plot?

label

fvar

pca

TRUE or FALSE: perform and plot pca?

pls

TRUE or FALSE: run pls ?

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

voom

model weights to be computed? TRUE/FALSE

coefs

model coefficients of interest: string vector or NULL

contrasts

model coefficient contrasts of interest: string vector or NULL

palette

color palette : named string vector

Value

SummarizedExperiment

Author(s)

Aditya Bhagwat, Shahina Hayat

Examples

# read_rnaseq_bams
  if (requireNamespace('Rsubread')){
      dir <- download_data('billing16.bam.zip')
      object <- read_rnaseq_bams(dir, paired = TRUE, genome = 'hg38')  
      object <- read_rnaseq_bams(dir, paired = TRUE, genome = 'hg38', plot = TRUE)  
  }
# read_rnaseq_counts
  file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
  object <- read_rnaseq_counts(file, fit = 'limma', coefs = 'E15-E00')
  object <- read_rnaseq_counts(file, fit = 'limma', coefs = 'E15-E00', voom = FALSE)
  object <- read_rnaseq_counts(file, fit = 'limma', coefs = 'E15-E00', voom = FALSE, cpm = FALSE)
  object <- read_rnaseq_counts(file, fit = 'limma', coefs = 'E15-E00', voom = FALSE, cpm = FALSE, 
                                    log2 = FALSE)
  object <- read_rnaseq_counts(file, plot = TRUE)
    
# read_rnaseq_counts(tpm = TRUE)
  ## Not run: 
  ah <- AnnotationHub::AnnotationHub()
  ensdb <- ah[['AH64923']]
  object <- read_rnaseq_counts(file, fit = 'limma', coefs = 'E02-E00', tpm = TRUE, ensdb = ensdb)
  
## End(Not run)

Read somascan adatfile

Description

Read somascan adatfile

Usage

.read_somascan(
  file,
  fidvar = "Target",
  sidvar = "SampleId",
  sfile = NULL,
  by.x = NULL,
  by.y = NULL,
  groupvar = "SampleGroup",
  verbose = TRUE
)

read_somascan(
  file,
  fidvar = "Target",
  sidvar = "SampleId",
  sfile = NULL,
  by.x = NULL,
  by.y = NULL,
  groupvar = "SampleGroup",
  fname_var = "EntrezGeneSymbol",
  sample_type = "Sample",
  feature_type = "Protein",
  sample_quality = c("FLAG", "PASS"),
  feature_quality = c("FLAG", "PASS"),
  rm_na_svars = FALSE,
  rm_single_value_svars = FALSE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  formula = as.formula(sprintf("~ %s", groupvar)),
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

Arguments

file

somascan (adat) file

fidvar

featureid var

sidvar

sampleid var

sfile

sample file

by.x

'file' mergeby column

by.y

'sfile' mergeby column

groupvar

string

verbose

TRUE or FALSE: message?

fname_var

featurename var: string

sample_type

subset of c('Sample','QC','Buffer','Calibrator')

feature_type

subset of c('Protein', 'Hybridization Control Elution','Rat Protein')

sample_quality

subset of c('PASS', 'FLAG', 'FAIL')

feature_quality

subset of c('PASS', 'FLAG', 'FAIL')

rm_na_svars

TRUE or FALSE: rm NA svars?

rm_single_value_svars

TRUE or FALSE: rm single value svars?

plot

TRUE or FALSE: plot ?

label

fvar

pca

TRUE or FALSE: run pca?

pls

TRUE or FALSE: run pls?

fit

model engine: 'limma', 'lm', 'lme(r)','wilcoxon' or NULL

formula

model formula

block

model blockvar

coefs

model coefficients of interest: character vector or NULL

contrasts

coefficient contrasts of interest: character vector or NULL

palette

character vector or NULL

Value

Summarizedexperiment

Examples

file <- system.file('extdata/atkin.somascan.adat', package = 'autonomics')
read_somascan(file, plot = TRUE, block = 'Subject')

Abstract model fit

Description

Abstract model fit

Usage

abstract_fit(
  object,
  sep = guess_fitsep(fdt(object)),
  fit = fits(object),
  coef = coefs(object, fit = fit),
  significancevar = "p",
  significance = 0.05
)

Arguments

object

SummarizedExperiment

sep

string

fit

character vector

coef

character vector

significancevar

'p' or 'fdr'

significance

fraction : pvalue cutoff

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, fit = 'limma', coef = 't3-t0')
fdt(object)
fdt(abstract_fit(object))

Add adjusted pvalues

Description

Add adjusted pvalues

Usage

add_adjusted_pvalues(object, ...)

## S3 method for class 'data.table'
add_adjusted_pvalues(
  object,
  method = "fdr",
  fit = fits(object),
  coefs = default_coefs(object, fit = fit),
  verbose = TRUE,
  ...
)

## S3 method for class 'SummarizedExperiment'
add_adjusted_pvalues(
  object,
  method = "fdr",
  fit = fits(object),
  coefs = default_coefs(object, fit = fit),
  verbose = TRUE,
  ...
)

Arguments

object

SummarizedExperiment or (feature) data.table

...

for s3 dispatch

method

'fdr', 'bonferroni', ... (see 'p.adjust.methods')

fit

'limma', 'lm', 'lme', 'lmer'

coefs

coefficient (string)

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fdt(object) %<>% extract(, 1:2)
object %<>% fit_limma(coef = 'Adult-X30dpt')
object %<>% extract(order(fdt(.)$`p~Adult-X30dpt~limma`), )
 fdt(object)
(fdt(object) %<>% add_adjusted_pvalues('fdr'))
(fdt(object) %<>% add_adjusted_pvalues('fdr'))      # smart enough not to add second column
(fdt(object)  %>% add_adjusted_pvalues('bonferroni'))

Add assay means

Description

Add assay means

Usage

add_assay_means(object, assay = assayNames(object)[1], bin = TRUE)

Arguments

object

SummarizedExperiment or NULL

assay

string

bin

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fdt(object) %<>% extract(, 1:2)
fdt(object)
object %<>% add_assay_means(SummarizedExperiment::assayNames(.))
fdt(object)

Add facetvars

Description

Add facetvars

Usage

add_facetvars(
  object,
  fit = fits(object)[1],
  coefs = default_coefs(object, fit = fit)
)

Arguments

object

SummarizedExperiment

fit

string

coefs

string vector

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, fit = 'limma')
object %<>% add_adjusted_pvalues()
fdt(object)
fdt(add_facetvars(object))

Add opentargets annotations

Description

Add opentargets annotations

Usage

add_opentargets_by_uniprot(
  object,
  cols = c("genesymbol", "genename", "function"),
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

cols

character vector

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
object %<>% add_opentargets_by_uniprot()

Add psp

Description

Add PhosphoSitePlus literature counts

Usage

add_psp(
  object,
  pspfile = file.path(R_user_dir("autonomics", "cache"), "phosphositeplus",
    "Phosphorylation_site_dataset.gz")
)

Arguments

object

SummarizedExperiment

pspfile

phosphositeplus file

Details

Go to www.phosphosite.org
Register and Login.
Download Phosphorylation_site_dataset.gz'.
Save into: file.path(R_user_dir('autonomics','cache'),'phosphositeplus')

Value

SummarizedExperiment

Examples

fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics')
profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_phosphosites(fosfile = fosfile, profile = profile)
fdt(object)
object %<>% add_psp()
fdt(object)

Add smiles

Description

Add smiles

Usage

add_smiles(object)

Arguments

object

character/factor vector with pubchem ids

Value

character/factor vector

References

https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest-tutorial

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
# add_smiles(object[1:10, ]) # seems down

Alternative Enrichment Analysis

Description

Alternative Enrichment Analysis

Usage

altenrich(
  object,
  pathwaydt,
  genevar = "gene",
  genesep = "[ ,;]",
  coef = default_coefs(object)[1],
  fit = fits(object)[1],
  significancevar = "p",
  significance = 0.05,
  effectsize = 0,
  n = 3,
  genes = FALSE,
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

pathwaydt

data.table, e.g. read_msigdt

genevar

gene fvar

genesep

string or NULL

coef

string in coefs(object)

fit

'limma', 'lm', 'lme', 'lmer', 'wilcoxon'

significancevar

'p' or 'fdr'

significance

significance cutoff

effectsize

effectsize cutoff

n

no of detected genes required (for geneset to be examined)

genes

whether to record genes

verbose

whether to msg

Details

This is an alternative enrichent analysis implementation. It is more modular: uses four times .enrichment(VERBOSE)? as backend. But also four times slower than enrichment, so not recommended. It is retaind for testing purposes.

This alternative enrichment implementation

See Also

[enrichment()]


Get/set analysis

Description

Get/set analysis

Usage

analysis(object)

## S4 method for signature 'SummarizedExperiment'
analysis(object)

analysis(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,list'
analysis(object) <- value

Arguments

object

SummarizedExperiment

value

list

Value

analysis details (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
analysis(object)

Analyze

Description

Analyze

Usage

analyze(
  object,
  pca = TRUE,
  pls = TRUE,
  fit = "limma",
  formula = ~subgroup,
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  contrasts = NULL,
  coefs = contrast_coefs(object, formula = formula, drop = drop, codingfun = codingfun),
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  plot = pca & !is.null(fit),
  label = "feature_id",
  palette = NULL,
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

pca

TRUE / FALSE: perform pca ?

pls

TRUE / FALSE: perform pls ?

fit

linmod engine: 'limma', 'lm', 'lme(r)', 'lmer', 'wilcoxon'

formula

model formula

drop

TRUE / FALSE : drop varname in designmat ?

codingfun

factor coding function

  • contr.treatment: intercept = y0, coefi = yi - y0

  • contr.treatment.explicit: intercept = y0, coefi = yi - y0

  • code_control: intercept = ymean, coefi = yi - y0

  • contr.diff: intercept = y0, coefi = yi - y(i-1)

  • code_diff: intercept = ymean, coefi = yi - y(i-1)

  • code_diff_forward: intercept = ymean, coefi = yi - y(i+)

  • code_deviation: intercept = ymean, coefi = yi - ymean (drop last)

  • code_deviation_first: intercept = ymean, coefi = yi - ymean (drop first)

  • code_helmert: intercept = ymean, coefi = yi - mean(y0:(yi-1))

  • code_helmert_forward: intercept = ymean, coefi = yi - mean(y(i+1):yp)

contrasts

model coefficient contrasts of interest: string vector or NULL

coefs

model coefficients of interest: string vector or NULL

block

model blockvar

weightvar

NULL or name of weight matrix in assays(object)

plot

TRUE / FALSE

label

fvar

palette

NULL or colorvector

verbose

TRUE / FALSE: message?

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% analyze()

Read compound discoverer output

Description

Read compound discoverer output

Usage

annotate_compounddiscoverer(
  x,
  dir = getwd(),
  files = list.files(path = dir, pattern = ".*masslist.*\\.xslx$", ignore.case = TRUE,
    full.names = TRUE),
  verbose = TRUE
)

Arguments

x

SummarizedExperiment (read_compounddiscoverer)

dir

compound discoverer output directory

files

compound discoverer masslist files

verbose

TRUE or FALSE : message ?

Value

SummarizedExperiment


Annotate maxquant

Description

Annotate maxquant data.table

Usage

annotate_maxquant(
  dt,
  uniprothdrs,
  contaminanthdrs,
  maxquanthdrs,
  restapi = FALSE,
  verbose = TRUE
)

Arguments

dt

data.table : output of read_maxquant_(proteingroups|phosphosites)

uniprothdrs

data.table : output of read_uniprotdt

contaminanthdrs

data.table : output of read_uniprotdt

maxquanthdrs

data.table : output of read_uniprotdt

restapi

logical(1) : use uniprot restapi to complete missing annotations ?

verbose

logical(1) : message ?

Details

Uncollapse, annotate, curate, recollapse, name

Value

data.table

Examples

# Fukuda 2020: contaminants + maxquanthdrs
#-----------------------------------------
          file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
            dt <- .read_maxquant_proteingroups(file)
            dt[, 1:2]
     uniprothdrs <- NULL
 contaminanthdrs <- read_contaminantdt()
    maxquanthdrs <- parse_maxquant_hdrs(dt$`Fasta headers`); dt$`Fasta headers` <- NULL
          dt %<>% annotate_maxquant(uniprothdrs, contaminanthdrs, maxquanthdrs)
          dt[                 , 1:9]
          dt[    reverse== '+', 1:9]
          dt[contaminant== '+', 1:9]
                                              
# Billing 2019: uniprothdrs + contaminants + maxquanthdrs
#--------------------------------------------------------
profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics')
 upfile <- system.file('extdata/uniprot_hsa_20140515.fasta',  package = 'autonomics')
prodt <- .read_maxquant_proteingroups(profile);         prodt[, 1:2]
fosdt <- .read_maxquant_phosphosites(fosfile, profile); fosdt[, 1:3]
    uniprothdrs <- read_uniprotdt(upfile)
contaminanthdrs <- read_contaminantdt()
   maxquanthdrs <- parse_maxquant_hdrs(prodt$`Fasta headers`)
annotate_maxquant(prodt, uniprothdrs, contaminanthdrs, maxquanthdrs)[, 1:8]
annotate_maxquant(fosdt, uniprothdrs, contaminanthdrs, maxquanthdrs)[, 1:8]

Annotate uniprot/ensp

Description

Annotate uniprot/ensp

Usage

annotate_uniprot_rest(x, columns = UNIPROTCOLS, verbose = TRUE)

Arguments

x

character vector

columns

character vector

verbose

TRUE or FALSE

Value

data.table(dbid, uniprot, reviewed, protein, gene, canonical, isoform, fragment, existence, organism, full)

Examples

annotate_uniprot_rest( x = c('P00761', 'Q32MB2') )
annotate_uniprot_rest( x = c('ENSBTAP00000006074', 'ENSP00000377550') )

Assert that x is a valid SummarizedExperiment

Description

Assert that x is a valid SummarizedExperiment

Usage

assert_is_valid_sumexp(x, .xname = get_name_in_parent(x))

Arguments

x

SummarizedExperiment

.xname

see get_name_in_parent

Value

TRUE or FALSE

Examples

# VALID
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    x <- read_metabolon(file)
    assert_is_valid_sumexp(x)
# NOT VALID
    rownames(SummarizedExperiment::colData(x)) <- NULL
    # assert_is_valid_sumexp(x)

Data used in examples/vignette/tests/longtests

Description

Data used in examples/vignette/tests/longtests

Usage

AUTONOMICS_DATASETS

Format

An object of class character of length 19.

Examples

AUTONOMICS_DATASETS

Bin continuous variable

Description

Bin continuous variable

Usage

bin(object, ...)

## S3 method for class 'logical'
bin(object, ...)

## S3 method for class 'character'
bin(object, ...)

## S3 method for class 'factor'
bin(object, ...)

## S3 method for class 'numeric'
bin(object, probs = c(0, 0.33, 0.66, 1), ...)

## S3 method for class 'SummarizedExperiment'
bin(object, fvar, probs = c(0, 0.33, 0.66, 1), ...)

Arguments

object

numeric or SummarizedExperiment

...

(S3 dispatch)

probs

numeric

fvar

string or NULL

Value

factor vector

Examples

# Numeric vector
    object <- rnorm(10, 5, 1)
    bin(object)
# SummarizedExperiment
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    fdt(object <- read_maxquant_proteingroups(file))
    fdt(bin(object, 'pepcounts'))

Biplot

Description

Biplot

Usage

biplot(
  object,
  method = biplot_methods(object)[1],
  by = biplot_by(object, method)[1],
  dims = biplot_dims(object, method, by)[1:2],
  color = if (method %in% DIMREDSUPER) by else "subgroup",
  shape = NULL,
  size = NULL,
  alpha = NULL,
  group = NULL,
  linetype = NULL,
  label = NULL,
  feature_label = "feature_id",
  fixed = list(shape = 15, size = 3),
  nx = 0,
  ny = 0,
  colorpalette = make_svar_palette(object, color),
  alphapalette = make_alpha_palette(object, alpha),
  title = paste0(method, guess_fitsep(fdt(object)), by),
  theme = ggplot2::theme(plot.title = element_text(hjust = 0.5), panel.grid =
    element_blank())
)

Arguments

object

SummarizedExperiment

method

'pca', 'pls', 'lda', 'spls', 'opls', 'sma'

by

svar

dims

numeric vector: e.g. 1:2

color

svar

shape

svar

size

svar

alpha

svar

group

svar

linetype

svar

label

svar

feature_label

fvar

fixed

fixed plot aesthetics

nx

number of x features to plot

ny

number of y features to plot

colorpalette

character vector

alphapalette

character vector

title

string

theme

ggplot2::theme output

Value

ggplot object

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% pca(ndim = 4)
object %<>% pls(ndim = 4)
biplot(object)
biplot(object, nx = 1)
biplot(object, dims = 3:4, nx = 1)
biplot(object, method = 'pls')
biplot(object, method = 'pls', dims = 3:4)
biplot(object, method = 'pls', dims = 3:4, group = 'Subject')

Biplot batch corrections

Description

Biplot batch corrections

Usage

biplot_corrections(
  object,
  method = "pca",
  by = "sample_id",
  color = "subgroup",
  covariates = character(0),
  varcols = ceiling(sqrt(1 + length(covariates))),
  plot = TRUE
)

Arguments

object

SummarizedExperiment

method

'pca', 'pls', 'lda', or 'sma'

by

svar

color

variable mapped to color (symbol)

covariates

covariates to be batch-corrected

varcols

number of covariate columns

plot

TRUE/FALSE: plot?

Value

grid object

See Also

biplot_covariates

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, pca = TRUE, plot = FALSE)
biplot_corrections(object, color = 'subgroup', covariates = c('Sex', 'Diabetes', 'Subject', 'Time'))

Biplot covariates

Description

Biplot covariates

Usage

biplot_covariates(
  object,
  method = "pca",
  by = "sample_id",
  block = NULL,
  covariates = "subgroup",
  ndim = 6,
  dimcols = 1,
  varcols = length(covariates),
  plot = TRUE
)

Arguments

object

SummarizedExperiment

method

'pca', 'pls', 'lda', or 'sma'

by

svar

block

svar

covariates

covariates: mapped to color or batch-corrected

ndim

number of dimensions to plot

dimcols

number of dimension columns

varcols

number of covariate columns

plot

TRUE or FALSE: whether to plot

Value

ggplot object

See Also

biplot_corrections

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, pca = TRUE)
biplot_covariates(object, covariates = 'subgroup', ndim = 12, dimcols = 3)
biplot_covariates(object, covariates = c('Sex', 'Diabetes', 'Subject', 'Time'))
biplot_covariates(object, covariates = c('Sex', 'Diabetes', 'Subject', 'Time'), ndim = 2)
biplot_covariates(object, covariates = c('subgroup'), dimcols = 3)

Put block in lme-compatible format

Description

Put block in lme-compatible format

Usage

block2lme(block, ...)

