
Introduction to the Bioconductor marray package :

Classes structure component

Sandrine Dudoit1 and Yee Hwa Yang2

November 19, 2024

1. Division of Biostatistics, University of California, Berkeley,
http://www.stat.berkeley.edu/~sandrine 2. Department of Medicine, University of California,

San Francisco, jean@biostat.berkeley.edu

Contents

1 Overview 1

2 Object�oriented programming 2

3 Microarray classes 2

3.1 marrayLayout class . 3
3.2 marrayInfo class . 4
3.3 marrayRaw class . 4
3.4 marrayNorm class . 5
3.5 Creating and accessing slots of microarray objects . 6
3.6 Testing the validity of an object . 7

4 Basic microarray methods 8

4.1 Printing methods for microarray objects . 8
4.2 Subsetting methods for microarray objects . 9
4.3 Methods for accessing slots of microarray objects . 13
4.4 Methods for assigning slots of microarray objects . 13
4.5 Methods for coercing microarray objects . 15
4.6 Functions for computing layout parameters . 15

1 Overview

This document provides a tutorial on the class structures used in the marray package. The marray
packages contains basic class de�nitions and associated methods for pre� and post�normalization in-
tensity data for batches of arrays. To load the marray package in your R session, type library(marray).
As with any R package, detailed information on functions, classes and methods can be obtained
in the help �les. For instance, to view the help �le for the class marrayRaw in a browser, use

1

http://www.stat.berkeley.edu/~sandrine

help.start() followed by ? marrayRaw or alternately the dyadic class ? marrayRaw. Further-
more, se demonstrate the functionality of this collection of R packages using gene expression data
from the Swirl zebra�sh experiment. To load the Swirl dataset, use data(swirl), and to view a
description of the experiments and data, type ? swirl.
Getting started:

2 Object�oriented programming

Microarray experiments generate large and complex multivariate datasets, which contain textual
information on probe sequences (e.g. gene names, annotation, layout parameters) and mRNA target
samples (e.g. description of samples, protocols, hybridization and scanning conditions), in addition
to the primary �uorescence intensity data. E�cient and coordinated access to these various types
of data is an important aspect of computing with microarray data. To facilitate the management
of microarray data at di�erent stages of the analysis process, a collection of microarray speci�c
data structures or classes were de�ned (see also the Bioconductor package Biobase for microarray
classes and methods for normalized data). The packages rely on the class/method mechanism
provided by John Chambers' R methods package, which allows object�oriented programming in
R. Broadly speaking, classes re�ect how we think of certain objects and what information these
objects should contain. Classes are de�ned in terms of slots which contain the relevant data for
the application at hand. Methods de�ne how a particular function should behave depending on the
class of its arguments and allow computations to be adapted to particular classes, that is, data
types. For example, a microarray object should contain intensity data as well as information on
the probe sequences spotted on the array and the target samples hybridized to it. Useful methods
for microarray classes include specializations of printing, subsetting, and plotting functions for the
types of data represented by these classes.
The use of classes and methods greatly reduces the complexity of handling microarray data, by
automatically coordinating various sources of information associated with microarray experiments.

3 Microarray classes

The raw data from a microarray experiment are the image �les produced by the scanner; these are
typically pairs of 16�bit tagged image �le format (TIFF) �les, one for each �uorescent dye (images
usually range in size from a few megabytes (MB) to 10 or 20 MB for high resolution scans). Image
analysis is required to extract foreground and background �uorescence intensity measurements for
each spotted DNA sequence.

Here, we begin our analysis of microarray data with the output �les of image processing packages
such as GenePix or Spot. In what follows, red and green background intensities are denoted by
Rb and Gb, respectively, and red and green foreground intensities by Rf and Gf , respectively.
Background�corrected red and green �uorescence intensities are denoted by R andG, andM denotes
the corresponding base�2 log�ratio, M = log2R/G.

2

3.1 marrayLayout class

The term array layout refers to the layout of DNA probe sequences on the array, as determined by
the printing process. In general, probe sequences are spotted on a glass microscope slide using an
arrayer which has an ngr×ngc print�head, that is, a regular array of ngr rows and ngc columns of
print�tips or pins. The resulting microarrays are thus partitioned into an ngr×ngc grid matrix. The
terms grid, sector, and print�tip�group are used interchangeably in the microarray literature. Each
grid consists of an nsr× nsc spot matrix that was printed with a single print�tip. DNA probes are
usually printed sequentially from a collection of 384�well plates (or 96�well plates), thus, in some
sense, plates are proxies for time of printing. In addition, a number of control probe sequences may
be spotted on the array for normalization or other calibration purposes. The term array batch is
used to refer to a collection of arrays with the same layout. Keeping track of spot layout information
is essential for quality assessment of �uorescent intensity data and for normalization purposes.

