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1 Introduction
The biological processes that take place within a cell often require intricate
coordination among multiple genes and proteins [1]. Thus, the traditional ap-
proaches that study associations between individual genes and a phenotype can-
not provide a full understanding of these complex biological phenomena [2, 3].
These approaches fail to pinpoint the biological mechanisms of complicated
conditions such as cancer because complex diseases are usually caused by col-
laboration of more than a few genes. In particular, the detection of the subtle
but coordinated and consistent changes in the expression levels of a set of func-
tionally related genes is often more important and informative than detecting
dramatic changes in the expression levels of a few individual genes [1].
Network analysis can detect subtle but consistent changes in a set of inter-
acting and functionally related genes [1]. The more data used to build the
network, the better the network obtained because the resulting network models
the interaction between genes more accurately. However, integrating different
types of omics data into a single network can be challenging. For example,
DNA methylation is usually measured on hundreds of thousands of loci, and
there is no one–to–one correspondence between these loci and genes, which are
the nodes of the coexpression network. The iNETgrate package is specifically
developed to fuse (i.e., effectively integrate) DNA methylation data with gene
expression data in a single network [4]. The nodes (vertices) of the network
are genes and the connection (edge) between two nodes is weighted based on
both gene expression and DNA methylation data. The iNETgrate package is a
significant enhancement over our Pigengene approach [5] because it effectively
integrates DNA methylation data into the gene network [4].
A practical exemplar application of iNETgrate is in prognostication of acute
myeloid leukemia (AML), which is a cancer of the blood and bone marrow [4].
Most AML patients are classified as low–, intermediate–, and high–risk. There
are urgent and effective treatments for high– and low–risk patients, such as
bone marrow transplant and chemotherapy, respectively. The intermediate–risk
group is a mixture of high– and low–risk patients but, their actual risk level
is not detectable based on current methods used in clinics. Since the survival
rate of these patients cannot be predicted precisely, it is not possible to choose
the most efficient treatment for them. Therefore, there is a demand to find a
way to reclassify these patients into either high– or low–risk groups based on
their clinical and molecular omics data. In most methods, gene expression is the
primary data source to find risk groups. Some research groups used mutation
and molecular abnormalities along with gene expression and found risk groups of
more patients. Here, we illustrate using gene expression and DNA methylation
to reclassify intermediate–risk patients.
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2 How to run iNETgrate ?

2.1 Installation
iNETgrate is an R package that can be downloaded and installed from Biocon-
ductor by using following commands in R:

if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager")

BiocManager::install("iNETgrate")

Alternatively, if the built package is already available, it can be installed by the
following command in Unix:

R CMD INSTALL iNETgrate_x.y.z.tar.gz

where x.y.z determines the version. The second approach requires all the de-
pendencies be installed manually, therefore, the first approach is preferred.

2.2 A quick overview
iNETgrate constructs a weighted gene network where the weights of the edges
is calculated by a combined correlation scores of gene expression and DNA
methylation beta values, i.e.,

W(gi, gj) = (1− µ)(
∣∣corE(gi, gj)∣∣) + µ(

∣∣corM(gi, gj)
∣∣), 1

where gi and gj is a pair of genes for which edge weight is to be calculated,
µ is a value between 0 and 1 given by the user,

∣∣corE(gi, gj)∣∣ is the absolute
correlation between expression of the gene pair, and similarly,

∣∣corM(gi, gj)
∣∣ is

the absolute correlation between beta values of the gene pair.
iNETgrate then identifies gene modules (i.e., clusters of coexpressed and co-
methylated genes), computes an eigengene for each module, and uses these
biological signatures as features for classifying patients into risk categories.
The main function is iNETgrate which requires a gene expression profile, a
DNA methylation beta value profile and the corresponding conditions (types).
Individual functions are also provided to facilitate running the pipeline in a
customized way. The inferred biological signatures (eigengenes) are useful for
further supervised or unsupervised analyses.
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2.3 What is an eigengene?
In most functions of this package, eigenegenes are computed or used as robust
biological signatures. Briefly, each eigengene E is a weighted average of the
expression of all genes in a given set of n genes (also known as a gene module
or a cluster of genes).