## S3 method for class 'list'
block2lme(block, verbose = TRUE, ...)

## S3 method for class 'formula'
block2lme(block, verbose = TRUE, ...)

## S3 method for class 'character'
block2lme(block, verbose = TRUE, ...)

formula2lmer(formula, block)

formula2lm(formula, block)

block_vars(formula)

Arguments

block

block: charactervector or formula

...

required for s3 dispatch

verbose

TRUE or FALSE

formula

formula

Examples

# lme: ensure lme-compatiblae block specification
    block2lme( block = list(subject = ~1, batch = ~1))
    block2lme( block =   ~1|subject)
    block2lme( block =   c('subject',    'batch'))

# lm: integrate block into formula as random effect
    formula2lm(   formula = ~ subgroup,  block = c('subject', 'batch') )

# lmer: integrate block into formula as fixed effect
    formula2lmer( formula = ~ subgroup,  block = c('subject',    'batch') )
    formula2lmer( formula = ~ subgroup         + (1|subject) + (1|batch ) )

Center samples

Description

Center samples

Usage

center(
  object,
  selector = rep(TRUE, nrow(object)) == TRUE,
  fun = "median",
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

selector

logical vector (length = nrow(object))

fun

aggregation function (string)

verbose

TRUE/FALSE

Value

SummarizedExperiment

Examples

require(matrixStats)
file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fdt(object)$housekeeping <- FALSE
fdt(object)$housekeeping[order(rowVars(values(object)))[1:5]] <- TRUE
values(object)[, object$subgroup=='Adult'] %<>% magrittr::add(5)
plot_sample_densities(object)
plot_sample_densities(center(object))
plot_sample_densities(center(object, housekeeping))

Contrast Code Factor

Description

Contrast Code Factor for General Linear Model

Usage

code(object, ...)

## S3 method for class 'factor'
code(object, codingfun, verbose = TRUE, ...)

## S3 method for class 'data.table'
code(object, codingfun, vars = names(object), verbose = TRUE, ...)

contr.treatment.explicit(n)

code_control(n)

contr.diff(n)

code_diff(n)

code_diff_forward(n)

code_deviation(n)

code_deviation_first(n)

code_helmert(n)

code_helmert_forward(n)

Arguments

object

factor vector

...

used for s3 dispatch

codingfun

factor coding function

  • contr.treatment: intercept = y0, coefi = yi - y0

  • contr.treatment.explicit: intercept = y0, coefi = yi - y0

  • code_control: intercept = ymean, coefi = yi - y0

  • contr.diff: intercept = y0, coefi = yi - y(i-1)

  • code_diff: intercept = ymean, coefi = yi - y(i-1)

  • code_diff_forward: intercept = ymean, coefi = yi - y(i+)

  • code_deviation: intercept = ymean, coefi = yi - ymean (drop last)

  • code_deviation_first: intercept = ymean, coefi = yi - ymean (drop first)

  • code_helmert: intercept = ymean, coefi = yi - mean(y0:(yi-1))

  • code_helmert_forward: intercept = ymean, coefi = yi - mean(y(i+1):yp)

verbose

TRUE or FALSE

vars

svars

n

character vector

Details

A General Linear Model contains:
* An Intercept Coefficient: expressing some form of sample average
* For each numeric variable: a slope coefficient
* For each k-leveled factor: (k-1) Contrast Coefficients.
The interpretation of (intercept and contrast) coefficients depends on the contrast coding function used. Several contrast coding functions are available in 'stats' and 'codingMatrices' But their (function and coefficient) namings are a bit confusing and unsystematic. Instead, the functions below offer an intuitive interface (to the otherwise powerful stats/codingMatrices packages). The names of these functions reflect the contrast coding used (treatment, backward, sum, or helmert contrasts). They also reflect the intercept interpretation (either first factor's first level or grand mean). They all produce intuitive coefficient names (e.g. 't1-t0' rather than just 't1'). They all have unit scaling (a coefficient of 1 means a backward of 1).

Value

(explicitly coded) factor vector

Examples

# Coding functions
    x <- factor(paste0('t', 0:3))
    xlevels <- levels(x)
    contr.treatment(         xlevels)
    contr.treatment.explicit(xlevels)
    contr.diff(              xlevels)
    code_control(            xlevels)
    code_diff(               xlevels)
    code_diff_forward(       xlevels)
    code_deviation(          xlevels)
    code_deviation_first(    xlevels)
    code_helmert(            xlevels)
    code_helmert_forward(    xlevels)

# Code
    x %<>% code(contr.treatment)
    x %<>% code(contr.treatment.explicit)
    x %<>% code(contr.diff)
    x %<>% code(code_control)
    x %<>% code(code_diff)
    x %<>% code(code_diff_forward)
    x %<>% code(code_deviation)
    x %<>% code(code_deviation_first)
    x %<>% code(code_helmert)
    x %<>% code(code_helmert_forward)

# Model
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% fit_limma(codingfun = contr.treatment) # default
    object %<>% fit_limma(codingfun = contr.treatment.explicit)
    object %<>% fit_limma(codingfun = contr.diff)
    object %<>% fit_limma(codingfun = code_control)
    object %<>% fit_limma(codingfun = code_diff)
    object %<>% fit_limma(codingfun = code_diff_forward)
    object %<>% fit_limma(codingfun = code_deviation)
    object %<>% fit_limma(codingfun = code_deviation_first)
    object %<>% fit_limma(codingfun = code_helmert)
    object %<>% fit_limma(codingfun = code_helmert_forward)

Get coefs

Description

Get coefs

Usage

coefs(object, ...)

## S3 method for class 'factor'
coefs(object, ...)

## S3 method for class 'data.table'
coefs(object, fit = fits(object), svars = NULL, ...)

## S3 method for class 'SummarizedExperiment'
coefs(object, fit = fits(object), ...)

Arguments

object

factor, data.table, SummarizedExperiment

...

required for s3 dispatch

fit

'limma', 'lm', 'lme', 'lmer', 'wilcoxon'

svars

NULL or charactervector (svar for which to return coefs)

Value

character vector

Examples

# Factor
    x <- factor(c('A', 'B', 'C'))
    coefs(x)
    coefs(code(x, contr.treatment.explicit))
    coefs(code(x, code_control))
    
# SummarizedExperiment
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file, fit = 'limma')
    coefs(object)

Collapsed entrezg to genesymbol

Description

Collapsed entrezg to genesymbol

Usage

collapsed_entrezg_to_symbol(x, sep, orgdb)

Arguments

x

charactervector

sep

string

orgdb

OrgDb

Value

character vector

Examples

if (requireNamespace('org.Hs.eg.db', quiet = TRUE)){
    x <- c('7448/3818/727', '5034/9601/64374')
    orgdb <- org.Hs.eg.db::org.Hs.eg.db
    collapsed_entrezg_to_symbol(x, sep = '/', orgdb = orgdb)
}

compound discoverer quantity patterns

Description

compound discoverer quantity patterns

Usage

COMPOUNDDISCOVERER_PATTERNS

Format

An object of class character of length 2.

Examples

COMPOUNDDISCOVERER_PATTERNS

Contaminants URL

Description

Contaminants URL

Usage

CONTAMINANTSURL

Format

An object of class character of length 1.

Examples

CONTAMINANTSURL

Row/Col contrasts

Description

Row/Col contrasts

Usage

contrast_subgroup_cols(object, subgroupvar)

contrast_subgroup_rows(object, subgroupvar)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup svar

Value

matrix

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object$subgroup <- paste0(object$Diabetes, '.', object$Time)
subgroup_matrix(object, subgroupvar = 'subgroup')
contrast_subgroup_cols(object, subgroupvar = 'subgroup')
contrast_subgroup_rows(object, subgroupvar = 'subgroup')

Count/Collapse in/outside intersection

Description

Count/Collapse in/outside intersection

Usage

count_in(x, ...)

## S3 method for class 'character'
count_in(x, y, ...)

## S3 method for class 'factor'
count_in(x, y, ...)

## S3 method for class 'list'
count_in(x, y, ...)

collapse_in(x, ...)

## S3 method for class 'character'
collapse_in(x, y, sep, ...)

## S3 method for class 'factor'
collapse_in(x, y, sep, ...)

## S3 method for class 'list'
collapse_in(x, y, sep, ...)

count_out(x, ...)

## S3 method for class 'character'
count_out(x, y, ...)

## S3 method for class 'factor'
count_out(x, y, ...)

## S3 method for class 'list'
count_out(x, y, ...)

Arguments

x

character OR list

...

used for S3 dispatch

y

character

sep

string

Value

number OR numeric

Examples

# Sets
   contrast1 <- c('a', 'b', 'c', 'd')
     pathway <- c('c', 'd', 'e', 'f')
   contrast2 <- c('e', 'f', 'g', 'h')

# Count outside
   count_out(contrast1, pathway)
   count_out(list(contrast1 = contrast1, contrast2 = contrast2), pathway)

# Count inside
   count_in(contrast1, pathway)
   count_in(list(contrast1 = contrast1, contrast2 = contrast2), pathway)

# Collapse inside
   collapse_in(contrast1, pathway, sep = ' ')
   collapse_in(list(contrast1 = contrast1, contrast2 = contrast2), pathway, sep = ' ')

Get/Set counts

Description

Get / Set counts matrix

Usage

counts(object)

## S4 method for signature 'SummarizedExperiment'
counts(object)

counts(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
counts(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
counts(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,NULL'
counts(object) <- value

Arguments

object

SummarizedExperiment

value

count matrix (features x samples)

Value

count matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
counts(object)[1:3, 1:3]
counts(object) <- values(object)

Convert between counts and cpm/tpm

Description

Convert between counts and cpm/tpm

Usage

counts2cpm(x, libsize = scaledlibsizes(x))

cpm2counts(x, libsize)

Arguments

x

count/cpm matrix

libsize

(scaled) libsize vector

Value

cpm/tpm/count matrix

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
libsize <- scaledlibsizes(counts(object))
tpm <- counts2tpm(counts(object), genesize = 1)
cpm <- counts2cpm(counts(object), libsize)
counts  <- cpm2counts(cpm, libsize)
sum(counts(object) - counts)

counts to tpm

Description

counts to tpm

Usage

counts2tpm(x, genesize)

Arguments

x

count matrix

genesize

genesize vector (kilobase)

Value

tpm matrix

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
counts(object)[1:3, 1:3]
counts2tpm(counts(object), genesize = 1)[1:3, 1:3]

Get/Set cpm

Description

Get / Set cpm matrix

Usage

cpm(object)

## S4 method for signature 'SummarizedExperiment'
cpm(object)

cpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
cpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
cpm(object) <- value

Arguments

object

SummarizedExperiment

value

cpm matrix (features x samples)

Value

cpm matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
cpm(object)[1:3, 1:3]
cpm(object) <- values(object)

Create design matrix

Description

Create design matrix for statistical analysis

Usage

create_design(object, ...)

## S3 method for class 'SummarizedExperiment'
create_design(
  object,
  formula = default_formula(object),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  verbose = TRUE,
  ...
)

## S3 method for class 'data.table'
create_design(
  object,
  formula = default_formula(object),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  verbose = TRUE,
  ...
)

Arguments

object

SummarizedExperiment or data.frame

...

required to s3ify

formula

formula with svars

drop

whether to drop predictor names

codingfun

factor coding function

  • contr.treatment: intercept = y0, coefi = yi - y0

  • contr.treatment.explicit: intercept = y0, coefi = yi - y0

  • code_control: intercept = ymean, coefi = yi - y0

  • contr.diff: intercept = y0, coefi = yi - y(i-1)

  • code_diff: intercept = ymean, coefi = yi - y(i-1)

  • code_diff_forward: intercept = ymean, coefi = yi - y(i+)

  • code_deviation: intercept = ymean, coefi = yi - ymean (drop last)

  • code_deviation_first: intercept = ymean, coefi = yi - ymean (drop first)

  • code_helmert: intercept = ymean, coefi = yi - mean(y0:(yi-1))

  • code_helmert_forward: intercept = ymean, coefi = yi - mean(y(i+1):yp)

verbose

whether to message

Value

design matrix

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
unique(create_design(object))
unique(create_design(object, ~ Time))
unique(create_design(object, ~ Time, codingfun = contr.treatment.explicit))
unique(create_design(object, ~ Time, codingfun = contr.diff))
unique(create_design(object, ~ Time + Diabetes))
unique(create_design(object, ~ Time / Diabetes))
unique(create_design(object, ~ Time * Diabetes))

Download autonomics example data

Description

Download autonomics example data

Usage

DATADIR

download_data(
  filename = NULL,
  localdir = file.path(DATADIR, split_extract_fixed(filename, ".", 1)),
  verbose = TRUE,
  force = FALSE
)

Arguments

filename

file name

'atkin.somascan.adat' Halama, 2018 effects of hypoglycemia
'atkin.metabolon.xlsx'
'billing16.bam.zip' Billing, 2016 stemcell comparison
'billing16.rnacounts.txt'
'billing16.somascan.adat'
'billing16.proteingroups.txt'
'billing19.rnacounts.txt' Billing, 2016 stemcell differentiation
'billing19.proteingroups.txt'
'billing19.phosphosites.txt'
'ddglucose.proteingroups.txt' Omics Module glycolysis inhibitor
'fukuda20.proteingroups.txt' Fukuda, 2020 zebrafish development
'halama18.metabolon.xlsx' Halama, 2018 glutaminase inhibitor
localdir

local dir to save file to

verbose

TRUE / FALSE

force

TRUE / FALSE

Format

An object of class character of length 1.

Value

local file path

Examples

# Show available datasets
    download_data()
    
# atkin 2018 - hypoglycemia - pubmed 30525282
    # download_data('atkin.somascan.adat')            # somascan  intensities
    # download_data('atkin.metabolon.xlsx')           # metabolon intensities

# billing16 - stemcell characterization - pubmed 26857143
    # download_data('billing16.proteingroups.txt')      # proteingroup ratios
    # download_data('billing16.somascan.adat')          # somascan  intensities
    # download_data('billing16.rnacounts.txt')          # rnaseq    counts
    # download_data('billing16.bam.zip')                # rnaseq    alignments

# billing19 - stemcell differentiation - pubmed 31332097
    # download_data('billing19.proteingroups.txt')    # proteingroup ratios
    # download_data('billing19.phosphosites.txt')     # phosphosite  ratios
    # download_data('billing19.rnacounts.txt')        # rnaseq       counts

# fukuda20 - heart regeneration - pubmed PXD016235
    # download_data('fukuda20.proteingroups.txt')       # proteingroup LFQ

# halama18 - glutaminase inhibition - pubmed 30525282
    # download_data('halama18.metabolon.xlsx')          # metabolon intensities

Get default coefs

Description

Get default coefs

Usage

default_coefs(object, ...)

## S3 method for class 'data.table'
default_coefs(object, fit = fits(object), ...)

## S3 method for class 'SummarizedExperiment'
default_coefs(object, fit = fits(object), ...)

Arguments

object

data.table or SummarizedExperiment

...

S3 dispatch

fit

'limma', 'lm', 'lme', 'lmer', 'wilcoxon'

Value

character

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_limma()
default_coefs(object)

Default geom

Description

Default geom

Usage

default_geom(object, x, block = NULL)

Arguments

object

SummarizedExperiment

x

svar

block

svar or NULL

Value

character vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object$Age <- runif(min = 20, max = 60, n = ncol(object))
svars(object)
default_geom(object, x = 'Age')
default_geom(object, x = c('Age', 'Diabetes'))
default_geom(object, x = c('Age', 'Diabetes'), block = 'Subject')

Default sfile

Description

Default sfile

Usage

default_sfile(file)

Arguments

file

data file

Value

sample file

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
default_sfile(file)

Create default formula

Description

Create default formula

Usage

default_subgroupvar(object)

default_formula(object)

Arguments

object

SummarizedExperiment

Value

formula

Examples

# Abundances
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    default_formula(object)
    file <- download_data('billing16.proteingroups.txt')
    object <- read_maxquant_proteingroups(file)
    default_formula(object)

Demultiplex snames

Description

Demultiplex maxquant samplenames

Usage

demultiplex(x, verbose = FALSE)

Arguments

x

character vector

verbose

TRUE or FALSE

Details

⁠WT(L).KD(H).R1{H/L} -> KD_WT.R1⁠ ⁠WT(1).KD(2).R1{1} -> WT.R1⁠ WT.R1 -> WT.R1

Value

character

Examples

# uniplexed / intensity / ratio
   demultiplex(c('KD.R1','OE.R1'))
   demultiplex(c('WT(L).KD(M).OE(H).R1{M}',  'WT(L).KD(M).OE(H).R1{H}'))
   demultiplex(c('WT(L).KD(M).OE(H).R1{M/L}','WT(L).KD(M).OE(H).R1{H/L}'))
# run / replicate
   demultiplex(c('WT(L).OE(H).R1{L}',    'WT(L).OE(H).R1{H}'))     # run
   demultiplex(c('WT.R1(L).OE.R1(H){L}', 'WT.R1(L).OE.R1(H){H}'))  # repl
# label / index
   demultiplex(c('WT(L).OE(H).R1{L}',    'WT(L).OE(H).R1{H}'))     # label
   demultiplex(c('WT(1).OE(2).R1{1}',    'WT(1).OE(2).R1{2}'))     # index
# with unused channels
   demultiplex('WT(1).KD(2).OE(3).R1{6}')

Dequantify maxquant snames

Description

Drop quantity ('Reporter intensity').
Encode {channel} as suffix.

Usage

dequantify(x, quantity = guess_maxquant_quantity(x), verbose = FALSE)

Arguments

x

character

quantity

⁠'ratio', 'normalizedratio'⁠,
'LFQ intensity',
⁠'intensity', 'labeledintensity'⁠ ⁠'reporterintensity', 'correctedreporterintensity'⁠

verbose

TRUE or FALSE

Details

⁠ Ratio H/L WT(L).KD(H).R1 -> WT(L).KD(H).R1{H/L}⁠ ⁠ LFQ intensity WT.R1 -> WT.R1⁠ ⁠Reporter intensity 0 WT(126).KD(127).R1 -> WT(1).KD(2).R1{1}⁠

Value

character

Examples

dequantify(c('Ratio H/L WT(L).KD(M).OE(H).R1',             # Ratios
             'Ratio M/L WT(L).KD(M).OE(H).R1'))
dequantify(c('Ratio H/L normalized WT(L).KD(M).OE(H).R1',  # Norm. Ratios
             'Ratio M/L normalized WT(L).KD(M).OE(H).R1'))
dequantify(c('LFQ intensity WT.R1',                        # LFQ intensity
             'LFQ intensity KD.R1'))
dequantify(c('Reporter intensity 1 WT(126).KD(127).R1',    # Rep.intensities
             'Reporter intensity 2 WT(126).KD(127).R1'))

dequantify_compounddiscoverer compound discoverer snames

Description

Drop quantity.

Usage

dequantify_compounddiscoverer(
  x,
  quantity = guess_compounddiscoverer_quantity(x),
  verbose = FALSE
)

Arguments

x

character

quantity

⁠'area', 'normalizedarea'⁠

verbose

TRUE or FALSE

Details

⁠Norm. Area: 20230908_F143_HILICNEG.raw (F11) -> 20230908_F143_HILICNEG.raw (F11)⁠ ⁠Area: 20230908_F143_HILICNEG.raw (F11) -> 20230908_F143_HILICNEG.raw (F11)⁠

Value

character

Examples

dequantify_compounddiscoverer("Norm. Area: 20230908_F143_HILICNEG.raw (F11)") # Norm. Area
dequantify_compounddiscoverer("Area: 20230908_F143_HILICNEG.raw (F11)")       # Area

Dimension Reduction Methods

Description

Dimension Reduction Methods

Usage

DIMREDUN

DIMREDSUPER

DIMRED

Format

An object of class character of length 2.

An object of class character of length 4.

An object of class character of length 6.

Details

  • DIMREDUN: c('pca', 'sma')

  • DIMREDSUPER: c('lda', 'pls', 'opls', 'spls')

  • DIMRED: c('pca', 'sma', 'lda', 'pls', 'opls', 'spls')


Downloads contaminants

Description

Downloads contaminants

Usage

download_contaminants(url = CONTAMINANTSURL, overwrite = FALSE)

Arguments

url

contaminants file url (string)

overwrite

TRUE or FALSE: overwrite existiung download?