Important layout parameters are the dimensions of the spot and grid matrices, and, for each probe
on the array, its grid matrix and spot matrix coordinates. In addition, it is useful to keep track
of gene names, plate origin of the probes, and information on the spotted control sequences (e.g.
probe sequences which should have equal abundance in the two target samples, such as housekeeping
genes). The class marrayLayout was designed to keep track of these various layout parameters and
contains the following slots (the classes of the slots are listed below the slot names)

> getClassDef("marrayLayout")

Class "marrayLayout" [package "marray"]

Slots:

Name: maNgr maNgc maNsr maNsc maNspots maSub

Class: numeric numeric numeric numeric numeric logical

Name: maPlate maControls maNotes

Class: factor factor character

Extends: "ShowLargeObject"

maNgr: Object of class "numeric", number of rows for the grid matrix.

maNgc: Object of class "numeric", number of columns for the grid matrix.

maNsr: Object of class "numeric", number of rows for the spot matrices.

maNsc: Object of class "numeric", number of columns for the spot matrices.

maNspots: Object of class "numeric", total number of spots on the array, equal to maNgr ×
maNgc×maNsr ×maNsc.

maSub: Object of class "logical", indicating which spots are currently being considered.

maPlate: Object of class "factor", recording the plate origin of the spotted probe sequences.

3

maControls: Object of class "factor", recording the control status of the spotted probe sequences.

maNotes: Object of class "character", any notes concerning the microarray layout, e.g., printing
conditions.

In addition, a number of methods were de�ned to compute other important layout parameters,
such as print�tip, grid matrix, and spot matrix coordinates: maPrintTip, maGridRow, maGridCol,
maSpotRow, and maSpotCol (see Section 4). No slots were de�ned for these quantities for memory
management reasons.

3.2 marrayInfo class

Information on the target mRNA samples co�hybridized to the arrays is stored in objects of class
marrayInfo. Such objects may include the names of the arrays, the names of the Cy3 and Cy5
labeled samples, notes on the hybridization and scanning conditions, and other textual information.
Descriptions of the spotted probe sequences (e.g. matrix of gene names, annotation, notes on
printing conditions) are also stored in object of class marrayInfo. The marrayInfo class is not
speci�c to the microarray context and has the following de�nition

> getClassDef("marrayInfo")

Class "marrayInfo" [package "marray"]

Slots:

Name: maLabels maInfo maNotes

Class: character data.frame character

Extends: "ShowLargeObject"

3.3 marrayRaw class

Pre�normalization intensity data for a batch of arrays are stored in objects of class marrayRaw,
which contain slots for the matrices of Cy3 and Cy5 background and foreground intensities (maGb,
maRb, maGf, maRf), spot quality weights (maW), layout parameters of the arrays (marrayLayout),
description of the probes spotted onto the arrays (maGnames) and mRNA target samples hybridized
to the arrays (maTargets).

> getClassDef("marrayRaw")

Class "marrayRaw" [package "marray"]

Slots:

Name: maRf maGf maRb maGb maW

Class: matrix matrix matrix matrix matrix

4

Name: maLayout maGnames maTargets maNotes

Class: marrayLayout marrayInfo marrayInfo character

Extends: "ShowLargeObject"

maRf: Object of class "matrix", red foreground intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maGf: Object of class "matrix", green foreground intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maRb: Object of class "matrix", red background intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maGb: Object of class "matrix", green background intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maW: Object of class "matrix", spot quality weights, rows correspond to spotted probe sequences,
columns to arrays in the batch.

maLayout: Object of class "marrayLayout", layout parameters for cDNA microarrays.

maGnames: Object of class "marrayInfo", description of spotted probe sequences.

maTargets: Object of class "marrayInfo", description of target samples hybridized to the arrays.

maNotes: Object of class "character", any notes concerning the microarray experiments, e.g. hy-
bridization or scanning conditions.

3.4 marrayNorm class

Post�normalization intensity data are stored in similar objects of class marrayNorm. These objects
store the normalized intensity log�ratios maM, the location and scale normalization values (maMloc
and maMscale), and the average log�intensities (maA). In addition, the marrayNorm class has a slot
for the function call used to normalize the data, maNormCall. For more details on the creation of
normalized microarray objects, the reader is referred to the vignette for the marrayNorm package.