E = α1g1 + α2g2 + · · ·+ αigi 2

where αi represents the weight corresponding to gene gi. The weights are
adjusted using PCA in a way that the explained variance is maximized. This
guarantees that the loss in the biological information in minimized.

2.4 What is an eigenloci?
To compute an effective DNA methylation value at gene level, we calculate a
weighted average of beta values per gene. Briefly, each eigenloci is a weighted
average of the beta values of the probes (loci) corresponding to the gene of
interest. If the number of loci for a gene is less than six, all of them contribute to
the eigenloci with some weight, which is determined automatically. Otherwise,
we identify and use a subset of highly correlating loci (i.e., "core") to compute
the eigenloci. A gene expression profile and an eigenloci profile are the two key
inputs to the makeNetwork function.

2.5 A toy example
For a quick start, we demonstrate the application of iNETgrate pipeline on a
leukemia dataset below [4]. The first step is to load the package and data in R :

library(iNETgrate)

## Loading required package: BiocStyle

##

##

## Registered S3 method overwritten by ’gplots’:

## method from

## reorder.factor gdata

## Setting options(’download.file.method.GEOquery’=’auto’)

## Setting options(’GEOquery.inmemory.gpl’=FALSE)

set.seed(1)
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In this vignette, we use the toy data that is included in the package. Please note
that the provided data in the package is sub–sampled for a quick demonstration.
For real applications, the expression of thousands of genes should be used.
Analyzing such input with iNETgrate can take a few hours and may require
5-10 GB of memory to save the results.
The following commands run iNETgrate pipeline on the toy data. First, we load
the toy data.

data(toyRawAml)

class(toyRawAml)

## [1] "list"

names(toyRawAml)

## [1] "genExpr" "genExprSampleInfo" "rawDnam" "clinical"

Then, we define the clinical settings and run iNETgrate .

clinSettings <- c("patientIDCol"="bcr_patient_barcode",

"eventCol"="vital_status",

"timeCol"="days_to_last_followup",

"riskCatCol"="acute_myeloid_leukemia_calgb_cytogenetics_risk_category",

"riskFactorCol"="cytogenetic_abnormalities",

"event"="Dead",

"riskHigh"="Poor",

"riskLow"="Favorable")

print(clinSettings)

## patientIDCol

## "bcr_patient_barcode"

## eventCol

## "vital_status"

## timeCol

## "days_to_last_followup"

## riskCatCol

## "acute_myeloid_leukemia_calgb_cytogenetics_risk_category"

## riskFactorCol

## "cytogenetic_abnormalities"

## event

## "Dead"

## riskHigh

## "Poor"

## riskLow
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## "Favorable"

See the documentation of the iNETgrate function for a toy example like the
following:

inetgrator <- iNETgrate(Data=toyRawAml, clinSettings=clinSettings,

saveDir="iNETgrateOut", mus=0.6)

Results and figures are saved in the "iNETgrateOut" directory under the current
directory. For more advanced applications, the user is encouraged to analyze the
data step-by-step and customize the individual functions such as makeNetwork

and computEigengenes.

2.6 Running the iNETgrate pipeline step by step
If you are curious about the specific steps in the iNETgrate pipeline, or you need
to run some steps with different settings, you can follow the steps below. With
the default values, the results will be similar to the output of the iNETgrate

function.

2.6.1 Setting paths

Before starting the analysis, we need to create some directory to save the plots
and results.

resPath <- file.path(tempdir(), "iNETgrateRes") ## the result path

message(paste("Results will be saved in:", resPath, sep="\n"))

## Results will be saved in:

## /tmp/Rtmp25Oh6I/iNETgrateRes

netPath <- file.path(resPath, "net")

survivalPath <- file.path(netPath, "surv")

dir.create(survivalPath, showWarnings=FALSE, recursive=TRUE)

2.6.2 Cleaning data

The first step of the iNETgrate pipeline is to clean the input data using the
cleanAllData function. Here we make sure that the gene expression and DNA
methylation matrices have row and column names, and do not include too many
NA values. We impute missing values in the DNA methylation data if needed.
Also, we clean and subset clinical data.
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riskCatCol <- "acute_myeloid_leukemia_calgb_cytogenetics_risk_category"

riskFactorCol <- "cytogenetic_abnormalities"

cleanedToy <- cleanAllData(genExpr=toyRawAml$genExpr,

genExprSampleInfo=toyRawAml$genExprSampleInfo,

rawDnam=toyRawAml$rawDnam, savePath=resPath,

clinical=toyRawAml$clinical,

riskCatCol=riskCatCol, riskFactorCol=riskFactorCol,

riskHigh="Poor", riskLow="Favorable",

verbose=1)