Value

filename (string)

Examples

download_contaminants()                  # download first time
download_contaminants(overwrite = TRUE)  # download each  time

Download GTF file

Description

Download GTF file with feature annotations

Usage

download_gtf(
  organism,
  release = 100,
  gtffile = sprintf("%s/gtf/%s", R_user_dir("autonomics", "cache"),
    basename(make_gtf_url(organism, release) %>% substr(1, nchar(.) - 3)))
)

Arguments

organism

'Homo sapiens', 'Mus musculus' or 'Rattus norvegicus'

release

GTF release (number)

gtffile

string: path to local GTF file

Value

gtffile path

Examples

organism <- 'Homo sapiens'
# download_gtf(organism)

Download mcclain21 data

Description

Download mcclain21 data

Usage

download_mcclain21(
  counts_or_samples = "counts",
  localdir = file.path(DATADIR, "mcclain21"),
  force = FALSE
)

Arguments

counts_or_samples

'counts' or 'samples'

localdir

dirname

force

TRUE or FALSE

Details

Mc clain 2021: COVID19 transcriptomics:

Examples

download_mcclain21('counts')
download_mcclain21('samples')

Download tcga example

Description

Download tcga example

Usage

download_tcga_example()

'data.table' to 'matrix'

Description

Convert between 'data.table' and 'matrix'

Usage

dt2mat(x)

mat2dt(x, idvar)

Arguments

x

data.table / matrix

idvar

idvar string

Value

matrix / data.table

Examples

x <- data.table::data.table(
        gene    = c('ENSG001', 'ENSG002', 'ENSG003'),
        sampleA = c(1787, 10, 432),
        sampleB = c(1143,  3, 268))
dt2mat(x)
mat2dt(dt2mat(x), 'gene')

Enrichment analysis

Description

Are selected genes enriched in pathway?

Usage

enrichment(
  object,
  pathwaydt,
  fit = fits(object)[1],
  coef = coefs(object, fit = fit)[1],
  var = abstractvar(object, fit = fit, coef = coef),
  levels = fdt(object)[[var]] %>% base::levels() %>% extract(-1),
  genevar = "gene",
  genesep = "[ ,;]",
  n = 3,
  verbose = TRUE,
  genes = FALSE
)

Arguments

object

SummarizedExperiment

pathwaydt

pathway data.table

fit

string

coef

string

var

selection fvar

levels

selection levels

genevar

gene fvar

genesep

gene separator (string)

n

number

verbose

whether to msg

genes

whether to report genes

Details

Four enrichment analyses per geneset using the Fisher Exact Test (see four pvalues). Results are returned in a data.table

in : genes in pathway
in.det : detected genes in pathway
in.sel : up/downregulated genes in pathway
in.up(.genes) : upregulated genes in pathway
in.down(.genes) : downregulated genes in pathway
out : genes outside pathway
det : detected genes (in + out)
sel : up/downregulated genes (in + out)
up : upregulated genes (in + out)
down : downregulated genes (in + out)
p.coef.upDET : prob to randomly select this many (or more) upregulated genes (among detected genes)
p.coef.downDET : prob to randomly select this many (or more) downregulated genes (among detected genes)
p.coef.selDET : prob to randomly select this many (or more) up OR downregulated genes (among detected genes)
p.coef.selGEN : prob to randomly select this many (or more) up OR downregulated genes (among genome genes)
p.detGEN : prob to randomly select this many (or more) detected genes (among genome genes)

Examples

# Read
    pathwaydt <- read_msigdt(collections = 'C5:GO:BP')
    file <- system.file('extdata/atkin.somascan.adat', package = 'autonomics')
    object <- read_somascan(file, fit = 'limma', coefs = 't1-t0')
    fvars(object) %<>% gsub('EntrezGeneSymbol', 'gene', .)
    object %<>% abstract_fit()
    var <- abstractvar(object)
    varlevels <- c('flat', 'down', 'up')
    enrichdt1 <- enrichment(object, pathwaydt, var = var)                      # 2:n factor 
    enrichdt2 <- enrichment(object, pathwaydt, var = var, levels = varlevels)  # 1:n factor
    enrichdt3 <-  altenrich(object, pathwaydt)                 # alternative implementation
    cols <- intersect(names(enrichdt1), names(enrichdt3))
    all(enrichdt1[, cols, with = FALSE]  ==  enrichdt3[, cols, with = FALSE])   # identical

taxon/ens to organism

Description

taxon/ens to organism

Usage

ens2org(x)

taxon2org(x)

Arguments

x

character vector

Value

character vector

Examples

taxon2org( x = c('9606', '9913') )
  ens2org( x = c('ENSP00000377550', 'ENSBTAP00000038329') )

Entrezg to genesymbol

Description

Entrezg to genesymbol

Usage

entrezg_to_symbol(x, orgdb)

Arguments

x

charactervector

orgdb

OrgDb

Value

character vector

Examples

if (requireNamespace('org.Hs.eg.db', quiet = TRUE)){
    orgdb <- org.Hs.eg.db::org.Hs.eg.db
    entrezg_to_symbol(x = c('7448', '3818', '727'), orgdb)
}

Extract rectangle from omics file, data.table, or matrix

Description

Extract rectangle from omics file, data.table, or matrix

Usage

extract_rectangle(x, ...)

## S3 method for class 'character'
extract_rectangle(
  x,
  rows = seq_len(nrows(x, sheet = sheet)),
  cols = seq_len(ncols(x, sheet = sheet)),
  verbose = FALSE,
  transpose = FALSE,
  drop = FALSE,
  sheet = 1,
  ...
)

## S3 method for class 'data.table'
extract_rectangle(
  x,
  rows = seq_len(nrow(x)),
  cols = seq_len(ncol(x)),
  transpose = FALSE,
  drop = FALSE,
  ...
)

## S3 method for class 'matrix'
extract_rectangle(
  x,
  rows = seq_len(nrow(x)),
  cols = seq_len(ncol(x)),
  transpose = FALSE,
  drop = FALSE,
  ...
)

Arguments

x

omics datafile or datatable

...

allow for S3 method dispatch

rows

numeric vector

cols

numeric vector

verbose

logical

transpose

logical

drop

logical

sheet

numeric or string

Value

matrix

Examples

# FROM FILE: extract_rectangle.character
#=======================================
   x <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   extract_rectangle(x, rows = 11:30, cols = 15:81, sheet = 2)[ 1:3, 1:3 ]  # exprs
   extract_rectangle(x, rows = 11:30, cols = 2,     sheet = 2)[ 1:3,     ]  # fids
   extract_rectangle(x, rows = 4,     cols = 15:81, sheet = 2)[    , 1:3 ]  # sids
   extract_rectangle(x, rows = 10:30, cols = 1:14,  sheet = 2)[ 1:3, 1:3 ]  # fdt
   extract_rectangle(x, rows = 1:10,  cols = 14:81, sheet = 2, transpose = TRUE)[1:3, 1:3] # sdt

# FROM MATRIX: extract_rectangle.matrix
#======================================
   x <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   x %<>% extract_rectangle(sheet = 2)
   extract_rectangle(x, rows = 11:30,  cols = 15:81, sheet = 2)[ 1:3, 1:3 ]  # exprs
   extract_rectangle(x, rows = 11:30,  cols = 2,     sheet = 2)[ 1:3,     ]  # fids
   extract_rectangle(x, rows = 4,      cols = 15:81, sheet = 2)[    , 1:3 ]  # sids
   extract_rectangle(x, rows = 10:30,  cols = 1:14,  sheet = 2)[ 1:3, 1:3 ]  # fdt
   extract_rectangle(x, rows = 1:10,   cols = 14:81, sheet = 2, transpose = TRUE)[1:3, 1:3] # sdt

Cluster features

Description

Cluster features

Usage

fcluster(
  object,
  distmat = NULL,
  method = "cmeans",
  k = 2:10,
  verbose = TRUE,
  plot = TRUE,
  label = if ("gene" %in% fvars(object)) "gene" else "feature_id",
  alpha = 1,
  nrow = if (length(method) > 1) length(method) else NULL,
  ncol = NULL
)

Arguments

object

SummarizedExperiment

distmat

distance matrix

method

'cmeans'

k

number of clusters

verbose

TRUE or FALSE

plot

TRUE or FALSE

label

fvar

alpha

fraction

nrow

number

ncol

number

Value

SummarizedExperiment

SummarizedExperiment

Examples

object <- twofactor_sumexp()
distmat <- fdist(object)
fcluster(object)                                                   # membership-based colors
fcluster(object, distmat)                                          # silhouette-based colors
fcluster(object, distmat, method = c('cmeans', 'hclust', 'pamk'))  # more methods

Get/Set sample/feature data

Description

Get/Set sample/feature data

Usage

fdata(object)

sdata(object)

fdt(object)

sdt(object)

## S4 method for signature 'SummarizedExperiment'
fdata(object)

## S4 method for signature 'SummarizedExperiment'
sdata(object)

## S4 method for signature 'SummarizedExperiment'
fdt(object)

## S4 method for signature 'SummarizedExperiment'
sdt(object)

fdata(object) <- value

sdata(object) <- value

fdt(object) <- value

sdt(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,data.frame'
fdata(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,data.frame'
sdata(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,DataFrame'
sdata(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,data.table'
fdt(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,data.table'
sdt(object) <- value

Arguments

object

SummarizedExperiment

value

data.frame/data.table

Value

data.frame/data.table (get) or updated object (set)

Examples

# Read data
    file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
    object <- read_maxquant_proteingroups(file)
# sdt/fdt
    sdt(object)[1:3, ]
    fdt(object)[1:3, ]
    sdt(object) %<>% cbind(b=1)
    fdt(object) %<>% cbind(b=1)
    sdt(object)
    fdt(object)
# sdata/fdata
    sdata(object)[1:3, ]
    fdata(object)[1:3, ]
    sdata(object) %<>% cbind(a=1)
    fdata(object) %<>% cbind(a=1)
    sdata(object)[1:3, ]
    fdata(object)[1:3, ]

fdr to p

Description

fdr to p

Usage

fdr2p(fdr)

Arguments

fdr

fdr values

Examples

# Read/Fit
   file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   object <- read_metabolon(file)
   object %<>% fit_limma()
   pcol <- pvar(fdt(object), fit = 'limma', coef = 't3-t0')
   object %<>% extract(order(fdt(.)[[pcol]]), )
   object %<>% extract(1:10, )
   fdt(object) %<>% extract(, 1)
   object %<>% fit_limma(coefs = 't3-t0')
# fdr2p
   fdt(object)[[pcol]]
   fdt(object)[[pcol]] %>% p.adjust(method = 'fdr')
   fdt(object)[[pcol]] %>% p.adjust(method = 'fdr') %>% fdr2p()

Filter features with replicated expression in some subgroup

Description

Filter features with replicated expression in some subgroup

Usage

filter_exprs_replicated_in_some_subgroup(
  object,
  subgroupvar = "subgroup",
  assay = assayNames(object)[1],
  comparator = if (contains_ratios(object)) "!=" else ">",
  lod = 0,
  nsample = 2,
  nsubgroup = 1,
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup svar

assay

string

comparator

'>' or '!='

lod

number: limit of detection

nsample

number

nsubgroup

number

verbose

TRUE or FALSE

Value

Filtered SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% filter_exprs_replicated_in_some_subgroup()
filter_exprs_replicated_in_some_subgroup(object, character(0))
filter_exprs_replicated_in_some_subgroup(object, NULL)

Filter features on condition

Description

Filter features on condition

Usage

filter_features(object, condition, verbose = TRUE)

Arguments

object

SummarizedExperiment

condition

filter condition

verbose

logical

Value

filtered eSet

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
filter_features(object, SUPER_PATHWAY == 'Lipid')

Filter medoid sample

Description

Filter medoid sample

Usage

filter_medoid(object, by = NULL, verbose = FALSE)

Arguments

object

SummarizedExperiment

by

svar

verbose

whether to message

Value

SummarizedExperiment

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file, plot = FALSE)
object %<>% filter_medoid(by = 'subgroup', verbose=TRUE)

Filter samples on condition

Description

Filter samples on condition

Usage

filter_samples(object, condition, verbose = TRUE, record = TRUE)

Arguments

object

SummarizedExperiment

condition

filter condition

verbose

TRUE/FALSE

record

TRUE/FALSE

Value

filtered SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
filter_samples(object, subgroup != 't0', verbose = TRUE)

Fit General Linear Model

Description

Fit General Linear Model

Usage

fit(
  object,
  formula = as.formula("~ subgroup"),
  engine = "limma",
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = create_design(object, formula = formula, drop = drop, codingfun = codingfun,
    verbose = FALSE),
  contrasts = NULL,
  coefs = if (is.null(contrasts)) contrast_coefs(design = design) else NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "se", "t")[1:2],
  ftest = if (is.null(coefs)) TRUE else FALSE,
  sep = FITSEP,
  suffix = paste0(sep, engine),
  verbose = TRUE,
  plot = FALSE
)

fit_limma(
  object,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = create_design(object, formula = formula, drop = drop, codingfun = codingfun),
  contrasts = NULL,
  coefs = if (is.null(contrasts)) model_coefs(design = design) else NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "t"),
  ftest = if (is.null(coefs)) TRUE else FALSE,
  sep = FITSEP,
  suffix = paste0(sep, "limma"),
  verbose = TRUE,
  plot = FALSE
)

.fit_limma(
  object,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = create_design(object, formula = formula, drop = drop, codingfun = codingfun),
  contrasts = NULL,
  coefs = if (is.null(contrasts)) model_coefs(design = design) else NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "se", "t")[1:2],
  ftest = if (is.null(coefs)) TRUE else FALSE,
  sep = FITSEP,
  suffix = paste0(sep, "limma"),
  verbose = TRUE,
  plot = FALSE
)

fit_wilcoxon(
  object,
  formula = as.formula("~ subgroup"),
  drop = NULL,
  codingfun = contr.treatment.explicit,
  design = NULL,
  contrasts = NULL,
  coefs = NULL,
  block = NULL,
  weightvar = NULL,
  statvars = c("effect", "p"),
  sep = FITSEP,
  suffix = paste0(sep, "wilcoxon"),
  verbose = TRUE,
  plot = FALSE
)

Arguments

object

SummarizedExperiment

formula

model formula

engine

'limma', 'lm', 'lme', 'lmer', or 'wilcoxon'

drop

TRUE or FALSE

codingfun

factor coding function

  • contr.treatment: intercept = y0, coefi = yi - y0

  • contr.treatment.explicit: intercept = y0, coefi = yi - y0

  • code_control: intercept = ymean, coefi = yi - y0

  • contr.diff: intercept = y0, coefi = yi - y(i-1)

  • code_diff: intercept = ymean, coefi = yi - y(i-1)

  • code_diff_forward: intercept = ymean, coefi = yi - y(i+)

  • code_deviation: intercept = ymean, coefi = yi - ymean (drop last)

  • code_deviation_first: intercept = ymean, coefi = yi - ymean (drop first)

  • code_helmert: intercept = ymean, coefi = yi - mean(y0:(yi-1))

  • code_helmert_forward: intercept = ymean, coefi = yi - mean(y(i+1):yp)

design

design matrix

contrasts

NULL or character vector: coefficient contrasts to test

coefs

NULL or character vector: model coefs to test

block

block svar (or NULL)

weightvar

NULL or name of weight matrix in assays(object)

statvars

character vector: subset of c('effect', 'p', 'fdr', 't', 'se')

ftest

TRUE or FALSE

sep

string: pvar separator ("~" in "p~t2~limma")

suffix

string: pvar suffix ("limma" in "p~t2~limma")

verbose

whether to msg

plot

whether to plot

Value

Updated SummarizedExperiment

Examples

# Read
  file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
  object <- read_metabolon(file)
    
# Standard
  fdt(object) %<>% extract(, 'feature_id')
  object %<>% fit_lm(        ~ subgroup)                     #     statistics default
  object %<>% fit_limma(     ~ subgroup)                     # bioinformatics default
  summarize_fit(object)
    
# Blocked
  fdt(object) %<>% extract(, 'feature_id')
  object %<>% fit_limma(     ~ subgroup, block = 'Subject')  #        simple random effects
  object %<>% fit_lme(       ~ subgroup, block = 'Subject')  #      powerful random effects
  object %<>% fit_lmer(      ~ subgroup, block = 'Subject')  # more powerful random effects
  summarize_fit(object)
    
# Alternative coding: e.g. grand mean intercept
  fdt(object) %<>% extract(, 'feature_id')
  object %<>% fit_limma(     ~ subgroup, block = 'Subject', codingfun = code_control)
  object %<>% fit_lme(       ~ subgroup, block = 'Subject', codingfun = code_control)
  object %<>% fit_lmer(      ~ subgroup, block = 'Subject', codingfun = code_control)
  summarize_fit(object)
    
# Posthoc contrasts (only limma!)
  fdt(object) %<>% extract(, 'feature_id')
  object %<>% fit_limma( ~ subgroup, block = 'Subject', codingfun = code_control, coefs ='t1-t0')
  object %<>% fit_limma( ~ 0 + subgroup, block = 'Subject', contrasts = 't1-t0')
      # flexible, but only approximate
      # stat.ethz.ch/pipermail/bioconductor/2014-February/057682.html
        
# Non-parametric: wilcoxon
  fdt(object) %<>% extract(, 'feature_id')
  object %<>% fit_wilcoxon( ~ subgroup)                    # unpaired
  object %<>% fit_wilcoxon( ~ subgroup, block = 'Subject') # paired
    
# Custom separator
  fdt(object) %<>% extract(, 'feature_id')
  fdt( fit_lm(      object, sep = '.'))
  fdt( fit_limma(   object, block = 'Subject', sep = '.') )
  fdt( fit_lme(     object, block = 'Subject', sep = '.') )
  fdt( fit_lmer(    object, block = 'Subject', sep = '.') )
  fdt( fit_wilcoxon(object, block = 'Subject', sep = '.') )
  fdt( fit_wilcoxon(object, sep = '.') )

Fit lm, lme, or lmer

Description

Fit lm, lme, or lmer

Usage

fit_lmx(
  object,
  fit,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  coefs = model_coefs(object, formula = formula, drop = drop, codingfun = codingfun),
  block = NULL,
  opt = "optim",
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "se", "t")[1:2],
  ftest = if (is.null(coefs)) TRUE else FALSE,
  sep = FITSEP,
  suffix = paste0(sep, fit),
  verbose = TRUE,
  plot = FALSE
)

fit_lm(
  object,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "se", "t")[1:2],
  sep = FITSEP,
  suffix = paste0(sep, "lm"),
  coefs = model_coefs(object, formula = formula, drop = drop, codingfun = codingfun),
  contrasts = NULL,
  ftest = if (is.null(coefs)) TRUE else FALSE,
  verbose = TRUE,
  plot = FALSE
)

fit_lme(
  object,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  opt = "optim",
  statvars = c("effect", "p", "se", "t")[1:2],
  sep = FITSEP,
  suffix = paste0(sep, "lme"),
  coefs = model_coefs(object, formula = formula, drop = drop, codingfun = codingfun),
  contrasts = NULL,
  ftest = if (is.null(coefs)) TRUE else FALSE,
  verbose = TRUE,
  plot = FALSE
)

fit_lmer(
  object,
  formula = as.formula("~ subgroup"),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit,
  design = NULL,
  block = NULL,
  weightvar = if ("weights" %in% assayNames(object)) "weights" else NULL,
  statvars = c("effect", "p", "se", "t")[1:2],
  sep = FITSEP,
  suffix = paste0(sep, "lmer"),
  coefs = model_coefs(object, formula = formula, drop = drop, codingfun = codingfun),
  contrasts = NULL,
  ftest = if (is.null(coefs)) TRUE else FALSE,
  verbose = TRUE,
  plot = FALSE
)