> getClassDef("marrayNorm")

Class "marrayNorm" [package "marray"]

Slots:

Name: maA maM maMloc maMscale maW

Class: matrix matrix matrix matrix matrix

Name: maLayout maGnames maTargets maNotes maNormCall

Class: marrayLayout marrayInfo marrayInfo character call

Extends: "ShowLargeObject"

5

maA: Object of class "matrix", average log�intensities (base 2) A, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maM: Object of class "matrix", intensity log�ratios (base 2) M , rows correspond to spotted probe
sequences, columns to arrays in the batch.

maMloc: Object of class "matrix", location normalization values, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maMscale: Object of class "matrix", scale normalization values, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maW: Object of class "matrix", spot quality weights, rows correspond to spotted probe sequences,
columns to arrays in the batch.

maLayout: Object of class "marrayLayout", layout parameters for cDNA microarrays.

maGnames: Object of class "marrayInfo", description of spotted probe sequences.

maTargets: Object of class "marrayInfo", description of target samples hybridized to the arrays.

maNotes: Object of class "character", any notes concerning the microarray experiments, e.g. hy-
bridization or scanning conditions.

maNormCall: Object of class "call", function call for normalizing the batch of arrays.

Most microarray objects contain an maNotes slots which may be used to store any string of char-
acters describing the experiments, for examples, notes on the printing, hybridization, or scanning
conditions.

3.5 Creating and accessing slots of microarray objects

Creating new objects. The function new from the methods package may be used to create new
objects from a given class. For example, to create an object of class marrayInfo describing the
target samples in the Swirl experiment, one could use the following code

> zebra.RG<-as.data.frame(cbind(c("swirl","WT","swirl","WT"),

+ c("WT","swirl","WT","swirl")))

> dimnames(zebra.RG)[[2]]<-c("Cy3","Cy5")

> zebra.samples<-new("marrayInfo",

+ maLabels=paste("Swirl array ",1:4,sep=""),

+ maInfo=zebra.RG,

+ maNotes="Description of targets for Swirl experiment")

> zebra.samples

An object of class "marrayInfo"

@maLabels

[1] "Swirl array 1" "Swirl array 2" "Swirl array 3" "Swirl array 4"

6

@maInfo

Cy3 Cy5

1 swirl WT

2 WT swirl

3 swirl WT

4 WT swirl

@maNotes

[1] "Description of targets for Swirl experiment"

Slots which are not speci�ed in new are initialized to the prototype for the corresponding class.
These are usually "empty", e.g., matrix(0,0,0). In most cases, microarray objects can be created
automatically using the input functions and their corresponding widgets in the marrayInput pack-
age. These were used to create the object swirl of class marrayRaw.

Accessing slots. Di�erent components or slots of the microarray objects may be accessed using
the operator @, or alternately, the function slot, which evaluates the slot name. For example, to
access the maLayout slot in the object swirl and the maNgr slot in the layout object L

> L<-slot(swirl, "maLayout")

> L@maNgr

[1] 4

The function slotNames can be used to get information on the slots of a formally de�ned class or
an instance of the class. For example, to get information on the slots for the marrayLayout class
or on the slots for the object swirl use

> slotNames("marrayLayout")

[1] "maNgr" "maNgc" "maNsr" "maNsc" "maNspots"

[6] "maSub" "maPlate" "maControls" "maNotes"

> slotNames(swirl)

[1] "maRf" "maGf" "maRb" "maGb" "maW" "maLayout"

[7] "maGnames" "maTargets" "maNotes"

3.6 Testing the validity of an object

The function validObject from the R package methods may be used to test the validity of an
object with respect to its class de�nition. This function has two arguments: object, the object
to be tested; and test. If test is TRUE, the function returns a vector of strings describing the
problems, if any.

> validObject(maLayout(swirl), test=TRUE)

[1] TRUE

7

4 Basic microarray methods

The following basic methods were de�ned to facilitate manipulation of microarray data objects. To
see all methods available for a particular class, e.g., marrayLayout, or just the print methods

> showMethods(classes="marrayLayout")

> showMethods("show",classes="marrayLayout")

4.1 Printing methods for microarray objects

Since there is usually no need to print out �uorescence intensities for thousands of genes, the print
method was overloaded for microarray classes by simple report generators. For an overview of the
available microarray printing methods, type methods ? summary, or to see all summary methods
for the session

> showMethods("summary")

Function: summary (package base)

object="ANY"

object="marrayInfo"

object="marrayLayout"

object="marrayNorm"

object="marrayRaw"

For example, summary statistics for an object of class marrayRaw, such as swirl, can be obtained
by print(swirl) or simply swirl.