The output must be saved by the user if they intent to use the cleaned data
later. The output is a list of 4 components namely genExpr, dnam, locus2gene
and survival. survival is a subset of clinical data, where rows are patients
and columns are vitality and survival related information. genExpr is a matrix
of gene expression profile, where rows are genes and columns are patient IDs
with sample type attached in cases where multiple sample types exists. dnam

is a matrix of DNA methylation profile, where rows are loci and columns are
patient IDs with sample type attached in cases where multiple sample types
exists. DNA methylation data is processed using preprocess.Dnam for missing
beta values, and removing some non-CpG loci or SNP enriched loci.Finally lo

cus2gene is a dataframe where rows are loci and columns provide information
on the related gene.
This is followed by filtering and omitting genes or loci that have too low correla-
tion with survival data and vital status. The filterLowCor function computes
these correlations and selects the desired data. We then find a combined set
of genes that have some correlation with survival time or vital status based
on expression or DNA methylation profiles using computeUnion. The above–
mentioned filtering and combining steps can be performed using the function
electGenes, which is a wrapper for filterLowCor and computeUnion functions.

data(toyCleanedAml)

cleaned <- toyCleanedAml

elected <- electGenes(genExpr=cleaned$genExpr, dnam=cleaned$dnam,

survival=cleaned$survival, savePath=resPath,

event="Dead", locus2gene=cleaned$locus2gene,

doAlLoci=FALSE, verbose=1)

## Filtering gene expression data...

## Cleaning all data started at: 2024-09-11 05:46:34 UTC

## Both minCor and ratio are passed as inputs, both thresholds will

be used.
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## 3 entities with NA correlation to survival

## time are removed.

## 78 entities in expression are selected

## as their absolute correlation with survival time > 0.2

## 12 cases are

## removed because of NA in vital status

## 1 entities with NA correlation to vital status

## are removed.

## 28 entities in expression are

## selected as their absolute correlation with vital status > 0.2

## Number of selected data in expression based on

## correlation threshold 0.2 for vital status AND

## survival time: 102 .

## Keeping only 34 entities in expression because ratio is set to 0.333333333333333

.

## The correlation plots are saved at:

## /tmp/Rtmp25Oh6I/iNETgrateRes/plots

## Filtering DNA methylation data...

## Cleaning all data started at: 2024-09-11 05:46:34 UTC

## 0 entities with NA correlation to survival

## time are removed.

## 55 entities in dnam are selected

## as their absolute correlation with survival time > 0.2

## 14 cases are

## removed because of NA in vital status

## 0 entities with NA correlation to vital status

## are removed.

## 16 entities in dnam are

## selected as their absolute correlation with vital status > 0.2

## Number of selected data in dnam based on

## correlation threshold 0.2 for vital status AND

## survival time: 71 .

## Keeping only 71 entities in dnam because ratio is set to 1 .
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## The correlation plots are saved at:

## /tmp/Rtmp25Oh6I/iNETgrateRes/plots

## Combining filtered data...

## unionGenes set size: 77

The output of electGenes is a list of 5 components including unionGenes,
which is a character vector of gene IDs that have some correlation with survival
time or vital status based on expression or DNA methylation profiles. This union
gene set is further used to makeNetwork and compute eigengenes in next steps.

2.6.3 Computing DNA methylation values at the gene level

Computing effective DNA methylation profile at gene level is necessary to con-
struct a combined network where the nodes of the network are genes. Hence,
we compute eigenloci described earlier.

patientLabel <- setNames(as.character(cleaned$survival$Risk1),

nm=rownames(cleaned$survival))

inBoth <- intersect(colnames(cleaned$dnam), names(patientLabel))

computedEloci <- computEigenloci(dnam=cleaned$dnam[ ,inBoth],

Labels=patientLabel[inBoth],

geNames=elected$unionGenes,

locus2gene=cleaned$locus2gene,

plotPath=resPath,

Label1="Low", Label2="High",

verbose=1)