Arguments

object

SummarizedExpriment

fit

'lm', 'lme', or 'lmer'

formula

formula

drop

TRUE or FALSE

codingfun

coding function

coefs

NULL or stringvector

block

NULL or svar

opt

optimizer used in fit_lme: 'optim' (more robust) or 'nlminb'

weightvar

NULL or svar

statvars

character vector: subset of c('effect', 'p', 'fdr', 't')

ftest

TRUE or FALSE

sep

string

suffix

string: pvar suffix ("lm" in "p~t2~lm")

verbose

TRUE or FALSE

plot

TRUE or FALSE

design

NULL

contrasts

unused. only to allow generic get(fitfun)(contrasts)

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
fit_lm(     object, formula = ~subgroup)
fit_limma(  object, formula = ~subgroup)
fit_limma(  object, formula = ~subgroup, block = 'Subject' )
fit_lme(    object, formula = ~subgroup, block = 'Subject' )
fit_lmer(   object, formula = ~subgroup, block = 'Subject' )
# fit_lme(  object, formula = ~subgroup, block = ~1|Subject) # needs fine-tuning
# fit_lmer( object, formula = ~subgroup + (1|Subject))       # needs fine-tuning

Fit/Plot survival

Description

Fit/Plot survival

Usage

fit_survival(
  object,
  assay = assayNames(object)[1],
  percentile = 25,
  sep = FITSEP,
  samples = if (ncol(object) < 50) TRUE else FALSE,
  verbose = TRUE
)

.plot_survival(
  object,
  assay = assayNames(object)[1],
  percentile = 25,
  title = paste0(assay, " ", percentile, "%"),
  subtitle = NULL,
  palette = c("#009999", "#ff5050")
)

plot_survival(
  object,
  assay = assayNames(object)[1],
  percentile = percentiles(object),
  title = paste0(assay, " ", percentile, "%"),
  subtitle = NULL,
  palette = c("#009999", "#ff5050"),
  n = 4,
  ncol = 4,
  nrow = length(percentile),
  file = NULL,
  width = 7 * ncol,
  height = 7 * nrow
)

Arguments

object

SummarizedExperiment

assay

string

percentile

percentage (not greater than 50)

sep

fvar string separator : e.g. '~' gives p~surv~LR50

samples

TRUE or FALSE : record which samples in which stratum ?

verbose

TRUE or FALSE

title

string

subtitle

string

palette

color vector

n

number

ncol

number

nrow

number

file

filepath

width

number

height

number

Value

ggsurvplot

Examples

file <- download_tcga_example()
if (!is.null(file) & requireNamespace('survminer')){
# Read
    object <- readRDS(file)
    object %<>% extract(, .$sample_type == 'T')
    object %<>% extract(c('UGT3A2', 'NSUN3', 'XRCC4', 'WNT10A'), )
# Fit
    fdt(object)
    fdt(fit_survival(object))
    fdt(fit_survival(object, percentile = 50))
    fdt(fit_survival(object, percentile = 50, sep = '.'))
# Plot
    object %<>% fit_survival()
    plot_survival(object)
    p1 <- .plot_survival(object[1, ])
    p2 <- .plot_survival(object[2, ])
}

fitcoefs

Description

fitcoefs

Usage

fitcoefs(object)

Arguments

object

SummarizedExperiment

Value

string vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
fitcoefs(object)
fitcoefs(fit_limma(object))

Get fit models

Description

Get fit models

Usage

fits(object, ...)

## S3 method for class 'data.table'
fits(object, ...)

## S3 method for class 'SummarizedExperiment'
fits(object, ...)

Arguments

object

SummarizedExperiment or data.table

...

S3 dispatch

Value

character vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, fit = 'limma')
fits(object)

Fit results separator

Description

Fit results separator

Usage

FITSEP

PPATTERN

Format

An object of class character of length 1.

An object of class character of length 1.

Examples

FITSEP

Get fit vars/dt

Description

Get fit vars/dt

Usage

fitvars(object)

fitdt(object)

Arguments

object

SummarizedExperimenmt

Value

string vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
fitvars(object)
  fitdt(object)
fitvars(fit_limma(object))
  fitdt(fit_limma(object))

Fix excel genes

Description

Fix excel genes

Usage

fix_xlgenes(x)

Arguments

x

character

Value

character

Examples

x <- c('FAM46B', '15-Sep', '2-Mar', 'MARCHF6')
x
fix_xlgenes(x)

Get fvar levels

Description

Get fvar levels

Usage

flevels(object, fvar)

Arguments

object

SummarizedExperiment

fvar

feature variable

Value

fvar values

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
head(flevels(object, 'feature_id'))

Get/Set fnames

Description

Get/Set feature names

Usage

fnames(object)

## S4 method for signature 'SummarizedExperiment'
fnames(object)

fnames(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,character'
fnames(object) <- value

Arguments

object

SummarizedExperiment, eSet, or EList

value

character vector with feature names

Value

feature name vector (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fnames(object) %<>% paste0('protein_', .)
object

formula to string

Description

formula to string

Usage

formula2str(formula)

Arguments

formula

formula

Value

string

Examples

formula2str(~0+subgroup)

Feature type

Description

Feature type

Usage

ftype(
  object,
  formula = default_formula(object),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  fit = fits(object)[1],
  codingfun = contr.treatment.explicit
)

Arguments

object

SummarizedExperiment

formula

model formula

drop

TRUE or FALSE

fit

'limma', 'lm', 'lme', 'wilcoxon'

codingfun

coding function

Value

SummarizedExperiment

Examples

file <- download_data('atkin.metabolon.xlsx')
object <- read_metabolon(file)
object %<>% fit_limma(block = 'Subject')
object %<>% ftype()
fdt(object)

Get fvalues

Description

Get fvar values

Usage

fvalues(object, fvar)

Arguments

object

SummarizedExperiment

fvar

feature variable

Value

fvar values

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
head(fvalues(object, 'feature_id'))
fvalues(object, NULL)

Get/Set fvars

Description

Get/Set feature variables

Usage

fvars(object)

## S4 method for signature 'SummarizedExperiment'
fvars(object)

fvars(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,character'
fvars(object) <- value

Arguments

object

SummarizedExperiment

value

character vector with feature variables

Value

feature variables vector (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fvars(object)[1] %<>% paste0('1')
fvars(object)[1]

Get corresponding orgdb

Description

Get corresponding orgdb

Usage

genome_to_orgdb(genome)

Arguments

genome

'hg38', 'hg19', 'mm10', or 'mm9'

Value

OrgDb

Examples

if (requireNamespace('org.Hs.eg.db', quiet = TRUE)){
    class(genome_to_orgdb('hg38'))
}

group by level

Description

group by level

Usage

group_by_level(x, ...)

## S3 method for class 'character'
group_by_level(x, ...)

## S3 method for class 'factor'
group_by_level(x, ...)

## S3 method for class 'data.table'
group_by_level(x, var, idvar, ...)

Arguments

x

named logical/character/factor

...

S3 dispatch

var

string

idvar

string

Value

unnamed character

Examples

t1 <- c( KLF5 = 'up',  F11 = 'up', RIG = 'flat',   ABT1 = 'down')
dt <- data.table( gene = c( 'KL5', 'F11', 'RIG',  'ABT1' ), 
                    t1 = c( 'up',  'up',  'flat', 'down' ) )
group_by_level(t1)                #  character
group_by_level(factor(t1))        #     factor
group_by_level(dt, 't1', 'gene')  # data.table

Guess compound discoverer quantity from snames

Description

Guess compound discoverer quantity from snames

Usage

guess_compounddiscoverer_quantity(x)

Arguments

x

character vector

Value

string: value from names(COMPOUNDDISCOVERER_PATTERNS)

Examples

## Not run: 
# file
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    guess_compounddiscoverer_quantity(file)

## End(Not run)

# character vector
    x <- "Area: 20230908_F143_HILICNEG.raw (F11)"
    guess_compounddiscoverer_quantity(x)

    x <- "Norm. Area: 20230908_F143_HILICNEG.raw (F11)"
    guess_compounddiscoverer_quantity(x)

guess fitsep

Description

guess fitsep

Usage

guess_fitsep(object, ...)

## S3 method for class 'data.table'
guess_fitsep(object, ...)

## S3 method for class 'SummarizedExperiment'
guess_fitsep(object, ...)

Arguments

object

data.table or SummarizedExperiment

...

S3 dispatch

Value

string

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
object %<>% fit_limma()
guess_fitsep(object)

Guess maxquant quantity from snames

Description

Guess maxquant quantity from snames

Usage

guess_maxquant_quantity(x)

Arguments

x

character vector

Value

string: value from names(MAXQUANT_PATTERNS)

Examples

# file
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    guess_maxquant_quantity(file)

# character vector
    x <- "Ratio M/L normalized STD(L)_E00(M)_E01(H)_R1"
    guess_maxquant_quantity(x)

    x <- "Ratio M/L STD(L)_E00(M)_E01(H)_R1"
    guess_maxquant_quantity(x)

    x <- "LFQ intensity E00.R1"
    guess_maxquant_quantity(x)

    x <- "Reporter intensity corrected 0 STD(0)E00(1)E01(2)_R1"
    guess_maxquant_quantity(x)

    x <- "Reporter intensity 0 STD(0)E00(1)E01(2)_R1"
    guess_maxquant_quantity(x)

    x <- "Intensity H STD(L)_E00(M)_E01(H)_R1"
    guess_maxquant_quantity(x)

Guess separator

Description

Guess separator

Usage

guess_sep(x, ...)

## S3 method for class 'numeric'
guess_sep(x, ...)

## S3 method for class 'character'
guess_sep(x, separators = c(".", "_"), verbose = FALSE, ...)

## S3 method for class 'factor'
guess_sep(x, ...)

## S3 method for class 'SummarizedExperiment'
guess_sep(x, var = "sample_id", separators = c(".", "_"), verbose = FALSE, ...)

Arguments

x

character vector or SummarizedExperiment

...

used for proper S3 method dispatch

separators

character vector: possible separators to look for

verbose

TRUE or FALSE

var

svar or fvar

Value

separator (string) or NULL (if no separator could be identified)

Examples

# charactervector
   guess_sep(c('PERM_NON.R1[H/L]', 'PERM_NON.R2[H/L]'))
   guess_sep(c('WT_untreated_1', 'WT_untreated_2'))
   guess_sep(c('group1', 'group2.R1'))
# SummarizedExperiment
   file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   object <- read_metabolon(file)
   guess_sep(object)

Variable has multiple levels?

Description

Variable has multiple levels?

Usage

has_multiple_levels(x, ...)

## S3 method for class 'character'
has_multiple_levels(x, .xname = get_name_in_parent(x), ...)

## S3 method for class 'factor'
has_multiple_levels(x, .xname = get_name_in_parent(x), ...)

## S3 method for class 'numeric'
has_multiple_levels(x, .xname = get_name_in_parent(x), ...)

## S3 method for class 'data.table'
has_multiple_levels(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y),
  ...
)

## S3 method for class 'SummarizedExperiment'
has_multiple_levels(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y),
  ...
)

Arguments

x

vector, data.table or SummarizedExperiment

...

required for s3 dispatch

.xname

string

y

string

.yname

string

Value

TRUE or false

Examples

# numeric
    a <- numeric();                               has_multiple_levels(a)
    a <- c(1, 1);                                 has_multiple_levels(a)
    a <- c(1, 2);                                 has_multiple_levels(a)
# character
    a <- character();                             has_multiple_levels(a)
    a <- c('A', 'A');                             has_multiple_levels(a)
    a <- c('A', 'B');                             has_multiple_levels(a)
# factor
    a <- factor();                                has_multiple_levels(a)
    a <- factor(c('A', 'A'));                     has_multiple_levels(a)
    a <- factor(c('A', 'B'));                     has_multiple_levels(a)
# data.table
    dt <- data.table(a = factor());               has_multiple_levels(dt, 'b')
    dt <- data.table(a = factor());               has_multiple_levels(dt, 'a')
    dt <- data.table(a = factor());               has_multiple_levels(dt, 'a')
    dt <- data.table(a = factor(c('A', 'A')));    has_multiple_levels(dt, 'a')
    dt <- data.table(a = factor(c('A', 'B')));    has_multiple_levels(dt, 'a')
# sumexp
    object <- matrix(1:9, nrow = 3)
    rownames(object) <- sprintf('f%d', 1:3)
    colnames(object) <- sprintf('s%d', 1:3)
    object <- list(exprs = object)
    object %<>% SummarizedExperiment::SummarizedExperiment()
    object$subgroup <- c('A', 'A', 'A');          has_multiple_levels(object, 'group')
    object$subgroup <- c('A', 'A', 'A');          has_multiple_levels(object, 'subgroup')
    object$subgroup <- c('A', 'B', 'A');          has_multiple_levels(object, 'subgroup')

hdl proteomewatch proteins

Description

hdl proteomewatch proteins

Usage

hdlproteins()

Value

string vector: HDLProteomeWatch protein entries

Examples

hdlproteins()

Impute

Description

Impute NA values

Usage

impute(object, ...)

## S3 method for class 'numeric'
impute(object, shift = 2.5, width = 0.3, verbose = TRUE, plot = FALSE, ...)

## S3 method for class 'matrix'
impute(
  object,
  shift = 2.5,
  width = 0.3,
  verbose = TRUE,
  plot = FALSE,
  n = min(9, ncol(object)),
  palette = make_colors(colnames(object)),
  ...
)

## S3 method for class 'SummarizedExperiment'
impute(
  object,
  assay = assayNames(object)[1],
  by = "subgroup",
  shift = 2.5,
  width = 0.3,
  frac = 0.5,
  verbose = TRUE,
  plot = FALSE,
  palette = make_colors(colnames(object)),
  n = min(9, ncol(object)),
  ...
)

Arguments

object

numeric vector, SumExp

...

required for s3 dispatch

shift

number: sd units

width

number: sd units

verbose

TRUE or FALSE

plot

TRUE or FALSE

n

number of samples to plot

palette

color vector

assay

string

by

svar

frac

fraction: fraction of available samples should be greater than this value for a subgroup to be called available

Details

Imputes NA values from N(mean - 2.5 sd, 0.3 sd)

Value

numeric vector, matrix or SumExp

Examples

# Simple Design
   file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
   object <- read_maxquant_proteingroups(file)
   impute(values(object)[, 1], plot = TRUE)[1:3]              # vector
   impute(values(object),      plot = TRUE)[1:3, 1:3]         # matrix
   impute(object, plot = TRUE)                                # sumexp
# Complex Design
   subgroups <- sprintf('%s_STD', c('E00','E01','E02','E05','E15','E30','M00'))
   file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
   object <- read_maxquant_proteingroups(file, subgroups = subgroups)
   impute(values(object)[1:3, 1   ])     # vector
   impute(values(object)[1:3, 1:5 ])     # matrix
   impute( object )                      # sumexp

Invert subgroups

Description

Invert expressions , subgroups, and sample ids

Usage

invert_subgroups(
  object,
  subgroups = slevels(object, "subgroup"),
  sep = guess_sep(object, "subgroup")
)

Arguments

object

SummarizedExperiment

subgroups

character vector: subgroup levels to be inversed

sep

string: collapsed string separator

Value

character vector or SummarizedExperiment

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
invert_subgroups(object)

Is collapsed subset

Description

Is collapsed subset

Usage

is_collapsed_subset(x, y, sep = ";")

Arguments

x

character vector

y

character vector

sep

string

Value

character vector

Examples

x <- c(              'H3BNX8;H3BRM5', 'G5E9Y3')
y <- c('P20674;H3BNX8;H3BV69;H3BRM5', 'G5E9Y3;Q8WWN8;B4DIT1')
is_collapsed_subset(x, y)

Assert correlation matrix

Description

Assert correlation matrix

Usage

is_correlation_matrix(
  x,
  .xname = get_name_in_parent(x),
  severity = getOption("assertive.severity", "stop")
)

assert_correlation_matrix(x, .xname = get_name_in_parent(x))

Arguments

x

correlation matrix

.xname

string

severity

'warning' or 'stop'

Value

TRUE or false

Examples

x <- matrix(c(1,0.7, 0.3, 1), nrow = 2)
rownames(x) <- c('gene1', 'gene2')
colnames(x) <- c('gene1', 'gene2')
is_correlation_matrix(x)
is_correlation_matrix({x[1,1] <- -2; x})

Is diann, fragpipe, proteingroups, phosphosites file?

Description

Is diann, fragpipe, proteingroups, phosphosites file?

Usage

is_diann_report(x, .xname = get_name_in_parent(x))

is_fragpipe_tsv(x, .xname = get_name_in_parent(x))

is_maxquant_proteingroups(x, .xname = get_name_in_parent(x))

is_maxquant_phosphosites(x, .xname = get_name_in_parent(x))

is_compounddiscoverer_output(x, .xname = get_name_in_parent(x))

assert_diann_report(x, .xname = get_name_in_parent(x))

assert_fragpipe_tsv(x, .xname = get_name_in_parent(x))

assert_maxquant_proteingroups(x, .xname = get_name_in_parent(x))

assert_maxquant_phosphosites(x, .xname = get_name_in_parent(x))

assert_compounddiscoverer_output(x, .xname = get_name_in_parent(x))

Arguments

x

file

.xname

name of x

Examples

file <- NULL
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- 3
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- 'blabla.tsv'
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- download_data('multiorganism.combined_protein.tsv')
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- download_data('dilution.report.tsv')
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

file <- system.file('extdata/billing19.phosphosites.txt', package = 'autonomics')
is_diann_report(file)
is_fragpipe_tsv(file)
is_maxquant_proteingroups(file)
is_maxquant_phosphosites(file)

Is fastadt

Description

Is fastadt

Usage

is_fastadt(x, .xname = get_name_in_parent(x))

assert_fastadt(x, .xname = get_name_in_parent(x))

Arguments

x

fasta data.table

.xname

string

Examples

fastafile <- system.file('extdata/uniprot_hsa_20140515.fasta', package = 'autonomics')
x <- read_uniprotdt(fastafile)
# is_fastadt(x)  # slow

Is a file?

Description

Is a file (and not a dir)

Usage

is_file(file)

Arguments

file

filepath

Details

This function distinguishies between dir and file. Others dont: is.file, fs::file_exists, assertive::is_existing_file

Examples

dir  <- tempdir();  dir.create(dir, showWarnings = FALSE)
file <- tempfile(); invisible(file.create(file))
is_file(dir)
is_file(file)

Is fraction

Description

Is fraction

Usage

is_fraction(x, .xname = get_name_in_parent(x))

assert_is_fraction(x, .xname = get_name_in_parent(x))

Arguments

x

number

.xname

string

Value

TRUE or false

Examples

is_fraction(0.1)          # YES
is_fraction(1)            # YES
is_fraction(1.2)          # NO - more than 1
is_fraction(c(0.1, 0.2))  # NO - vector

Get/set is_imputed

Description

Get/Set is_imputed

Usage

is_imputed(object)

## S4 method for signature 'SummarizedExperiment'
is_imputed(object)

is_imputed(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
is_imputed(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,NULL'
is_imputed(object) <- value

Arguments

object

SummarizedExperiment

value

matrix

Value

matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file, impute = TRUE)
sum(is_imputed(object))

Is positive number

Description

Is positive number

Usage

is_positive_number(x, .xname = get_name_in_parent(x))

assert_positive_number(x, .xname = get_name_in_parent(x))

is_weakly_positive_number(x, .xname = get_name_in_parent(x))

assert_weakly_positive_number(x, .xname = get_name_in_parent(x))

Arguments

x

number

.xname

name of x

Value

TRUE or false

Examples

is_positive_number( 3)
is_positive_number(-3)
is_positive_number( 0)
is_weakly_positive_number(0)
assert_positive_number(3)

Is scalar subset

Description

Is scalar subset

Usage

is_scalar_subset(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y)
)

assert_scalar_subset(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y)
)

Arguments

x

scalar

y

SummarizedExperiment

.xname

name of x

.yname

name of y

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
is_scalar_subset('subgroup',     svars(object))
is_scalar_subset('subject',      svars(object))
assert_scalar_subset('subgroup', svars(object))

Is significant?

