
The segment function to �t a piecewise constant

curve

Wolfgang Huber

November 7, 2024

Contents

1 A simple example 1

2 More testing of the change-point estimates on simulated

data 4

3 Model selection on simulated data 4

1 A simple example

The problem of segmenting a series of numbers into piecewise constant seg-
ments occurs in multiple application areas. Two examples are

� arrayCGH data, where the segments correspond to regions of copy
number gain, loss, or no change.

� tiling microarray data for transcription pro�ling, where the segments
correspond to transcripts. Here we assume that the probe e�ects
(which lead to di�erent �uorescence intensities even for the same mRNA
abundance) have been normalized away, so that all probes for the same
unique target sequence have approximately, and in expectation, the
same �uorescence.

To demonstrate the algorithm, let us generate simulated data:

> genData = function(lenx, nrSeg, nrRep=1, stddev=0.1) {

+ x = matrix(as.numeric(NA), nrow=lenx, ncol=nrRep)

+ cp = sort(sample(1:floor(lenx/15), nrSeg-1) * 15)

1

+ cpb = c(1, cp, lenx+1)

+ s = 0

+ for (j in 2:length(cpb)) {

+ sel = cpb[j-1]:(cpb[j]-1)

+ s = (.5+runif(1))*sign(rnorm(1))+s

+ x[sel,] = rnorm(length(sel)*nrRep, mean=s, sd=stddev)

+ }

+ return(list(x=x, cp=cp))

+ }

> set.seed(4711)

> lenx = 1000

> nrSeg = 10

> gd = genData(lenx, nrSeg)

> plot(gd$x, pch=".")

> abline(v=gd$cp, col="blue")

0 200 400 600 800 1000

−
5

−
4

−
3

−
2

−
1

0

Index

gd
$x

Figure 1: A simulated data example with 10 segments. Their estimated
locations are shown with blue vertical lines

The result is shown in Figure 1. We can use the function segment to recon-
struct the change-points from the data in gd$x alone.

2

> library("tilingArray")

> maxseg = 12

> maxk = 500

> seg = segment(gd$x, maxk=maxk, maxseg=maxseg)

> seg

Object of class 'segmentation':

Data matrix: 1000 x 1

Change point estimates for number of segments S = 1:12

Selected S = NA

> seg@breakpoints[nrSeg+(-1:1)]

[[1]]

estimate

[1,] 75

[2,] 255

[3,] 345

[4,] 420

[5,] 660

[6,] 750

[7,] 810

[8,] 900

[[2]]

estimate

[1,] 75

[2,] 105

[3,] 255

[4,] 345

[5,] 420

[6,] 660

[7,] 750

[8,] 810

[9,] 900

[[3]]

estimate

[1,] 75

[2,] 105

3

[3,] 255

[4,] 344

[5,] 345

[6,] 420

[7,] 660

[8,] 750

[9,] 810

[10,] 900

> gd$cp

[1] 75 105 255 345 420 660 750 810 900

We see that the 10-th element of the list segbreakpoints exactly recon-
structs the change-points gd$cp that were used in the simulation.

The parameters maxseg and maxk are the maximum number of segments
and the maximum length per segment. The algorithm �nds for each value
of k from 1 to maxseg the best segmentation under the restriction that no
individual segment be longer than maxk. In the paper of Picard et al. [1]
and in their software, maxk is implicitely set to the number of data points
length(x). I have introduced this parameter to reduce the algorithm's com-
plexity. The complexity of Picard's software is length(x)*length(x) in
memory and length(x)*length(x)*maxcp in time, the complexity of the
segment function is length(x)*maxk in memory and length(x)*maxk*maxcp

in time. As I am applying it to data with length(x) ≈ 105 and maxk ≈ 250,
the di�erence can be substantial.

2 More testing of the change-point estimates on

simulated data

Here is a little for-loop that generates data using random parameters and
checks whether segment can reconstruct them.

> for(i in 1:20){

+ gd = genData(lenx, nrSeg)

+ seg = segment(gd$x, maxk=maxk, maxseg=maxseg)

+ stopifnot(seg@breakpoints[[nrSeg]][, "estimate"] == gd$cp)

+ }

4

3 Model selection on simulated data

In this section we show that the BIC works pretty well for �nding the correct
number of segments (parameter S in the paper) if the data are generated
by the model.

> nrSeg = 22

> gd = genData(lenx, nrSeg, nrRep=2, stddev=1/3)

> s = segment(gd$x, maxk=lenx, maxseg=as.integer(nrSeg * 2.5))

Plot the segmented data (Figure 2a)

> par(mai=c(1,1,0.1,0.01))

> plot(row(gd$x), gd$x, pch=".")

and the log likelihoods and the penalized log likelihoods. This is similar to
what is done in the segmentation.Rnw vignette for real data. and call it it:

> par(mai=c(1,1,0.1,0.01))

> plotPenLL(s)

The result is shown in Figure 2b.

> which.max(logLik(s, penalty="AIC"))

[1] 25

> which.max(logLik(s, penalty="BIC"))

[1] 22

References

[1] A statistical approach for CGH microarray data analy-
sis. Franck Picard, Stephane Robin, Marc Lavielle, Chris-
tian Vaisse, Gilles Celeux, Jean-Jacques Daudin. Rapport de
recherche No. 5139, Mars 2004, Institut National de Recherche

en Informatique et en Automatique (INRIA), ISSN 0249-6399.
http://www.inapg.fr/ens_rech/mathinfo/recherche/mathematique/outil.html

5

0 200 400 600 800 1000

−
4

−
3

−
2

−
1

0
1

2

row(gd$x)

gd
$x

0 10 20 30 40 50

−
10

00
−

90
0

−
80

0
−

70
0

S

(p
en

al
iz

ed
)

lo
g

lik
el

ih
oo

d

log L
log L~AIC

log L~BIC

Figure 2: a) simulated data example with nrSeg=22 segments and verti-
cal lines representing the �tted model with S =22, selected by maximum
logLBIC. b) log-likelihood logL, penalized likelihoods log L̃AIC and log L̃BIC.

6