## Computing gene2locus...

## For every one of the 77 genes...

2.6.4 Making the combined network

Now, our data is ready to make a network using makeNetwork. Here, we use a
mu value to combine adjacency matrices from the expression and DNA methy-
lation (i.e., eigenloci) datasets into a single network of genes (Eq. 1). In real
applications, several values for mu can be used in a numeric vector and then the
best value will be determined in later steps of the analyzeSurvival.

eigenloci <- computedEloci$eigenloci

madeNet <- makeNetwork(genExpr=cleaned$genExpr, eigenloci=eigenloci,

geNames=elected$unionGenes, mus=0.6,
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doRemoveTOM=TRUE, outPath=netPath,

verbose=1)

## Warning: executing %dopar% sequentially: no parallel backend registered

print(madeNet$mu2modules[,1:5, drop=FALSE])

## BAI1 CAPNS1 CHD1 CYC1 EXT1

## 0.6 0 2 1 0 0

The modules for each value of the input mu are identified and returned in
madeNet$mu2modules, which is a matrix with the mu values on rows and genes on
columns. The entries of the matrix are integer values determining the module
number a gene belongs to.

2.6.5 Computing eigengenes

The next step is to compute a representative value (feature) for each identi-
fied module (i.e., an eigengene) based on gene expression and optionally, DNA
methylation data.

e1 <- computEigengenes(genExpr=cleaned$genExpr, eigenloci=eigenloci,

netPath=netPath, geNames=elected$unionGenes,

Labels=patientLabel, Label1="Low",

Label2="High", mus=c(0.6), combiningMu=NA,

doIgnoreNas=TRUE, survival=cleaned$survival,

event="Dead", verbose=1,

mu2modules=madeNet$mu2modules)

## mu value: 0.6 lCombine: 1

## Using expr

## Add dnam

## Projecting...

## mu value: 0.6 lCombine: 0

## Using expr

## Add dnam

## Projecting...

## mu value: 0.6 lCombine: 0.6

## Using expr
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## Add dnam

## Projecting...

2.6.6 Survival analysis

Finally, our Cox regression analysis identifies the module (gene cluster) or the
combination of up to 3 modules that are together most useful for prognosti-
cation. The identified modules are used in an accelerated failure time (AFT)
model to classify the patients into different risk categories.

s1 <- analyzeSurvival(survival=cleaned$survival,

favRisk="High",

subSet="Int", mus=0.6,

netPath=netPath, outPath=survivalPath,

xmax1=15, xmin1=0, verbose=1)

## Accelerated failure time and Cox analysis ...

## inputEvent:

## inputEvent

## 0 1

## 65 108

## mu value : 0.6

## Loading objects:

## eigengenes

## [[ suppressing 10 column names ’s0’, ’s1’, ’s2’ ... ]]

The above survival plots are saved in survivalPath. Each plot compares the
KM curves among risk categories based on iNETgrate analysis, or the input
labels from the clinical data, as mentioned in plot titles. The first two plots
include all cases and the last two plots include only a subset of cases as described
in each plot title. The confusion matrix is useful to compare the input labels vs.
the risk categorization done by iNETgrate (i.e., the numbers on the diagonal
show the agreement while other numbers show the discrepancy).

2.6.7 Inferring eigengenes in another dataset

If you want to infer the selected eigengenes in an independent dataset for vali-
dation, the bestInetgrator can be used to extract the weights in an organized
list, which then can be used by the inferEigengenes function.
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inetgrator <- bestInetgrator(bestPvalues=s1$bestPvalues,

usefuLoci=computedEloci$usefuLoci,

lociPigen=computedEloci$lociPigen,

netPath=netPath)

## Loading objects:

## pigengene

2.6.8 Pathway analysis

Pathwyay overrepresentation analysis of the modules selected by our Cox anal-
ysis can be done using the Pigengene::get.enriched.pw function. For each
selected module, a folder will be created, which includes an Excel file listing the
pathways that are overrepresented by the genes in the corresponding module.

selectedModules <- names(inetgrator$modules)

geneList <- list()

for(m1 in selectedModules)

geneList[[m1]] <- names(inetgrator$modules[[m1]]$genes)

library(org.Hs.eg.db) ## Needed for human genes.