Description

Is significant?

Usage

is_sig(
  object,
  fit = fits(object)[1],
  contrast = coefs(object),
  quantity = "fdr"
)

Arguments

object

SummarizedExperiment

fit

subset of autonomics::TESTS

contrast

subset of colnames(metadata(object)[[fit]])

quantity

value in dimnames(metadata(object)[[fit]])[3]

Value

matrix: -1 (downregulated), +1 (upregulatd), 0 (not fdr significant)

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
object %<>% fit_lm()
object %<>% fit_limma()
issig <- is_sig(object, fit = c('lm','limma'), contrast = 'Adult-X30dpt')
plot_contrast_venn(issig)

Is valid formula

Description

Is valid formula

Usage

is_valid_formula(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y)
)

assert_valid_formula(
  x,
  y,
  .xname = get_name_in_parent(x),
  .yname = get_name_in_parent(y)
)

Arguments

x

formula

y

SummarizedExperiment

.xname

string

.yname

string

Value

TRUE or false

Examples

object <- matrix(1:9, nrow = 3)
rownames(object) <- sprintf('f%d', 1:3)
colnames(object) <- sprintf('s%d', 1:3)
object <- list(exprs = object)
object %<>% SummarizedExperiment::SummarizedExperiment()
object$group    <- 'group0'
object$subgroup <- c('A', 'B', 'C')
svars(object)
    is_valid_formula( 'condition',   object)   # not formula
    is_valid_formula( ~condition,    object)   # not svar
    is_valid_formula( ~group,        object)   # not multilevel
    is_valid_formula( ~subgroup,     object)   # TRUE
    is_valid_formula( ~0+subgroup,   object)   # TRUE
    is_valid_formula( ~1,            object)   # TRUE
assert_valid_formula( ~subgroup,     object)

Keep fully connected blocks

Description

Keep fully connected blocks

Usage

keep_connected_blocks(object, block, verbose = TRUE)

Arguments

object

SummarizedExperiment

block

svar

verbose

TRUE or FALSE

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% keep_connected_blocks(  block = 'Subject')

Keep features with n+ connected blocks

Description

Keep features with n+ connected blocks

Usage

keep_connected_features(object, block, n = 2, verbose = TRUE)

Arguments

object

SummarizedExperiment

block

svar

n

number

verbose

TRUE or FALSE

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% keep_connected_blocks(  block = 'Subject')
object %<>% keep_connected_features(block = 'Subject')

Keep replicated features

Description

Keep features replicated for each slevel

Usage

keep_replicated_features(object, formula = ~1, n = 3, verbose = TRUE)

Arguments

object

SummarizedExperiment

formula

formula

n

min replications required

verbose

TRUE or FALSE

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% keep_replicated_features()
object %<>% keep_replicated_features(~ subgroup)

Convert labels into indices

Description

Convert labels into indices

Usage

label2index(x)

Arguments

x

'character'

Examples

label2index(x = 'Reporter intensity 0 WT(0).KD(1).OE(2).R1')
label2index(x = 'Reporter intensity 1 WT(1).KD(2).OE(3).R1')
label2index(x = 'Reporter intensity 0 WT(126).KD(127).OE(128).R1')
label2index(x = 'Reporter intensity 1 WT(126).KD(127).OE(128).R1')
label2index(x = 'Reporter intensity 1 Mix1')

Linear Modeling Engines

Description

Linear Modeling Engines

Usage

LINMOD_ENGINES

Format

An object of class character of length 5.

Examples

LINMOD_ENGINES

list files

Description

list.files for programming

Usage

list_files(dir, full.names)

Arguments

dir

directory

full.names

TRUE or FALSE

Details

Adds a small layer on list.files. Returning NULL rather than character(0) when no files. Making it better suited for programming.


list to matrix

Description

list to matrix

Usage

list2mat(x)

Arguments

x

list

Value

matrix

Examples

x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
list2mat(x)

Get/Set log2counts

Description

Get / Set log2counts matrix

Usage

log2counts(object)

## S4 method for signature 'SummarizedExperiment'
log2counts(object)

log2counts(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2counts(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2counts(object) <- value

Arguments

object

SummarizedExperiment

value

log2count matrix (features x samples)

Value

log2count matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
log2counts(object)[1:3, 1:3]
log2counts(object) <- values(object)

Get/Set log2cpm

Description

Get / Set log2cpm matrix

Usage

log2cpm(object)

## S4 method for signature 'SummarizedExperiment'
log2cpm(object)

log2cpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2cpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2cpm(object) <- value

Arguments

object

SummarizedExperiment

value

log2cpm matrix (features x samples)

Value

log2cpm matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
log2cpm(object)[1:3, 1:3]
log2cpm(object) <- values(object)

Get/Set log2diffs

Description

Get/Set log2diffs

Usage

log2diffs(object)

## S4 method for signature 'SummarizedExperiment'
log2diffs(object)

log2diffs(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2diffs(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2diffs(object) <- value

Arguments

object

SummarizedExperiment

value

occupancy matrix (features x samples)

Value

occpuancy matrix (get) or updated object (set)

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
log2diffs(object)[1:3, 1:3]

Get/Set log2proteins

Description

Get/Set log2proteins

Usage

log2proteins(object)

## S4 method for signature 'SummarizedExperiment'
log2proteins(object)

log2proteins(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2proteins(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2proteins(object) <- value

Arguments

object

SummarizedExperiment

value

occupancy matrix (features x samples)

Value

occpuancy matrix (get) or updated object (set)

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
log2proteins(object)[1:3, 1:3]

Get/Set log2sites

Description

Get/Set log2sites

Usage

log2sites(object)

## S4 method for signature 'SummarizedExperiment'
log2sites(object)

log2sites(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2sites(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2sites(object) <- value

Arguments

object

SummarizedExperiment

value

occupancy matrix (features x samples)

Value

occpuancy matrix (get) or updated object (set)

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
log2sites(object)[1:3, 1:3]

Get/Set log2tpm

Description

Get / Set log2tpm matrix

Usage

log2tpm(object)

## S4 method for signature 'SummarizedExperiment'
log2tpm(object)

log2tpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
log2tpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
log2tpm(object) <- value

Arguments

object

SummarizedExperiment

value

log2tpm matrix (features x samples)

Value

log2tpm matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
log2tpm(object) <- values(object)
log2tpm(object)[1:3, 1:3]

Transform values

Description

Transform values

Usage

log2transform(
  object,
  assay = assayNames(object)[1],
  pseudo = 0,
  verbose = FALSE
)

exp2(object, verbose = FALSE)

zscore(object, verbose = FALSE)

sscale(mat, verbose = FALSE)

fscale(mat, verbose = FALSE)

quantnorm(object, verbose = FALSE)

invnorm(object, verbose = FALSE)

vsn(object, verbose = FALSE, delog = TRUE)

Arguments

object

SummarizedExperiment

assay

character vector : assays for which to perform transformation

pseudo

number : pseudo value to be added prior to transformation

verbose

TRUE or FALSE : whether to msg

mat

matrix

delog

TRUE or FALSE (vsn)

Value

Transformed sumexp

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)

object                       %>% plot_sample_densities()
invnorm(object)              %>% plot_sample_densities()

object                       %>% plot_sample_densities()
quantnorm(object)            %>% plot_sample_densities()

object                       %>% plot_sample_densities()
#vsn(object)                  %>% plot_sample_densities()  # dataset too small

object                       %>% plot_sample_densities()
zscore(object)               %>% plot_sample_densities()

object                       %>% plot_sample_densities()
exp2(object)                 %>% plot_sample_densities()
log2transform(exp2(object))  %>% plot_sample_densities()

logical to factor

Description

logical to factor

Usage

logical2factor(x, true = get_name_in_parent(x), false = paste0("not", true))

factor2logical(x)

Arguments

x

logical vector

true

string : truelevel

false

string : falselevel

Value

factor

Examples

t1up <- c( TRUE,   FALSE,  TRUE)
t1   <- c('flat', 'down', 'up' )  %>%  factor(., .)
t1up
logical2factor(t1up)
factor2logical(t1)

Make alpha palette

Description

Make alpha palette

Usage

make_alpha_palette(object, alpha)

Arguments

object

SummarizedExperiment

alpha

string

Value

character vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
make_alpha_palette(object, 'Time')

Make colors

Description

Make colors

Usage

make_colors(
  varlevels,
  sep = guess_sep(varlevels),
  show = FALSE,
  verbose = FALSE
)

Arguments

varlevels

character vector

sep

string

show

TRUE or FALSE: whether to plot

verbose

TRUE or FALSE: whether to msg

Examples

make_colors(c('A',   'B',   'C',  'D'  ), show = TRUE)
make_colors(c('A.1', 'B.1', 'A.2','B.2'), show = TRUE)

Create volcano datatable

Description

Create volcano datatable

Usage

make_volcano_dt(
  object,
  fit = fits(object)[1],
  coefs = default_coefs(object, fit = fit)[1],
  shape = "imputed",
  size = NULL,
  alpha = NULL,
  label = "feature_id"
)

Arguments

object

SummarizedExperiment

fit

'limma', 'lme', 'lm', 'wilcoxon'

coefs

character vector: coefs for which to plot volcanoes

shape

fvar or NULL

size

fvar or NULL

alpha

fvar or NULL

label

fvar or NULL

Value

data.table

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file, impute = TRUE, fit = 'limma')
make_volcano_dt(object, fit = 'limma', coefs = 'Adult-X30dpt')

Map fvalues

Description

Map fvalues

Usage

map_fvalues(object, fvalues, from = "uniprot", to = "feature_id", sep = ";")

Arguments

object

SummarizedExperiment

fvalues

uncollapsed string vector

from

string (fvar)

to

string (svar)

sep

collapse separator

Value

string vector

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
fdt(object)
map_fvalues(object, c('Q6DHL5', 'Q6PFS7'), from = 'uniprot', to = 'feature_id', sep = ';')

Convert matrix into SummarizedExperiment

Description

Convert matrix into SummarizedExperiment

Usage

matrix2sumexp(x, verbose = TRUE)

Arguments

x

matrix

verbose

TRUE/FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
x <- values(read_metabolon(file))
object <- matrix2sumexp(x)
object %<>% pca()
biplot(object, color = 'subgroup')

maxquant quantity patterns

Description

maxquant quantity patterns

Usage

MAXQUANT_PATTERNS

Format

An object of class character of length 7.

Examples

MAXQUANT_PATTERNS

Feature correlations/distances

Description

Feature correlations/distances

Usage

mdsplot(distmat, title = NULL)

fcor(object, verbose = TRUE)

scor(object, verbose = TRUE)

fdist(object, method = "cor")

sdist(object, method = "cor")

Arguments

distmat

distance matrix

title

NULL or string

object

SummarizedExperiment

verbose

TRUE or FALSE

method

'cor', 'euclidian', etc

Value

matrix

Examples

# Correlations
    object <- twofactor_sumexp()
    scor(object)               %>%  pheatmap::pheatmap()
    fcor(object)               %>%  pheatmap::pheatmap()
# Distances
    sdist(object, 'cor')       %>% mdsplot('samples: cor')
    sdist(object, 'euclidian') %>% mdsplot('samples: euclidian')
    fdist(object, 'cor')       %>% mdsplot('features: cor')
    fdist(object, 'euclidian') %>% mdsplot('features: euclidian')

merge compound discoverer files

Description

merge compound discoverer files

Usage

merge_compounddiscoverer(x, quantity = NULL, verbose = TRUE)

Arguments

x

'list'

quantity

''area', 'normalizedarea''

verbose

'TRUE' or 'FALSE'

Value

'data.table'


Merge sample excel

Description

Merge sample excel

Usage

merge_sample_excel(
  object,
  sfile,
  range = NULL,
  by.x = "sample_id",
  by.y = "sample_id"
)

Arguments

object

SummarizedExperiment

sfile

sample file

range

string

by.x

string

by.y

string

Value

SummarizedExperiment


Merge sample / feature file

Description

Merge sample / feature file

Usage

merge_sample_file(
  object,
  sfile = NULL,
  by.x = "sample_id",
  by.y = "sample_id",
  all.x = TRUE,
  select = NULL,
  stringsAsFactors = FALSE,
  verbose = TRUE
)

merge_ffile(
  object,
  ffile = NULL,
  by.x = "feature_id",
  by.y = "feature_id",
  all.x = TRUE,
  select = NULL,
  stringsAsFactors = FALSE,
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

sfile

string : sample file path

by.x

string : object mergevar

by.y

string : file mergevvar

all.x

TRUE / FALSE : whether to keep samples / feature without annotation

select

character : [sf]file columns to select

stringsAsFactors

TRUE / FALSE

verbose

TRUE / FALSE

ffile

string : ffile path

Value

SummarizedExperiment

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
subgroups <-  c('E00','E01', 'E02','E05','E15','E30', 'M00')
subgroups %<>% paste0('_STD')
object <- read_maxquant_proteingroups(file, subgroups = subgroups)
sfile <- paste0(tempdir(),'/', basename(tools::file_path_sans_ext(file)))
sfile %<>% paste0('.samples.txt')
dt <- data.table(sample_id = object$sample_id, 
                 day = split_extract_fixed(object$subgroup, '_', 1))
data.table::fwrite(dt, sfile)                 
sdt(object)
sdt(merge_sample_file(object, sfile))

Merge sample/feature dt

Description

Merge sample/feature dt

Usage

merge_sdata(
  object,
  dt,
  by.x = "sample_id",
  by.y = names(dt)[1],
  all.x = TRUE,
  verbose = TRUE
)

merge_sdt(
  object,
  dt,
  by.x = "sample_id",
  by.y = "sample_id",
  all.x = TRUE,
  verbose = TRUE
)

merge_fdata(
  object,
  dt,
  by.x = "feature_id",
  by.y = names(dt)[1],
  all.x = TRUE,
  verbose = TRUE
)

merge_fdt(
  object,
  dt,
  by.x = "feature_id",
  by.y = "feature_id",
  all.x = TRUE,
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

dt

data.frame, data.table, DataFrame

by.x

string : object mergevar

by.y

string : df mergevar

all.x

TRUE / FALSE : whether to keep samples / features without annotation

verbose

TRUE / FALSE : whether to msg

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
sdt(object)
sdt(merge_sdt(object, data.table(sample_id = object$sample_id,
                                    number = seq_along(object$sample_id))))

message dataframe

Description

message dataframe using sprintf syntax. Use place holder '

Usage

message_df(format_string, x)

Arguments

format_string

sprintf style format string

x

data.frame

Value

nothing returned

Examples

x <- data.frame(feature_id = c('F001', 'F002'), symbol = c('FEAT1', 'FEAT2'))
message_df('\t%s', x)

x <- c(rep('PASS', 25), rep('FAIL', 25))
message_df(format_string = '%s', table(x))

Get model variable

Description

Get model variable

Usage

modelvar(object, ...)

## S3 method for class 'data.table'
modelvar(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

## S3 method for class 'SummarizedExperiment'
modelvar(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

effectvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))

tvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))

pvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))

fdrvar(object, fit = fits(object), coef = default_coefs(object, fit = fit))

abstractvar(object, ...)

## S3 method for class 'data.table'
abstractvar(
  object,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

## S3 method for class 'SummarizedExperiment'
abstractvar(
  object,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

modelvec(object, ...)

## S3 method for class 'data.table'
modelvec(
  object,
  quantity,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  ...
)

## S3 method for class 'SummarizedExperiment'
modelvec(
  object,
  quantity,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  ...
)

effectvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object)[1],
  fvar = "feature_id"
)

tvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id"
)

pvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id"
)

fdrvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id"
)

abstractvec(object, ...)

## S3 method for class 'data.table'
abstractvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  ...
)

## S3 method for class 'SummarizedExperiment'
abstractvec(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  ...
)

modeldt(object, ...)

## S3 method for class 'data.table'
modeldt(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

## S3 method for class 'SummarizedExperiment'
modeldt(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit),
  ...
)

effectdt(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

tdt(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

pdt(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

modelmat(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

modelmat(
  object,
  quantity,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

effectmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))

effectsizemat(
  object,
  fit = fits(object),
  coef = default_coefs(object, fit = fit)
)

tmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))

pmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))

fdrmat(object, fit = fits(object), coef = default_coefs(object, fit = fit))

modelfeatures(object, ...)

## S3 method for class 'data.table'
modelfeatures(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  significancevar = "p",
  significance = 0.05,
  effectdirection = "<>",
  effectsize = 0,
  ...
)

## S3 method for class 'SummarizedExperiment'
modelfeatures(object, ...)

upfeatures(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  significancevar = "p",
  significance = 0.05,
  effectsize = 0
)

downfeatures(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  fvar = "feature_id",
  significancevar = "p",
  significance = 0.05,
  effectsize = 0
)

Arguments

object

data.table or SummarizedExperiment

...

S3 dispatch

quantity

'p', 'effect', 'fdr', 't', or 'se'

fit

string (vector)

coef

string (vector)

fvar

'feature_id' or other fvar for values (pvec) or names (upfeatures)

significancevar

'p' or 'fdr'

significance

p or fdr cutoff (fractional number)

effectdirection

'<>', '<' or '>'

effectsize

effectsize cutoff (positive number)

Value

string (tvar), matrix (tmat), numeric vector (tvec), character vector (tfeatures)

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% fit_limma(statvars = c('effect', 't', 'p'))
    object %<>% fit_lm(   statvars = c('effect', 't', 'p'))

    effectvar(object)
    effectvec(object)[1:3]
     effectdt(object)[1:3, ]
    effectmat(object)[1:3, ]

         tvar(object)
         tvec(object)[1:3]
          tdt(object)[1:3, ]
         tmat(object)[1:3, ]

         pvar(object)
         pvec(object)[1:3]
          pdt(object)[1:3, ]
         pmat(object)[1:3, ]

modelfeatures(object)
 downfeatures(object)
   upfeatures(object)

Human/Mouse Msigdb Collections

Description

Human/Mouse Msigdb Collections

Usage

MSIGCOLLECTIONSHUMAN

MSIGCOLLECTIONSMOUSE

Format

An object of class character of length 25.

An object of class character of length 13.


local msigdb dir

Description

local msigdb dir

Usage

MSIGDIR

Format

An object of class character of length 1.


stri_split and extract

Description

stri_split and extract

Usage

nfactors(x, sep = guess_sep(x))

split_extract_fixed(x, sep, i)

split_extract_regex(x, sep, i)

split_extract(x, i, sep = guess_sep(x))

Arguments

x

character vector

sep

string

i

integer

Value

character vector

Examples

# Read
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    x <- object$sample_id[1:5]
    nfactors(x)
# Split
    split_extract_fixed(x, '.', 1:2)
    split_extract_fixed(x, '.', seq_len(nfactors(x)-1))
    split_extract_fixed(x, '.', nfactors(x))
    split_extract_fixed(fdt(object)$PUBCHEM, ';', 1) # with NA values

opentargets dir

Description

opentargets dir

Usage

OPENTARGETSDIR

Format

An object of class character of length 1.