> summary(swirl)

Pre-normalization intensity data: Object of class marrayRaw.

Number of arrays: 4 arrays.

A) Layout of spots on the array:

Array layout: Object of class marrayLayout.

Total number of spots: 8448

Dimensions of grid matrix: 4 rows by 4 cols

Dimensions of spot matrices: 22 rows by 24 cols

Currently working with a subset of 8448spots.

Control spots:

There are 2 types of controls :

0 1

7680 768

8

Notes on layout:

No Input File

B) Samples hybridized to the array:

Object of class marrayInfo.

maLabels Names slide number experiment Cy3 experiment Cy5

1 swirl.1.spot swirl.1.spot 81 swirl wild type

2 swirl.2.spot swirl.2.spot 82 wild type swirl

3 swirl.3.spot swirl.3.spot 93 swirl wild type

4 swirl.4.spot swirl.4.spot 94 wild type swirl

date comments

1 2001/9/20 NA

2 2001/9/20 NA

3 2001/11/8 NA

4 2001/11/8 NA

Number of labels: 4

Dimensions of maInfo matrix: 4 rows by 6 columns

Notes:

C:/GNU/R/R-2.4.1/library/marray/swirldata/SwirlSample.txt

C) Summary statistics for log-ratio distribution:

Min. 1st Qu. Median

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.1.spot -2.74 -0.79 -0.58

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot -2.72 -0.15 0.03

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot -2.29 -0.75 -0.46

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.4.spot -3.21 -0.46 -0.26

Mean 3rd Qu. Max.

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.1.spot -0.48 -0.29 4.42

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot 0.03 0.21 2.35

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot -0.42 -0.12 2.65

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.4.spot -0.27 -0.06 2.90

D) Notes on intensity data:

Spot Data

4.2 Subsetting methods for microarray objects

In many instances, one is interested in accessing only a subset of arrays in a batch and/or spots in
an array. Subsetting methods "[" were de�ned for this purpose. For an overview of the available
microarray subsetting methods, type methods ? "[" or to see all subsetting methods for the session
showMethods("["). When using the "[" operator, the �rst index refers to spots and the second to

9

arrays in a batch. Thus, to access the �rst 100 probe sequences in the second and third arrays in
the batch swirl use

> swirl[1:100,2:3]

An object of class "marrayRaw"

@maRf

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot

[1,] 16138.720

[2,] 17247.670

[3,] 17317.150

[4,] 6794.381

[5,] 6043.542

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot

[1,] 2895.1600

[2,] 2976.6230

[3,] 2735.6190

[4,] 318.9524

[5,] 780.6667

95 more rows ...

@maGf

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot

[1,] 19278.770

[2,] 21438.960

[3,] 20386.470

[4,] 6677.619

[5,] 6576.292

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot

[1,] 2727.5600

[2,] 2787.0330

[3,] 2419.8810

[4,] 383.2381

[5,] 901.0000

95 more rows ...

@maRb

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot

[1,] 136

[2,] 133

[3,] 133

[4,] 105

[5,] 105

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot

[1,] 82

[2,] 82

10

[3,] 76

[4,] 61

[5,] 61

95 more rows ...

@maGb

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot

[1,] 175

[2,] 183

[3,] 183

[4,] 142

[5,] 142

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot

[1,] 86

[2,] 86

[3,] 86

[4,] 71

[5,] 71

95 more rows ...

@maW

<0 x 0 matrix>

@maLayout

An object of class "marrayLayout"

@maNgr

[1] 4

@maNgc

[1] 4

@maNsr

[1] 22

@maNsc

[1] 24

@maNspots

[1] 8448

@maSub

[1] TRUE TRUE TRUE TRUE TRUE

8443 more elements ...

@maPlate

11

[1] 1 1 1 1 1

Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

95 more elements ...

@maControls

[1] 1 1 1 1 1

Levels: 0 1

95 more elements ...

@maNotes

[1] "No Input File"

@maGnames

An object of class "marrayInfo"

@maLabels

[1] "geno1" "geno2" "geno3" "3XSSC" "3XSSC"

95 more elements ...

@maInfo

"ID" "Name"

1 control geno1

2 control geno2

3 control geno3

4 control 3XSSC

5 control 3XSSC

95 more rows ...