## Loading required package: AnnotationDbi

got <- Pigengene::get.enriched.pw(geneList, idType="SYMBOL",

pathwayDb="KEGG", outPath=survivalPath)

## Loading required package: org.Mm.eg.db

##

## ’select()’ returned 1:1 mapping between keys and columns

## Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...

## Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/hsa"...

2.7 Citation
citation("iNETgrate")

To cite package ’iNETgrate’ in publications use:
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Sogand Sajedi et al.(2023) ’iNETgrate’: integrating DNA methylation and
gene expression data in a single gene network, Sajedi et al., In process. URL:
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0253-
6.
A BibTeX entry for LaTeX users is
@Article, author = Sogand Sajedi and et al., title = iNETgrate: integrating
DNA methylation and gene expression data in a single gene network, journal =
TBD, year = 2023, volume = ?, number = ?, pages = ?, month = ?,

3 Session Information
The output of sessionInfo on the system that compiled this document is as
follows:

toLatex(sessionInfo())

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,

LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: Etc/UTC

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default
• BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
• LAPACK:

/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so

; LAPACK version3.12.0
• Base packages: base, datasets, grDevices, graphics, methods, parallel,

stats, stats4, utils
• Other packages: AnnotationDbi 1.67.0, Biobase 2.65.1,

BiocGenerics 0.51.1, BiocStyle 2.33.1, Biostrings 2.73.1,
GenomeInfoDb 1.41.1, GenomicRanges 1.57.1, IRanges 2.39.2,
IlluminaHumanMethylation450kanno.ilmn12.hg19 0.6.1,
MatrixGenerics 1.17.0, S4Vectors 0.43.2, SummarizedExperiment 1.35.1,
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XVector 0.45.0, bumphunter 1.47.0, foreach 1.5.2, iNETgrate 1.3.0,
iterators 1.0.14, locfit 1.5-9.10, matrixStats 1.4.1, minfi 1.51.0,
org.Hs.eg.db 3.19.1, org.Mm.eg.db 3.19.1