Order on p

Description

Order on p

Usage

order_on_p(
  object,
  fit = autonomics::fits(object),
  coefs = autonomics::coefs(object, fit = fit),
  combiner = "|",
  verbose = TRUE
)

order_on_effect(
  object,
  fit = autonomics::fits(object),
  coefs = autonomics::coefs(object, fit = fit),
  combiner = "|",
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

fit

string vector: subset of 'fits(object)'

coefs

string vector: subset of 'coefs(object)'

combiner

'|' or '&'

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

# Read
  file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
  object <- read_metabolon(file)
  order_on_p(object)
  order_on_p(fit_limma(object), coefs = c('t1-t0', 't2-t0', 't3-t0'))

PCA, SMA, LDA, PLS, SPLS, OPLS

Description

Perform a dimension reduction. Store sample scores, feature loadings, and dimension variances.

Usage

pca(
  object,
  by = "sample_id",
  assay = assayNames(object)[1],
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  center_samples = TRUE,
  verbose = TRUE,
  plot = FALSE,
  ...
)

pls(
  object,
  by = "subgroup",
  assay = assayNames(object)[1],
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  verbose = FALSE,
  plot = FALSE,
  ...
)

sma(
  object,
  by = "sample_id",
  assay = assayNames(object)[1],
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  verbose = TRUE,
  plot = FALSE,
  ...
)

lda(
  object,
  assay = assayNames(object)[1],
  by = "subgroup",
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  verbose = TRUE,
  plot = FALSE,
  ...
)

spls(
  object,
  assay = assayNames(object)[1],
  by = "subgroup",
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  plot = FALSE,
  ...
)

opls(
  object,
  by = "subgroup",
  assay = assayNames(object)[1],
  ndim = 2,
  sep = FITSEP,
  minvar = 0,
  verbose = FALSE,
  plot = FALSE,
  ...
)

Arguments

object

SummarizedExperiment

by

svar or NULL

assay

string

ndim

number

sep

string

minvar

number

center_samples

TRUE/FALSE: center samples prior to pca ?

verbose

TRUE/FALSE: message ?

plot

TRUE/FALSE: plot ?

...

passed to biplot

Value

SummarizedExperiment

Author(s)

Aditya Bhagwat, Laure Cougnaud (LDA)

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
 object <- read_metabolon(file)
 pca(object, plot = TRUE)    # Principal Component Analysis
 pls(object, plot = TRUE)    # Partial Least Squares
 lda(object, plot = TRUE)    # Linear Discriminant Analysis
 sma(object, plot = TRUE)    # Spectral Map Analysis
spls(object, plot = TRUE)    # Sparse PLS
# opls(object, plot = TRUE)  # OPLS # outcommented because it produces a file named FALSE

survival percentiles

Description

survival percentiles

Usage

percentiles(object)

Arguments

object

SummarizedExperiment

Value

numeric vector


proteingroup to isoforms

Description

proteingroup to isoforms

Usage

pg_to_canonical(x, unique = TRUE)

pg_to_isoforms(x, unique = TRUE)

Arguments

x

proteingroups string vector

unique

whether to remove duplicates

Value

string vector

Examples

(x <- c('Q96JP5;Q96JP5-2', 'Q96JP5', 'Q96JP5-2;P86791'))
 pg_to_isoforms(x)
 pg_to_canonical(x)
 pg_to_isoforms( x, unique = FALSE)
 pg_to_canonical(x, unique = FALSE)
# .pg_to_isoforms(x[1])   # unexported dot functions
# .pg_to_canonical(x[1])  # operate on scalars

Plot contrast venn

Description

Plot contrast venn

Usage

plot_contrast_venn(issig, colors = NULL)

Arguments

issig

matrix(nrow, ncontrast): -1 (down), +1 (up)

colors

NULL or colorvector

Value

nothing returned

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_wilcoxon(~ subgroup, block = 'Subject')
object %<>% fit_limma(   ~ subgroup, block = 'Subject', codingfun = contr.treatment.explicit)
isfdr <- is_sig(object, contrast = 't3-t0', quantity = 'p', fit = fits(object))
plot_contrast_venn(isfdr)

Plot contrastogram

Description

Plot contrastogram

Usage

plot_contrastogram(
  object,
  subgroupvar,
  formula = as.formula(paste0("~ 0 +", subgroupvar)),
  colors = make_colors(slevels(object, subgroupvar), guess_sep(object)),
  curve = 0.1
)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup svar

formula

formula

colors

named color vector (names = subgroups)

curve

arrow curvature

Value

list returned by plotmat

Examples

if (requireNamespace('diagram', quietly = TRUE)){
   file <- download_data('halama18.metabolon.xlsx')
   object <- read_metabolon(file)
   plot_contrastogram(object, subgroupvar = 'subgroup')
}

Plot data

Description

Plot data

Usage

plot_data(
  data,
  geom = geom_point,
  color = NULL,
  fill = NULL,
  linetype = NULL,
  ...,
  palette = NULL,
  fixed = list(),
  theme = list()
)

Arguments

data

data.frame'

geom

geom_point, etc.

color

variable mapped to color (symbol)

fill

variable mapped to fill (symbol)

linetype

variable mapped to linetype (symbol)

...

mapped aesthetics

palette

color palette (named character vector)

fixed

fixed aesthetics (list)

theme

list with ggplot theme specifications

Value

ggplot object

Author(s)

Aditya Bhagwat, Johannes Graumann

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% pca()
data <- sdt(object)
plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`)
plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, color = subgroup)
plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, color = NULL)
fixed <- list(shape = 15, size = 3)
plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, fixed = fixed)

Plot sample/feature distributions

Description

Plot sample/feature distributions

Usage

plot_densities(
  object,
  assay = assayNames(object)[1],
  group,
  fill,
  color = NULL,
  linetype = NULL,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free_y",
  labeller = label_value,
  palette = NULL,
  fixed = list(alpha = 0.8, na.rm = TRUE)
)

plot_sample_densities(
  object,
  assay = assayNames(object)[1],
  group = "sample_id",
  fill = if ("subgroup" %in% svars(object)) "subgroup" else "sample_id",
  color = NULL,
  linetype = NULL,
  n = 100,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free_y",
  labeller = label_value,
  palette = NULL,
  fixed = list(alpha = 0.8, na.rm = TRUE)
)

plot_feature_densities(
  object,
  assay = assayNames(object)[1],
  fill = "feature_id",
  group = fill,
  color = NULL,
  linetype = NULL,
  n = 9,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free",
  labeller = label_value,
  palette = NULL,
  fixed = list(alpha = 0.8, na.rm = TRUE)
)

Arguments

object

SummarizedExperiment

assay

string

group

svar (string)

fill

svar (string)

color

svar (string)

linetype

svar (string)

facet

svar (character vector)

nrow

number of facet rows

ncol

number of facet cols

dir

'h' (horizontal) or 'v' (vertical)

scales

'free', 'fixed', 'free_y'

labeller

e.g. label_value

palette

named character vector

fixed

fixed aesthetics

n

number

Value

ggplot object

See Also

plot_sample_violins, plot_sample_boxplots

Examples

# Data
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% extract(, order(.$subgroup))
    
# Sample distributions
    plot_sample_densities(object)
    plot_sample_violins(  object, facet = 'Time')
    plot_sample_boxplots(object)
    plot_exprs(object)
    plot_exprs(object, dim = 'samples', x = 'subgroup', facet = 'Time')
    
# Feature distributions
    plot_feature_densities(object)
    plot_feature_violins(  object)
    plot_feature_boxplots( object)

Plot model

Description

Plot model

Usage

plot_design(object, codingfun = contr.treatment.explicit)

Arguments

object

´SummarizedExperiment

codingfun

factor coding function

  • contr.treatment: intercept = y0, coefi = yi - y0

  • contr.treatment.explicit: intercept = y0, coefi = yi - y0

  • code_control: intercept = ymean, coefi = yi - y0

  • contr.diff: intercept = y0, coefi = yi - y(i-1)

  • code_diff: intercept = ymean, coefi = yi - y(i-1)

  • code_diff_forward: intercept = ymean, coefi = yi - y(i+)

  • code_deviation: intercept = ymean, coefi = yi - ymean (drop last)

  • code_deviation_first: intercept = ymean, coefi = yi - ymean (drop first)

  • code_helmert: intercept = ymean, coefi = yi - mean(y0:(yi-1))

  • code_helmert_forward: intercept = ymean, coefi = yi - mean(y(i+1):yp)

Value

ggplot

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
subgroups <- paste0(c('E00', 'E01', 'E02', 'E05', 'E15', 'E30', 'M00'), '_STD')
object <- read_maxquant_proteingroups(file, subgroups = subgroups)
object$subgroup %<>% substr(1,3)
plot_design(object)

Plot missingness per sample / subgroup

Description

plot_sample_nas shows systematic and random missingness (white), and full detection (bright color) at sample resolution. Imputations are also shown (light color).

Usage

plot_detections(...)

plot_summarized_detections(...)

plot_sample_nas(
  object,
  by = "subgroup",
  fill = by,
  palette = make_svar_palette(object, fill),
  axis.text.y = element_blank()
)

plot_subgroup_nas(
  object,
  by = "subgroup",
  fill = by,
  palette = NULL,
  na_imputes = TRUE
)

Arguments

...

used to maintain deprecated functions

object

SummarizedExperiment

by

svar (string)

fill

svar (string)

palette

color vector (names = levels, values = colors)

axis.text.y

passed to ggplot2::theme

na_imputes

TRUE or FALSE

Details

plot_subgroup_nas shows systematic missingness at subgroup resolution. Random missingness and full detection are shown together (bright color). Imputations are also shown (light color).

Value

ggplot object

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
plot_sample_nas(object)
plot_sample_nas(impute(object))
plot_subgroup_nas(object)
plot_subgroup_nas(impute(object))

subgroups <- sprintf('%s_STD', c('E00','E01','E02','E05','E15','E30','M00'))
file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file, subgroups = subgroups)
plot_subgroup_nas(object)
plot_subgroup_nas(object, 'subgroup')
plot_sample_nas(object)
plot_sample_nas(object, 'subgroup')

Plot exprs for coef

Description

Plot exprs for coef

Usage

plot_exprs(
  object,
  dim = "both",
  assay = assayNames(object)[1],
  fit = fits(object)[1],
  coefs = default_coefs(object, fit = fit),
  block = NULL,
  x = default_x(object, dim),
  geom = default_geom(object, x = x, block = block),
  color = x,
  fill = x,
  shape = NULL,
  size = NULL,
  alpha = NULL,
  linetype = NULL,
  highlight = NULL,
  combiner = "|",
  p = 1,
  fdr = 1,
  facet = if (dim == "both") "feature_id" else NULL,
  n = 4,
  ncol = NULL,
  nrow = NULL,
  scales = "free_y",
  labeller = "label_value",
  pointsize = if (is.null(block)) 0 else 0.5,
  jitter = if (is.null(block)) 0.1 else 0,
  fillpalette = make_var_palette(object, fill),
  colorpalette = make_var_palette(object, color),
  hlevels = NULL,
  title = switch(dim, both = x, features = "Feature Boxplots", samples =
    "Sample Boxplots"),
  subtitle = if (!is.null(fit)) coefs else "",
  xlab = NULL,
  ylab = "value",
  theme = ggplot2::theme(plot.title = element_text(hjust = 0.5)),
  file = NULL,
  width = 7,
  height = 7,
  verbose = TRUE
)

plot_sample_boxplots(
  object,
  fill = if ("subgroup" %in% svars(object)) "subgroup" else "sample_id",
  n = min(ncol(object), 16),
  ...
)

plot_feature_boxplots(object, ...)

Arguments

object

SummarizedExperiment

dim

'samples' (per-sample distribution across features),
'features' (per-feature distribution across samples ) or 'both' (subgroup distribution faceted per feature)

assay

string: value in assayNames(object)

fit

'limma', 'lm', 'lme', 'lmer', 'wilcoxon'

coefs

subset of coefs(object) to consider in selecting top

block

group svar

x

x svar

geom

'boxplot' or 'point'

color

color svar: points, lines

fill

fill svar: boxplots

shape

shape svar

size

size svar

alpha

alpha svar

linetype

linetype svar

highlight

highlight svar

combiner

'&' or '|'

p

fraction: p cutoff

fdr

fraction: fdr cutoff

facet

string: fvar mapped to facet

n

number of samples (dim = 'samples') or features (dim = 'features' or 'both') to plot

ncol

number of cols in faceted plot (if dim = 'both')

nrow

number of rows in faceted plot (if dim = 'both)

scales

'free_y', 'free'x', 'fixed'

labeller

string or function

pointsize

number

jitter

jitter width (number)

fillpalette

named character vector: fill palette

colorpalette

named character vector: color palette

hlevels

xlevels for which to plot hlines

title

string

subtitle

string

xlab

string

ylab

string

theme

ggplot2::theme(...) or NULL

file

NULL or filepath

width

inches

height

inches

verbose

TRUE or FALSE

...

used to maintain depreceated functions

Value

ggplot object

See Also

plot_sample_densities, plot_sample_violins

Examples

# Without limma
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    plot_exprs(object, block = 'Subject', title = 'Subgroup Boxplots')
    plot_exprs(object, dim = 'samples')
    plot_exprs(object, dim = 'features', block = 'sample_id')
# With limma 
    object %<>% fit_limma(block = 'Subject')
    plot_exprs(object, block = 'Subject')
    plot_exprs(object, block = 'Subject', coefs = c('t1-t0', 't2-t0', 't3-t0'))
    plot_exprs_per_coef(object, x = 'Time', block = 'Subject')
# Points
    plot_exprs(object, geom = 'point', block = 'Subject')
# Add highlights
    controlfeatures <- c('biotin','phosphate')
    fdt(object) %<>% cbind(control = .$feature_name %in% controlfeatures)
    plot_exprs(object, dim = 'samples', highlight = 'control')
# Multiple pages
    plot_exprs(object, block = 'Subject', n = 4, nrow = 1, ncol = 2)

Plot exprs per coef

Description

Plot exprs per coef

Usage

plot_exprs_per_coef(
  object,
  fit = fits(object)[1],
  coefs = default_coefs(object, fit = fit),
  x = default_x(object),
  block = NULL,
  geom = default_geom(object, x, block = block),
  orderbyp = FALSE,
  title = x,
  subtitle = default_subtitle(fit, x, coefs),
  n = 1,
  nrow = 1,
  ncol = NULL,
  theme = ggplot2::theme(legend.position = "bottom", legend.title = element_blank(),
    plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5))
)

Arguments

object

SummarizedExperiment

fit

'limma', 'lm', 'lme', 'lmer', 'wilcoxon'

coefs

subset of coefs(object) to consider in selecting top

x

x svar

block

group svar

geom

'boxplot' or 'point'

orderbyp

TRUE or FALSE

title

string

subtitle

string

n

number

nrow

number of rows in faceted plot

ncol

number of cols in faceted plot

theme

ggplot2::theme(...) or NULL

Value

ggplot object

See Also

plot_sample_densities, plot_sample_violins

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_limma()
object %<>% pls(by = 'subgroup')
object %<>% pls(by = 'Diabetes')
object %<>% pls(by = 'Subject')
plot_exprs_per_coef(object)
plot_exprs_per_coef(object, orderbyp = TRUE)
plot_exprs_per_coef(object, fit = 'pls1', block = 'Subject')

Plot fit summary

Description

Plot fit summary

Usage

plot_fit_summary(sumdt, nrow = NULL, ncol = NULL, order = FALSE)

Arguments

sumdt

data.table

nrow

number

ncol

number

order

TRUE or FALSE

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_lm()
object %<>% fit_limma(block = 'Subject')
sumdt <- summarize_fit(object, coefs = c('t1-t0', 't2-t0', 't3-t0'))
plot_fit_summary(sumdt)

Plot heatmap

Description

Plot heatmap

Usage

plot_heatmap(
  object,
  fit = fits(object)[1],
  coef = default_coefs(object, fit = fit)[1],
  effectsize = 0,
  p = 1,
  fdr = 0.05,
  n = 100,
  assay = assayNames(object)[1],
  cluster_features = FALSE,
  cluster_samples = FALSE,
  flabel = intersect(c("gene", "feature_id"), fvars(object))[1],
  group = "subgroup",
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

fit

'limma', 'lm', 'lme(r)', 'wilcoxon'

coef

string: one of coefs(object)

effectsize

number: effectsize filter

p

number: p filter

fdr

number: fdr filter

n

number: n filter

assay

string: one of assayNames(object)

cluster_features

TRUE or FALSE

cluster_samples

TRUE or FALSE

flabel

string: feature label

group

sample groupvar

verbose

TRUE or FALSE

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file, fit = 'limma')
plot_heatmap(object)

Plot joint density

Description

Plot joint density

Usage

plot_joint_density(
  object,
  xvar,
  yvar,
  color = TRUE,
  contour = TRUE,
  smooth = TRUE
)

Arguments

object

SummarizedExperiment

xvar

svar

yvar

svar

color

TRUE or FALSE

contour

TRUE or FALSE

smooth

TRUE or FALSE

Value

ggplot

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
set.seed(20)
object$Height <- rnorm(ncol(object), mean = 176)
object$Weight <- rnorm(ncol(object), mean = 85.4)
plot_joint_density(object, 'Height', 'Weight')
plot_joint_density(object, 'Height', 'Weight',  smooth = TRUE)
plot_joint_density(object, 'Height', 'Weight',   color = TRUE)
plot_joint_density(object, 'Height', 'Weight', contour = TRUE)

Plot binary matrix

Description

Plot binary matrix

Usage

plot_matrix(mat)

Arguments

mat

matrix

Value

no return (base R plot)

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
mat <- sdt(object)[, .(Subject, subgroup)]
mat$present <- 1
mat %<>% data.table::dcast(Subject ~ subgroup, value.var  = 'present', fill = 0)
mat %<>% dt2mat()
plot_matrix(mat)

Plot features

Description

Plot features

Usage

plot_subgroup_points(
  object,
  subgroup = "subgroup",
  block = NULL,
  x = subgroup,
  color = subgroup,
  group = block,
  facet = "feature_id",
  nrow = NULL,
  scales = "free_y",
  ...,
  palette = NULL,
  fixed = list(na.rm = TRUE),
  theme = list(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
)

Arguments

object

SummarizedExperiment

subgroup

subgroup svar

block

block svar

x

svar mapped to x

color

svar mapped to color

group

svar mapped to group

facet

svar mapped to facets

nrow

number of rows

scales

'free_y' etc.