@maNotes

[1] "C:/GNU/R/R-2.4.1/library/marray/swirldata/fish.gal"

@maTargets

An object of class "marrayInfo"

@maLabels

[1] "swirl.2.spot" "swirl.3.spot"

@maInfo

Names slide number experiment Cy3 experiment Cy5 date comments

2 swirl.2.spot 82 wild type swirl 2001/9/20 NA

3 swirl.3.spot 93 swirl wild type 2001/11/8 NA

@maNotes

[1] "C:/GNU/R/R-2.4.1/library/marray/swirldata/SwirlSample.txt"

12

@maNotes

[1] "Spot Data"

4.3 Methods for accessing slots of microarray objects

A number of simple methods were de�ned to access slots of the microarray classes. Using such
methods is more general than using the slot function or @ operator. In particular, if the class
de�nitions are changed, any function which uses the @ operator will need to be modi�ed. When
using a method to access the data in the slot, only that particular method needs to be modi�ed.
Thus, to access the layout information for the array batch swirl one may also use maLayout(swirl).

In addition, various methods were de�ned to compute basic statistics from microarray object slots.
For instance, for memory management reasons, objects of class marrayLayout do not store the spot
coordinates of each probe. Rather, these can be obtained from the dimensions of the grid and spot
matrices by applying methods: maGridRow, maGridCol, maSpotRow, and maSpotCol to objects of
class marrayLayout. Print�tip�group coordinates are given by maPrintTip. Similar methods were
also de�ned to operate directly on objects of class marrayRaw and marrayNorm. The commands
below may be used to display the number of spots on the array, the dimensions of the grid matrix,
and the print�tip�group coordinates.

> swirl.layout<-maLayout(swirl)

> maNspots(swirl)

[1] 8448

> maNspots(swirl.layout)

[1] 8448

> maNgr(swirl)

[1] 4

> maNgc(swirl.layout)

[1] 4

> maPrintTip(swirl[1:10,3])

[1] 1 1 1 1 1 1 1 1 1 1

4.4 Methods for assigning slots of microarray objects

A number of methods were de�ned to replace slots of microarray objects, without explicitly using
the @ operator or slot function. These make use of the setReplaceMethod function from the R
methods package. As with the accessor methods just described, the assignment methods are named
after the slots. For example, to replace the maNotes slot of swirl.layout

13

> maNotes(swirl.layout)

[1] "No Input File"

> maNotes(swirl.layout)<- "New value"

> maNotes(swirl.layout)

[1] "New value"

To initialize slots of an empty marrayLayout object

> L<-new("marrayLayout")

> L

An object of class "marrayLayout"

@maNgr

numeric(0)

@maNgc

numeric(0)

@maNsr

numeric(0)

@maNsc

numeric(0)

@maNspots

numeric(0)

@maSub

[1] TRUE

@maPlate

factor()

Levels:

@maControls

factor()

Levels:

@maNotes

character(0)

> maNgr(L)<-4

Similar methods were de�ned to operate on objects of class marrayInfo, marrayRaw and marrayNorm.

14

4.5 Methods for coercing microarray objects

To facilitate navigation between di�erent classes of microarray objects, we have de�ned methods
for coercing microarray objects from one class into another. A list of such methods can be obtained
by methods ? coerce. For example, to coerce an object of class marrayRaw into an object of class
marrayNorm:

> swirl.norm<-as(swirl, "marrayNorm")

4.6 Functions for computing layout parameters

In some cases, plate information is not stored in marrayLayout objects when the data are �rst read
into R. We have de�ned a function maCompPlate which computes plate indices from the dimensions
of the grid matrix and number of wells in a plate. For example, the Swirl arrays were printed
from 384�well plates, but the plate IDs were not stored in the fish.gal �le. To generate plate
IDs (arbitrarily labeled by integers starting with 1) and store these in the maPlate slot of the
marrayLayout object use

> maPlate(swirl)<-maCompPlate(swirl,n=384)

Similar functions were de�ned to generate and manipulate spot coordinates: maCompCoord, maCompInd,
maCoord2Ind, maInd2Coord. The function maGeneTable produces a table of spot coordinates and
gene names for objects of class marrayRaw and marrayNorm.

15

	Overview
	Object–oriented programming
	Microarray classes
	marrayLayout class
	marrayInfo class
	marrayRaw class
	marrayNorm class
	Creating and accessing slots of microarray objects
	Testing the validity of an object

	Basic microarray methods
	Printing methods for microarray objects
	Subsetting methods for microarray objects
	Methods for accessing slots of microarray objects
	Methods for assigning slots of microarray objects
	Methods for coercing microarray objects
	Functions for computing layout parameters