• Loaded via a namespace (and not attached): BiocFileCache 2.13.0,
BiocIO 1.15.2, BiocManager 1.30.25, BiocParallel 1.39.0, C50 0.1.8,
Cubist 0.4.4, DBI 1.2.3, DOSE 3.99.1, DelayedArray 0.31.11,
DelayedMatrixStats 1.27.3, Formula 1.2-5, GEOquery 2.73.4,
GO.db 3.19.1, GOSemSim 2.31.2, GenomeInfoDbData 1.2.12,
GenomicAlignments 1.41.0, GenomicFeatures 1.57.0, HDF5Array 1.33.6,
Hmisc 5.1-3, Homo.sapiens 1.3.1, KEGGREST 1.45.1,
KernSmooth 2.23-24, MASS 7.3-61, Matrix 1.7-0, ModelMetrics 1.2.2.2,
OrganismDbi 1.47.0, Pigengene 1.31.2, R.methodsS3 1.8.2, R.oo 1.26.0,
R.utils 2.12.3, R6 2.5.1, RBGL 1.81.0, RColorBrewer 1.1-3,
RCurl 1.98-1.16, RSQLite 2.3.7, Rcpp 1.0.13, RcppParallel 5.1.9,
RcppZiggurat 0.1.6, ReactomePA 1.49.1, Rfast 2.1.0, Rgraphviz 2.49.0,
Rhdf5lib 1.27.0, Rsamtools 2.21.1, S4Arrays 1.5.7, SparseArray 1.5.32,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, UCSC.utils 1.1.0,
WGCNA 1.72-5, XML 3.99-0.17, abind 1.4-5, annotate 1.83.0, ape 5.8,
aplot 0.2.3, askpass 1.2.0, backports 1.5.0, base64 2.0.1,
base64enc 0.1-3, beanplot 1.3.1, biomaRt 2.61.3, bit 4.0.5, bit64 4.0.5,
bitops 1.0-8, blob 1.2.4, bnlearn 5.0.1, buildtools 1.0.0, caTools 1.18.3,
cachem 1.1.0, caret 6.0-94, checkmate 2.3.2, class 7.3-22, cli 3.6.3,
cluster 2.1.6, clusterProfiler 4.13.3, codetools 0.2-20, colorspace 2.1-1,
compiler 4.4.1, cowplot 1.1.3, crayon 1.5.3, curl 5.2.2, data.table 1.16.0,
dbplyr 2.5.0, digest 0.6.37, doParallel 1.0.17, doRNG 1.8.6, dplyr 1.1.4,
dynamicTreeCut 1.63-1, e1071 1.7-14, enrichplot 1.25.2,
evaluate 0.24.0, fansi 1.0.6, farver 2.1.2, fastcluster 1.2.6, fastmap 1.2.0,
fastmatch 1.1-4, fgsea 1.31.0, filelock 1.0.3, foreign 0.8-87, fs 1.6.4,
future 1.34.0, future.apply 1.11.2, gdata 3.0.0, genefilter 1.87.0,
generics 0.1.3, ggforce 0.4.2, ggfun 0.1.6, ggplot2 3.5.1, ggplotify 0.1.2,
ggraph 2.2.1, ggrepel 0.9.6, ggtree 3.13.1, glmnet 4.1-8, globals 0.16.3,
glue 1.7.0, gower 1.0.1, gplots 3.1.3.1, graph 1.83.0, graphite 1.51.0,
graphlayouts 1.1.1, grid 4.4.1, gridExtra 2.3, gridGraphics 0.5-1,
gson 0.1.0, gtable 0.3.5, gtools 3.9.5, hardhat 1.4.0, highr 0.11,
hms 1.1.3, htmlTable 2.4.3, htmltools 0.5.8.1, htmlwidgets 1.6.4,
httr 1.4.7, httr2 1.0.3, igraph 2.0.3, illuminaio 0.47.0, impute 1.79.0,
inum 1.0-5, ipred 0.9-15, jsonlite 1.8.8, knitr 1.48, lattice 0.22-6,
lava 1.8.0, lazyeval 0.2.2, libcoin 1.0-10, lifecycle 1.0.4, limma 3.61.9,
listenv 0.9.1, lubridate 1.9.3, magrittr 2.0.3, maketools 1.3.0,
mclust 6.1.1, memoise 2.0.1, multtest 2.61.0, munsell 0.5.1,
mvtnorm 1.3-1, nlme 3.1-166, nnet 7.3-19, nor1mix 1.3-3, openssl 2.2.1,
openxlsx 4.2.7, pROC 1.18.5, parallelly 1.38.0, partykit 1.2-22,
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patchwork 1.2.0, pheatmap 1.0.12, pillar 1.9.0, pkgconfig 2.0.3,
plyr 1.8.9, png 0.1-8, polyclip 1.10-7, preprocessCore 1.67.0,
prettyunits 1.2.0, prodlim 2024.06.25, progress 1.2.3, proxy 0.4-27,
purrr 1.0.2, quadprog 1.5-8, qvalue 2.37.0, rappdirs 0.3.3,
reactome.db 1.88.0, readr 2.1.5, recipes 1.1.0, rentrez 1.2.3,
reshape 0.8.9, reshape2 1.4.4, restfulr 0.0.15, rhdf5 2.49.0,
rhdf5filters 1.17.0, rjson 0.2.22, rlang 1.1.4, rmarkdown 2.28,
rngtools 1.5.2, rpart 4.1.23, rstudioapi 0.16.0, rtracklayer 1.65.0,
scales 1.3.0, scatterpie 0.2.4, scrime 1.3.5, shadowtext 0.1.4,
shape 1.4.6.1, siggenes 1.79.0, sparseMatrixStats 1.17.2, splines 4.4.1,
statmod 1.5.0, stringi 1.8.4, stringr 1.5.1, survival 3.7-0, sys 3.4.2,
tibble 3.2.1, tidygraph 1.3.1, tidyr 1.3.1, tidyselect 1.2.1, tidytree 0.4.6,
timeDate 4032.109, timechange 0.3.0, tools 4.4.1, treeio 1.29.1,
tweenr 2.0.3, txdbmaker 1.1.1, tzdb 0.4.0, utf8 1.2.4, vctrs 0.6.5,
viridis 0.6.5, viridisLite 0.4.2, withr 3.0.1, xfun 0.47, xml2 1.3.6,
xtable 1.8-4, yaml 2.3.10, yulab.utils 0.1.7, zip 2.3.1, zlibbioc 1.51.1
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