...

mapped aesthetics

palette

color palette (named character vector)

fixed

fixed aesthetics

theme

ggplot theme specifications

Value

ggplot object

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, fit = 'limma')
idx <- order(fdata(object)$`p~t1-t0~limma`)[1:9]
object %<>% extract(idx, )
plot_sample_boxplots(  object)
plot_feature_boxplots( object)
plot_sample_boxplots(object, x = 'Time')
plot_subgroup_points(  object, subgroup = 'Time')
plot_subgroup_points(  object, subgroup = 'Time', block = 'Subject')

Plot summary

Description

Plot summary

Usage

plot_summary(
  object,
  fit = "limma",
  formula = default_formula(object),
  block = NULL,
  label = "feature_id",
  palette = make_svar_palette(object, svar = svar)
)

Arguments

object

SummarizedExperiment

fit

linmod engine : 'limma', 'lm', 'lme', 'lmer' or 'wilcoxon'

formula

model formula

block

NULL or svar

label

fvar

palette

NULL or colorvector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% pca()
object %<>% pls(by = 'subgroup')
object %<>% fit_limma()
plot_summary(object, block = 'Subject')

Plot venn

Description

Plot venn

Usage

plot_venn(x)

Arguments

x

list

Examples

x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
plot_venn(x)

Plot venn heatmap

Description

Plot venn heatmap

Usage

plot_venn_heatmap(x)

Arguments

x

list

Examples

x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
plot_venn_heatmap(x)

Plot sample/feature violins

Description

Plot sample/feature violins

Usage

plot_violins(
  object,
  assay = assayNames(object)[1],
  x,
  fill,
  color = NULL,
  group = NULL,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free",
  labeller = label_value,
  highlight = NULL,
  palette = NULL,
  fixed = list(na.rm = TRUE)
)

plot_feature_violins(
  object,
  assay = assayNames(object)[1],
  x = "feature_id",
  fill = "feature_id",
  color = NULL,
  n = 9,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free",
  labeller = label_value,
  highlight = NULL,
  fixed = list(na.rm = TRUE)
)

plot_sample_violins(
  object,
  assay = assayNames(object)[1],
  x = "sample_id",
  fill = if ("subgroup" %in% svars(object)) "subgroup" else "sample_id",
  color = NULL,
  n = 100,
  facet = NULL,
  nrow = NULL,
  ncol = NULL,
  dir = "h",
  scales = "free",
  labeller = label_value,
  highlight = NULL,
  fixed = list(na.rm = TRUE)
)

plot_subgroup_violins(
  object,
  assay = assayNames(object)[1],
  subgroup,
  x = "subgroup",
  fill = "subgroup",
  color = NULL,
  highlight = NULL,
  facet = "feature_id",
  fixed = list(na.rm = TRUE)
)

Arguments

object

SummarizedExperiment

assay

string

x

svar (string)

fill

svar (string)

color

svar (string)

group

svar (string)

facet

svar (character vector)

nrow

NULL or number

ncol

NULL or number

dir

'h' or 'v' : are facets filled horizontally or vertically ?

scales

'free', 'free_x', 'free_y', or 'fixed'

labeller

label_both or label_value

highlight

fvar expressing which feature should be highlighted (string)

palette

named color vector (character vector)

fixed

fixed aesthetics

n

number

subgroup

subgroup svar

Value

ggplot object

See Also

plot_exprs, plot_densities

Examples

# data
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% extract(, order(.$subgroup))
    control_features <- c('biotin','phosphate')
    fdata(object) %<>% cbind(control = .$feature_name %in% control_features)
# plot
    plot_violins(object[1:12, ], x = 'feature_id', fill = 'feature_id')
    plot_feature_violins(object[1:12, ])
    plot_sample_violins(object[, 1:12],  highlight = 'control')
    plot_subgroup_violins(object[1:4, ], subgroup = 'subgroup')

Plot volcano

Description

Plot volcano

Usage

plot_volcano(
  object,
  fit = fits(object)[1],
  coefs = setdiff(autonomics::coefs(object, fit = fit), "Intercept")[1],
  facet = if (is_scalar(fit)) "coef" else c("fit", "coef"),
  scales = "fixed",
  shape = if ("imputed" %in% fvars(object)) "imputed" else NULL,
  size = NULL,
  alpha = NULL,
  label = "feature_id",
  max.overlaps = 10,
  features = NULL,
  nrow = length(fit),
  p = 0.05,
  fdr = 0.05,
  xndown = NULL,
  xnup = NULL,
  title = NULL
)

Arguments

object

SummarizedExperiment

fit

'limma', 'lme', 'lm', 'wilcoxon'

coefs

character vector

facet

character vector

scales

'free', 'fixed', etc.

shape

fvar (string)

size

fvar (string)

alpha

fvar (string)

label

fvar (string)

max.overlaps

number: passed to ggrepel

features

feature ids (character vector): features to encircle

nrow

number: no of rows in plot

p

number: p cutoff for labeling

fdr

number: fdr cutoff for labeling

xndown

x position of ndown labels

xnup

x position of nup labels

title

string or NULL

Value

ggplot object

Examples

# Regular Usage
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object <- read_metabolon(file)
    object %<>% fit_limma()
    object %<>% fit_lm()
    plot_volcano(object, coefs = 't3-t0', fit = 'limma')                   # single contrast
    plot_volcano(object, coefs = c('t2-t0', 't3-t0'), fit = 'limma')          # multip contrasts
    plot_volcano(object, coefs = c('t2-t0', 't3-t0'), fit = c('limma', 'lm')) # multip contrs & methods

# When nothing passes FDR
    fdt(object) %<>% add_adjusted_pvalues('fdr', fit = 'limma',coefs = 't3-t0')
    object %<>% extract( fdrvec(object, fit = 'limma', coef = 't3-t0') > 0.05, )
    plot_volcano(object, coefs = 't3-t0', fit = 'limma')

# Additional mappings
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    object <- read_maxquant_proteingroups(file, impute = TRUE)
    object %<>% fit_limma()
    plot_volcano(object)
    plot_volcano(object, label = 'gene')
    plot_volcano(object, label = 'gene', size = 'log2maxlfq')
    plot_volcano(object, label = 'gene', size = 'log2maxlfq', alpha = 'pepcounts')
    plot_volcano(object, label = 'gene', features = c('Q503D2_DANRE'))
    plot_volcano(object, label = 'gene', features = list(c('Q503D2_DANRE', 'Q6DGK4_DANRE'), 
                                                         c('Q6DGK4_DANRE', 'F1Q7L0_DANRE')))

diann precursor quantity

Description

diann precursor quantity

Usage

PRECURSOR_QUANTITY

Format

An object of class character of length 1.


Preprocess RNAseq counts

Description

Preprocess RNAseq counts

Usage

preprocess_rnaseq_counts(
  object,
  formula = ~subgroup,
  block = NULL,
  min_count = 10,
  pseudo = 0.5,
  tpm = FALSE,
  cpm = TRUE,
  voom = TRUE,
  log2 = TRUE,
  verbose = TRUE,
  plot = TRUE
)

Arguments

object

SummarizedExperiment

formula

designmat formula

block

blocK svar

min_count

min count required in some samples

pseudo

added pseudocount to avoid log(x)=-Inf

tpm

TRUE or FALSE : tpm normalize?

cpm

TRUE or FALSE : cpm normalize? (counts per million (scaled) reads)

voom

TRUE or FALSE : voom weight?

log2

TRUE or FALSE : log2 transform?

verbose

TRUE or FALSE : msg?

plot

TRUE or FALSE : plot?

Value

SummarizedExperiment

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- .read_rnaseq_counts(file)
object$subgroup
object %<>% preprocess_rnaseq_counts()

Pull columns in a dataframe to the front

Description

Pull columns in a dataframe to the front

Usage

pull_columns(df, first_cols, verbose = TRUE)

Arguments

df

data.frame

first_cols

character vector: columns to be pulled to the front

verbose

TRUE (default) or FALSE

Value

dataframe with re-ordered columns

Examples

df <- data.frame(
   symbol = c('A1BG', 'A2M'),
   id     = c('1',    '2'),
   name   = c('alpha-1-B glycoprotein', 'alpha-2-macroglobulin'),
   type   = c('proteincoding', 'proteincoding'))
first_cols <- c('id', 'symbol', 'location', 'uniprot')
pull_columns(df, first_cols)

Read affymetrix microarray

Description

Read affymetrix microarray

Usage

read_affymetrix(celfiles)

Arguments

celfiles

string vector: CEL file paths

Value

RangedSummarizedExperiment

Examples

# Downloading example dataset fails 600s limit - example outcommented.
# url <- paste0('http://www.bioconductor.org/help/publications/2003/Chiaretti/chiaretti2/T33.tgz')
# localdir  <- file.path(tools::R_user_dir('autonomics', 'cache'), 'T33')
# dir.create(localdir, showWarnings = FALSE)
# localfile <- file.path(localdir, basename(url))
# if (!file.exists(localfile)){  download.file(url, destfile = localfile)
#                                untar(localfile, exdir = path.expand(localdir))  }
# localfile %<>% substr(1, nchar(.)-4)
# if (!requireNamespace("BiocManager", quietly = TRUE))  install.packages('BiocManager')
# if (!requireNamespace("hgu95av2.db", quietly = TRUE))  BiocManager::install('hgu95av2.db')
# read_affymetrix(celfiles = list.files(localfile, full.names = TRUE))

Read compound discoverer output

Description

Read compound discoverer output

Usage

read_compounddiscoverer(
  dir = getwd(),
  files = list.files(path = dir, pattern = "(RP|HILIC).*\\.csv$", full.names = TRUE),
  colname_regex = "^(.*)\\d{8,8}_+(.*)_+((HILIC|RP)(NEG|POS))\\.raw.*$",
  colname_format = function(x) stringi::stri_replace_first_regex(x, colname_regex,
    "$1$2"),
  mod_extract = function(x) stringi::stri_subset_regex(x, colname_regex) %>%
    stringi::stri_replace_first_regex(colname_regex, "$3"),
  quantity = NULL,
  nonames = FALSE,
  exclude_sname_pattern = "(blank|QC|RS)",
  subgroups = NULL,
  logbase = 2,
  impute = FALSE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  formula = ~subgroup,
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

Arguments

dir

compound discoverer output directory

files

compound discoverer output files

colname_regex

regular expression to parse sample names from column names

colname_format

function to reformat column names

mod_extract

function to extract MS modi from sample names

quantity

'area', 'normalizedarea' or NULL

nonames

TRUE or FALSE: retain compunds without Names?

exclude_sname_pattern

regular expression of sample names to exclude

subgroups

NULL or string vector : subgroups to retain

logbase

base for logarithmization of the data

impute

TRUE or FALSE: impute group-specific NA values?

plot

TRUE or FALSE: plot ?

label

fvar

pca

TRUE or FALSE: run pca ?

pls

TRUE or FALSE: run pls ?

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

formula

model formula

block

model blockvar: string or NULL

coefs

model coefficients of interest: character vector or NULL

contrasts

coefficient contrasts of interest: character vector or NULL

palette

color palette : named character vector

verbose

TRUE or FALSE : message ?

Value

SummarizedExperiment


Read contaminants

Description

Read contaminants

Usage

read_contaminants(file = download_contaminants())

Arguments

file

contaminant file

Value

data.table

Examples

file <- download_contaminants()
dt <- read_contaminants(file)

Read fragpipe

Description

Read fragpipe

Usage

read_fragpipe(
  dir = getwd(),
  file = if (is_file(dir)) dir else file.path(dir, "combined_protein.tsv"),
  contaminants = FALSE,
  verbose = TRUE
)

Arguments

dir

directory with 'combined_protein.tsv'

file

'combined_protein.tsv' (full path)

contaminants

whether to include contaminants

verbose

whether to msg

Value

SummarizedExperiment

Examples

file <- download_data('multiorganism.combined_protein.tsv')
object <- read_fragpipe(file = file)
object
fdt(object)
sdt(object)

Read maxquant phosphosites

Description

Read maxquant phosphosites

Usage

read_maxquant_phosphosites(
  dir = getwd(),
  fosfile = if (is_file(dir)) dir else file.path(dir, "phospho (STY)Sites.txt"),
  profile = file.path(dirname(fosfile), "proteinGroups.txt"),
  fastafile = NULL,
  restapi = FALSE,
  quantity = NULL,
  subgroups = NULL,
  invert = character(0),
  contaminants = FALSE,
  reverse = FALSE,
  rm_missing_in_all_samples = TRUE,
  localization = 0.75,
  impute = FALSE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  formula = as.formula("~ subgroup"),
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

read_phosphosites(...)

Arguments

dir

proteingroups directory

fosfile

phosphosites file

profile

proteingroups file

fastafile

uniprot fastafile

restapi

TRUE or FALSE : annotate non-fastadt uniprots using uniprot restapi

quantity

'normalizedratio', 'ratio', 'correctedreporterintensity', 'reporterintensity', 'maxlfq', 'labeledintensity', 'intensity' or NULL

subgroups

NULL or string vector : subgroups to retain

invert

string vector: subgroups which require inversion

contaminants

TRUE or FALSE: retain contaminants ?

reverse

TRUE or FALSE: include reverse hits

rm_missing_in_all_samples

TRUE or FALSE

localization

number: min localization probability (for phosphosites)

impute

TRUE or FALSE: impute group-specific NA values?

plot

TRUE or FALSE

label

fvar

pca

TRUE or FALSE: run pca ?

pls

TRUE or FALSE: run pls ?

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

formula

model formula

block

model blockvar: string or NULL

coefs

model coefficients of interest: string vector or NULL

contrasts

model coefficient contrasts of interest: string vector or NULL

palette

color palette: named string vector

verbose

TRUE or FALSE: message ?

...

maintain deprecated functions

Value

SummarizedExperiment

Examples

profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
  fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics')
fastafile <- system.file('extdata/uniprot_hsa_20140515.fasta',  package = 'autonomics')
subgroups <- sprintf('%s_STD', c('E00', 'E01', 'E02', 'E05', 'E15', 'E30', 'M00'))
pro <- read_maxquant_proteingroups(file = profile, subgroups = subgroups)
fos <- read_maxquant_phosphosites(fosfile = fosfile, profile = profile, subgroups = subgroups)
fos <- read_maxquant_phosphosites(fosfile = fosfile, profile = profile, fastafile = fastafile, subgroups = subgroups)

Read maxquant proteingroups

Description

Read maxquant proteingroups

Usage

read_maxquant_proteingroups(
  dir = getwd(),
  file = if (is_file(dir)) dir else file.path(dir, "proteinGroups.txt"),
  fastafile = NULL,
  restapi = FALSE,
  quantity = NULL,
  subgroups = NULL,
  invert = character(0),
  contaminants = FALSE,
  reverse = FALSE,
  rm_missing_in_all_samples = TRUE,
  impute = FALSE,
  plot = FALSE,
  label = "feature_id",
  pca = plot,
  pls = plot,
  fit = if (plot) "limma" else NULL,
  formula = as.formula("~ subgroup"),
  block = NULL,
  coefs = NULL,
  contrasts = NULL,
  palette = NULL,
  verbose = TRUE
)

read_proteingroups(...)

Arguments

dir

proteingroups directory

file

proteingroups file

fastafile

uniprot fastafile

restapi

TRUE or FALSE : use uniprot restapi to annotate uniprots not in fastadt ?

quantity

'normalizedratio', 'ratio', 'correctedreporterintensity', 'reporterintensity', 'maxlfq', 'labeledintensity', 'intensity' or NULL

subgroups

NULL or string vector : subgroups to retain

invert

string vector : subgroups which require inversion

contaminants

TRUE or FALSE : retain contaminants ?

reverse

TRUE or FALSE : include reverse hits ?

rm_missing_in_all_samples

TRUE or FALSE

impute

TRUE or FALSE: impute group-specific NA values?

plot

TRUE or FALSE: plot ?

label

fvar

pca

TRUE or FALSE: run pca ?

pls

TRUE or FALSE: run pls ?

fit

model engine: 'limma', 'lm', 'lme(r)', 'wilcoxon' or NULL

formula

model formula

block

model blockvar: string or NULL

coefs

model coefficients of interest: character vector or NULL

contrasts

coefficient contrasts of interest: character vector or NULL

palette

color palette : named character vector

verbose

TRUE or FALSE : message ?

...

maintain deprecated functions

Value

SummarizedExperiment

Examples

# fukuda20 - LFQ
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    pro <- read_maxquant_proteingroups(file = file)
    
# billing19 - Normalized Ratios
         file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
    fastafile <- system.file('extdata/uniprot_hsa_20140515.fasta',  package = 'autonomics')
    subgroups <- sprintf('%s_STD', c('E00', 'E01', 'E02', 'E05', 'E15', 'E30', 'M00'))
    pro <- read_maxquant_proteingroups(file = file, subgroups = subgroups)
    pro <- read_maxquant_proteingroups(file = file, fastafile = fastafile, subgroups = subgroups)

Read msigdb datatable

Description

Read msigdb datatable

Usage

read_msigdt(
  file = list_files(MSIGDIR, full.names = TRUE)[1],
  collections = if (is.null(file)) NULL else switch(basename(file) %>% substr(nchar(.)
    - 4, nchar(.) - 3), Hs = c("C2:CP:REACTOME", "C5:GO:BP", "C5:GO:MF", "C5:GO:CC"), Mm
    = c("M2:CP:REACTOME", "M5:GO:BP", "M5:GO:MF", "M5:GO:CC"))
)

Arguments

file

msigdb file: one of the files in dir(MSIGDB).

collections

subset of names(MSIGCOLLECTIONS)

Examples

read_msigdt()

Read salmon

Description

Read salmon

Usage

read_salmon(dir, sfile = NULL, by = NULL, ensdb = NULL)

Arguments

dir

salmon results rootdir

sfile

samplefile

by

samplefile column to merge by

ensdb

EnsDb object

Value

SummarizedExperiment

Examples

# dir <- '../bh/salmon_quants'
# sfile <- '../bh/samplesheet.csv'
# by <- 'salmonDir'
# ah <- AnnotationHub::AnnotationHub()
# ensdb <- ah[['AH98078']]
# read_salmon(dir, sfile = sfile, by = 'salmonDir', ensdb = ensdb)

Read fasta hdrs

Description

Read fasta hdrs

Usage

read_uniprotdt(fastafile, fastafields = FASTAFIELDS, verbose = TRUE)

parse_maxquant_hdrs(fastahdrs)

read_contaminantdt(force = FALSE, verbose = TRUE)

Arguments

fastafile

string (or charactervector)

fastafields

charactervector : which fastahdr fields to extract ?

verbose

bool

fastahdrs

character vector

force

whether to overwrite existing file

Value

data.table(uniprot, protein, gene, uniprot, reviewed, existence)

Note

existence values are always those of the canonical isoform (no isoform-level resolution for this field)

Examples

# uniprot hdrs
     fastafile <- system.file('extdata/uniprot_hsa_20140515.fasta', package = 'autonomics')
     read_uniprotdt(fastafile)
     
# maxquant hdrs
    file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
    dt <- .read_maxquant_proteingroups(file)
    parse_maxquant_hdrs(dt$`Fasta headers`)

    profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
    fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics' )
    prodt <- .read_maxquant_proteingroups(profile)
    fosdt <- .read_maxquant_phosphosites(fosfile, profile)
    parse_maxquant_hdrs(prodt$`Fasta headers`)
    parse_maxquant_hdrs(fosdt$`Fasta headers`)
    
# contaminant hdrs
    read_contaminantdt()

Reset fit

Description

Reset fit

Usage

reset_fit(
  object,
  fit = fits(object),
  coefs = autonomics::coefs(object, fit = fit),
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

fit

character vector

coefs

character vector

verbose

TRUE or FALSE

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
(object <- read_metabolon(file))
object %<>% reset_fit()
object %<>% fit_limma() %>% reset_fit()
object %<>% fit_limma() %>% fit_lm() %>% reset_fit()
object %<>% fit_limma() %>% fit_lm() %>% reset_fit('limma')

Rm contaminants

Description

Rm contaminants from DIA-NN SumExp

Usage

rm_diann_contaminants(
  object,
  contaminants = read_contaminants(),
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

contaminants

uniprots (character vector)

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- download_data('dilution.report.tsv')
object <- read_diann_proteingroups(file)
object %<>% rm_diann_contaminants()

Rm features missing in some samples

Description

Rm features missing in some samples

Usage

rm_missing_in_all_samples(object, verbose = TRUE)

rm_missing_in_some_samples(object, verbose = TRUE)

Arguments

object

SummarizedExperiment

verbose

TRUE (default) or FALSE

Value

updated object

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
rm_missing_in_all_samples( object)
rm_missing_in_some_samples(object)

rm unmatched/singleton samples

Description

rm unmatched/singleton samples

Usage

rm_unmatched_samples(
  object,
  subgroupvar = "subgroup",
  subgroupctr = slevels(object, subgroupvar)[1],
  block,
  verbose = TRUE
)

rm_singleton_samples(object, subgroupvar = "subgroup", verbose = TRUE)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup variable (string)

subgroupctr

control subgroup (string)

block

block variable (string)

verbose

TRUE/FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.somascan.adat', package = 'autonomics')
object <- read_somascan(file)
object %<>% filter_samples(subgroup %in% c('t1', 't2'), verbose = TRUE)
rm_singleton_samples(object, subgroupvar = 'Subject')
rm_unmatched_samples(object, subgroupvar = 'subgroup', block = 'Subject')

Get tmm-scaled libsizes

Description

Get tmm-scaled libsizes

Usage

scaledlibsizes(counts)

Arguments

counts

counts matri

Value

scaled libsize vector

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
scaledlibsizes(counts(object))

Extract scores/loadings

Description

Extract scores/loadings

Usage

scoremat(object, method = "pca", by = biplot_by(object, method), dim = 1:2)

scores(object, method = "pca", by = biplot_by(object, method), dim = 1)

loadingmat(object, method = "pca", by = biplot_by(object, method), dim = 1:2)

loadings(object, method = "pca", by = biplot_by(object, method), dim = 1)

Arguments

object

SummarizedExperiment

method

'pca', 'pls', etc.

by

svar (string)

dim

numeric vector

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% pca()
    scores(object)[1:2]
  loadings(object)[1:2]
  scoremat(object)[1:2, ]
loadingmat(object)[1:2, ]

Get slevels

Description

Get svar levels

Usage

slevels(object, svar)

subgroup_levels(object)

Arguments

object

SummarizedExperiment, eSet, or eList

svar

sample var (character)

Value

svar values (character)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
slevels(object, 'subgroup')
subgroup_levels(object)

Get/Set snames

Description

Get/Set sample names

Usage

snames(object)

## S4 method for signature 'SummarizedExperiment'
snames(object)

snames(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,character'
snames(object) <- value

Arguments

object

SummarizedExperiment

value

string vector with sample names

Value

sample names vector (get) or updated eSet (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
head(snames(object))
head(snames(object) %<>% paste0('SAMPLE_', .))

Split samples

Description

Split samples by svar

Usage

split_samples(object, by = "subgroup")

cbind_imputed(objlist)

split_features(object, by)

Arguments

object

SummarizedExperiment

by

svar to split by (string)

objlist

SummarizedExperiment list

Value

SummarizedExperiment list

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
objlist <- split_features(object, by = 'PLATFORM')
objlist <- split_samples(object, 'Diabetes')
objlist %<>% Map(impute, .)
object <- cbind_imputed(objlist)

Does any string have a regex

Description

Does any string have a regex

Usage

stri_any_regex(str, pattern)

Arguments

str

string vector

pattern

string

Value

TRUE or FALSE

Examples

str <- c('s1 Spectral Count', 's1 Unique Spectral Count')
patterns <- c('Spectral Count', '(?<!Unique) Spectral Count', 'Intensity')
stringi::stri_detect_regex(str, pattern = patterns[1])
stringi::stri_detect_regex(str, pattern = patterns[2])
stringi::stri_detect_regex(str, pattern = patterns[3])
stri_any_regex(   str, pattern = patterns)

Detect fixed patterns in collapsed strings

Description

Detect fixed patterns in collapsed strings

Usage

stri_detect_fixed_in_collapsed(x, patterns, sep)

Arguments

x

vector with collapsed strings

patterns

vector with fixed patterns (strings)

sep

collapse separator (string) or NULL (if uncollapsed)

Value

boolean vector

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
x <- fdt(object)$uniprot
patterns <- c('A0A0R4IKT8', 'Q7T3G6')
table(stri_detect_fixed_in_collapsed(x = x, patterns = patterns, sep = ';'))

Get subgroup matrix

Description

Arrange (subgroup)levels in matrix

Usage

subgroup_array(object, subgroupvar)

subgroup_matrix(object, subgroupvar)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup svar

Value

matrix

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object$subgroup <- paste0(object$Diabetes, '.', object$subgroup)
subgroup_matrix(object, 'subgroup')

Subtract baseline

Description

Subtract baseline level within block

Usage

subtract_baseline(
  object,
  subgroupvar,
  subgroupctr = slevels(object, subgroupvar)[1],
  block = NULL,
  assaynames = setdiff(assayNames(object), c("weights", "pepcounts")),
  verbose = TRUE
)

subtract_pairs(
  object,
  subgroupvar = "subgroup",
  subgroupctr = slevels(object, subgroupvar)[1],
  block,
  assaynames = assayNames(object)[1],
  verbose = TRUE
)

subtract_differences(object, block, subgroupvar, verbose = TRUE)

Arguments

object

SummarizedExperiment

subgroupvar

subgroup svar

subgroupctr

control subgroup

block

block svar (within which subtraction is performed)

assaynames

which assays to subtract for

verbose

TRUE/FALSE

Details

subtract_baseline subtracts baseline levels within block, using the medoid baseline sample if multiple exist.

subtract_pairs also subtracts baseline level within block. It cannot handle multiple baseline samples, but has instead been optimized for many blocks

subtract_differences subtracts differences between subsequent levels, again within block

Value

SummarizedExperiment

Examples

# read 
    file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
    object0 <- read_metabolon(file)
    pca(object0, plot = TRUE, color = 'Time')

# subtract_baseline: takes medoid of baseline samples if multiple
    object <- subtract_baseline(object0, block = 'Subject', subgroupvar = 'Time')
    pca(object, plot = TRUE, color = 'Time')

# subtract_pairs: optimized for many blocks
    object <- subtract_pairs(object0, block = 'Subject', subgroupvar = 'Time')
    pca(object, plot = TRUE, color = 'Time')

# subtract_differences
    object <- subtract_differences(object0, block = 'Subject', subgroupvar = 'Time')
    values(object) %<>% na_to_zero()
    pca(object, plot = TRUE, color = 'Time')

Write sumexp to tsv

Description

Write sumexp to tsv

Usage

sumexp_to_tsv(object, assay = assayNames(object)[1], file)

Arguments

object

SummarizedExperiment

assay

string

file

filename

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file, fit = 'limma')
tsv <- file.path(tempdir(), 'fukuda20.proteingroups.tsv')
sumexp_to_tsv(object, file = tsv)

SummarizedExperiment to data.table

Description

SummarizedExperiment to data.table

Usage

sumexp_to_widedt(
  object,
  fvars = autonomics::fvars(object),
  assay = assayNames(object)[1]
)

sumexp_to_longdt(
  object,
  fvars = intersect("feature_name", autonomics::fvars(object)),
  svars = intersect("subgroup", autonomics::svars(object)),
  assay = assayNames(object) %>% intersect(c(.[1], "is_imputed"))
)

sumexp_to_subrep_dt(object, subgroup = subgroup)

Arguments

object

sumexp

fvars

additional fvars to include in table

assay

matrix in assays(object) to be used

svars

additional svars to include in table

subgroup

subgroup (sym)

Details

  • sumexp_to_widedt: feature x sample

  • sumexp_to_subrep_dt: feature.subgroup x replicate

  • sumexp_to_longdt: feature.sample

Value

data.table

Examples

# Atkin Hypoglycemia
   file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
   object <- read_metabolon(file)
   sumexp_to_widedt(object)
   sumexp_to_longdt(object)
   sumexp_to_subrep_dt(object)

# Fukuda
   file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
   object <- read_maxquant_proteingroups(file)
   values(object)
   fdt(object)
   object %<>% impute()
   table(fdt(object)$imputed)
   sumexp_to_longdt(object)
   sumexp_to_widedt(object)
   sumexp_to_longdt(object)

SummarizedExperiment list to long data.table

Description

SummarizedExperiment list to long data.table

Usage

sumexplist_to_longdt(
  sumexplist,
  svars = intersect("subgroup", autonomics::svars(sumexplist[[1]])),
  fvars = intersect("gene", autonomics::fvars(sumexplist[[1]])),
  setvarname = "set"
)

Arguments

sumexplist

list of SummarizedExperiments

svars

character vector

fvars

character vector

setvarname

string

Value

data.table

Examples

subgroups <- paste0(c('E00', 'E01', 'E02', 'E05', 'E15', 'E30', 'M00'), '_STD')
rnafile <- system.file('extdata/billing19.rnacounts.txt',     package = 'autonomics')
profile <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
fosfile <- system.file('extdata/billing19.phosphosites.txt',  package = 'autonomics')
rna <- read_rnaseq_counts(rnafile)
pro <- read_maxquant_proteingroups(file = profile, subgroups = subgroups)
fos <- read_maxquant_phosphosites(fosfile = fosfile, profile = profile, subgroups = subgroups)
pro$subgroup %<>% stringi::stri_replace_first_fixed('_STD', '')
fos$subgroup %<>% stringi::stri_replace_first_fixed('_STD', '')
    
sumexplist <- list(rna = rna, pro = pro, fos = fos)
dt <- sumexplist_to_longdt(sumexplist, setvarname = 'platform')
dt %<>% extract(gene %in% c('TNMD', 'TSPAN6'))

Summarize fit

Description

Summarize fit

Usage

summarize_fit(object, ...)

## S3 method for class 'data.table'
summarize_fit(
  object,
  fit = fits(object),
  coefs = autonomics::coefs(object, fit = fit),
  ...
)

## S3 method for class 'SummarizedExperiment'
summarize_fit(
  object,
  fit = fits(object),
  coefs = autonomics::coefs(object, fit = fit),
  ...
)

Arguments

object

SummarizedExperiment or data.table

...

S3 dispatch

fit

'limma', 'lme', 'lm', 'lme', 'wilcoxon' or NULL

coefs

string vector

Value

data.table(contrast, nup, ndown)

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_limma()
object %<>% fit_lm()
summarize_fit(object, coefs = c('t1-t0', 't2-t0', 't3-t0'))

Get/Set svalues

Description

Get/Set svar values

Usage

svalues(object, svar)

subgroup_values(object)

sampleid_values(object)

svalues(object, svar) <- value

## S4 replacement method for signature 'SummarizedExperiment,character'
svalues(object, svar) <- value

Arguments

object

SummarizedExperiment

svar

sample var (character)

value

value vector

Value

character vector (get) or SummarizedExperiment (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
svalues(object, 'subgroup')
subgroup_values(object)

Get/Set svars

Description

Get/Set sample variables

Usage

svars(object)

## S4 method for signature 'SummarizedExperiment'
svars(object)

## S4 method for signature 'MultiAssayExperiment'
svars(object)

svars(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,character'
svars(object) <- value

## S4 replacement method for signature 'MultiAssayExperiment,character'
svars(object) <- value

Arguments

object

SummarizedExperiment

value

string fector with variable names

Value

sample variable names (get) or updated SummarizedExperiment

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
svars(object)[1]
(svars(object)[1] %<>% paste0('1'))

Is systematic/random/full NA

Description

Is systematic/random/full NA

Usage

systematic_nas(object, by = "subgroup", frac = 0.5)

random_nas(object, by = "subgroup")

no_nas(object)

Arguments

object

SummarizedExperiment

by

svar (string)

frac

fraction

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
table(systematic_nas(object))   # missing in some subgroups, present in others
table(random_nas(object))       # missing in some samples, independent of subgroup
table(no_nas(object))           # missing in no samples

Tag features

Description

Tag features

Usage

tag_features(
  object,
  keyvar,
  sep,
  features,
  tagvar = get_name_in_parent(features),
  verbose = TRUE
)

Arguments

object

SummarizedExperiment

keyvar

string : intersection fvar

sep

string : keyvar collapse separator

features

character vector : intersection set

tagvar

string :

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/atkin.somascan.adat', package = 'autonomics')
object <- read_somascan(file)
features <- AnnotationDbi::keys(org.Hs.eg.db::org.Hs.eg.db, keytype = 'SYMBOL')
object %<>% tag_features(keyvar = 'EntrezGeneSymbol', sep = ' ', features)
table(fdt(object)$features)

Tag hdlproteins

Description

Tag hdlproteins

Usage

tag_hdlproteins(object, verbose = TRUE)

Arguments

object

SummarizedExperiment

verbose

TRUE or FALSE

Value

SummarizedExperiment

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
object %<>% tag_hdlproteins()
fdt(object)

Annotation Maps

Description

Annotation Maps

Usage

TAXON_TO_ORGNAME

ABBREV_TO_ORGNAME

REVIEWED_TO_NUMBER

EXISTENCE_TO_NUMBER

Format

An object of class character of length 7.

An object of class character of length 4.

An object of class character of length 2.

An object of class numeric of length 4.

Examples

TAXON_TO_ORGNAME['9606']
   ABBREV_TO_ORGNAME['HSA']
 REVIEWED_TO_NUMBER['reviewed']
EXISTENCE_TO_NUMBER['Evidence at protein level']

Statistical models supported in autonomics

Description

Statistical models supported in autonomics

Usage

TESTS

Format

An object of class character of length 5.

Examples

TESTS

Get/Set tpm

Description

Get / Set tpm matrix

Usage

tpm(object)

## S4 method for signature 'SummarizedExperiment'
tpm(object)

tpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
tpm(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
tpm(object) <- value

Arguments

object

SummarizedExperiment

value

tpm matrix (features x samples)

Value

tpm matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file, plot=FALSE)
tpm(object) <- values(object)
tpm(object)[1:3, 1:3]

twofactor sumexp

Description

twofactor sumexp

Usage

twofactor_sumexp()

Value

SummarizedExperiment


Uncollapse/Recollapse

Description

Uncollapse data.table cols

Usage

uncollapse(dt, ..., sep = ";")

recollapse(dt, by, sep = ";")

Arguments

dt

data.table

...

cols

sep

string

by

string

Examples

# Example data
   (dt <- data.table::data.table(
              uniprot  = 'Q9BQL6;Q96AC1;Q96AC1-3', 
              protein  = 'FERM1_HUMAN;FERM2_HUMAN', 
              gene     = 'FERMT1;FERMT2', 
              family   = 'FERM'))
# Uncollapse
    uncollapse(dt, protein, gene, sep = ';')
    recollapse( uncollapse(dt, protein, gene, sep = ';'), by = 'uniprot')
    
# Unchanged when no sep
    uncollapse(dt, family, sep = ';')
    uncollapse(dt, family, sep = 'NOSEP')

Get/Set expr values

Description

Get/Set value matrix

Usage

values(object)

## S4 method for signature 'SummarizedExperiment'
values(object)

values(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
values(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
values(object) <- value

Arguments

object

SummarizedExperiment

value

ratio matrix (features x samples)

Value

value matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
values(object)[1:3, 1:3]
values(object) <- 0
values(object)[1:3, 1:3]

Are varlevels unique

Description

Are varlevels unique

Usage

varlevels_dont_clash(object, ...)

## S3 method for class 'data.table'
varlevels_dont_clash(object, vars = names(object), ...)

## S3 method for class 'SummarizedExperiment'
varlevels_dont_clash(object, vars = svars(object), ...)

Arguments

object

SummarizedExperiment or data.table

...

required for s3 dispatch

vars

character vector

Value

TRUE or FALSE

Examples

require(data.table)
object1 <- data.table(expand.grid(genome = c('WT', 'MUT'), treat = c('control', 'drug')))
object2 <- data.table(expand.grid(mutant = c('YES', 'NO'), treated = c('YES', 'NO')))
varlevels_dont_clash(object1)
varlevels_dont_clash(object2)

Venn detects

Description

Venn diagram full/consistent/random detects

Usage

venn_detects(object, by = "subgroup")

Arguments

object

SummarizedExperiment

by

svar (string)

Value

NULL

Examples

file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
object <- read_maxquant_proteingroups(file)
venn_detects(object, 'subgroup')

Get/Set weights

Description

Get/Set weight matrix

Usage

weights(object, ...)

## S4 method for signature 'SummarizedExperiment'
weights(object)

weights(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,matrix'
weights(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,numeric'
weights(object) <- value

## S4 replacement method for signature 'SummarizedExperiment,NULL'
weights(object) <- value

Arguments

object

SummarizedExperiment

...

addtional params

value

ratio matrix (features x samples)

Value

weight matrix (get) or updated object (set)

Examples

file <- system.file('extdata/billing19.rnacounts.txt', package = 'autonomics')
object <- read_rnaseq_counts(file)
weights(object)[1:3, 1:2]
weights(object) <- 1
weights(object)[1:3, 1:2]

Write xl/ods

Description

Write xl/ods

Usage

write_xl(object, xlfile, fitcoefs = autonomics::fitcoefs(object))

write_ods(object, odsfile, fitcoefs = autonomics::fitcoefs(object))

Arguments

object

SummarizedExperiment

xlfile

file

fitcoefs

character vector

odsfile

file

Value

filepath

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file, fit = 'limma')
xlfile  <- file.path(tempdir(), 'fukuda20.proteingroups.fdt.xlsx')
odsfile <- file.path(tempdir(), 'fukuda20.proteingroups.fdt.ods')
# write_xl(object,  xlfile)
# write_ods(object, odsfile)

Model based prediction

Description

Model based prediction

Usage

X(
  object,
  formula = default_formula(object),
  drop = varlevels_dont_clash(object, all.vars(formula)),
  codingfun = contr.treatment.explicit
)

beta(object, fit = fits(object)[1])

Arguments

object

SummarizedExperiment or data.frame

formula

formula

drop

TRUE or FALSE

codingfun

function

fit

'limma', 'lm', 'lme', 'wilcoxon'

Value

beta matrix (nlevel x nfeature)

Examples

file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
object <- read_metabolon(file)
object %<>% fit_limma(block = 'Subject')
beta(object)                    #    betas : nlevel x nfeature
   X(object)                    #   design : nlevel x nlevel
   X(object) %*% beta(object)   # response : nlevel x nfeature

Change nondetect representation

Description

Change nondetect representation

Usage

zero_to_na(x, verbose = FALSE)

nan_to_na(x, verbose = FALSE)

na_to_zero(x, verbose = FALSE)

inf_to_na(x, verbose = FALSE)

minusinf_to_na(x, verbose = FALSE)

na_to_string(x)

Arguments

x

matrix

verbose

logical(1)

Value

Updated matrix

Examples

matrix(c(0, 7), nrow=1)
matrix(c(0, 7), nrow=1)    %>% zero_to_na(verbose=TRUE)

matrix(c(NA, 7), nrow=1)
matrix(c(NA, 7), nrow=1)   %>% na_to_zero(verbose=TRUE)

matrix(c(NaN, 7), nrow=1)
matrix(c(NaN, 7), nrow=1)  %>% nan_to_na(verbose=TRUE)

matrix(c(Inf, 7), nrow=1)
matrix(c(Inf, 7), nrow=1)  %>% inf_to_na(verbose=TRUE)

matrix(c(-Inf, 7), nrow=1)
matrix(c(-Inf, 7), nrow=1) %>% minusinf_to_na(verbose=TRUE)