
bcSeq

Fast Sequence Alignment for High-throughput shRNA and CRISPR Screens

Jiaxing Lin Jeremy Gresham Tongrong Wang So Young Kim
James Alvarez Jeffrey S. Damrauer Scott Floyd Joshua Granek

Andrew Allen Cliburn Chan Jichun Xie Kouros Owzar

2019-04-25

1 / 25

Outline

1 Introduction

2 Examples
Example Data
Example of Using bcSeq hamming
Example of Using bcSeq edit

3 General Alignment Probability Model

4 User-defined Alignment Probability Model
User-defined Prior Probability
User-defined P(R̃j = r̃j |Rj = rj)

5 Practical Example

6 Session Information

2 / 25

Introduction

This document provides comprehensive instructions and examples for using the bcSeq
package to perform alignment of CRISPR or shRNA reads to a library of sequences.
The alignment is based on a ’Trie’ data structure, a tree like data structure for fast
searching. The algorithm is implemented in C++, and ported to R by Rcpp.
Features of this package include:

1 O(Nm̄) computational complexity (where N is the number of sequence reads in
the sample, and m̄ is the average read length.)

2 Short sequences alignment that can be applied to barcode matching and similar
problems.

3 Allows errors during the alignment. Supports both hamming and edit distance
matching with constraints.

4 Alignment qualities are evaluated and ambiguous alignments are resolved using
Bayes’ classifier.

5 Support for user-defined matching probability models in evaluating the alignment
quality.

Note: using the ’Trie’ data structure only unique barcode sequences in the library are
kept.

3 / 25

bcSeq hamming

bcSeq_hamming(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL,
numThread = 4, count_only = TRUE, detail_info = FALSE)

bcSeq hamming can be used for performing alignment using hamming distance.
Function arguments:

sampleFile: (string or DNAStringSet) If a string it is the sample filename and
needs to be a fastq file.

libFile: (string or DNAStringSet) If a string it is the library filename, needs
to be a fasta or fastq file. libFile and sampleFile must have the same
type.

outFile: (string) output filename.

misMatch: (integer) the number of maximum mismatches or indels allowed in
the alignment.

tMat: (two column dataframe) prior probability of a mismatch given a
sequence. The first column is the prior sequence, the second column
is the prior error probability. The default values of prior error
probability for all different sequences are 1/3.

numThread: (integer) the number of threads for parallel computing. The default
is 4.

4 / 25

bcSeq hamming

Function arguments continued:

count only: (bool) option for function returns (default is TRUE). If set to FALSE,
returns a list contains a vector of read IDs, and a vector of barcode
IDs, and an alignment probability matrix between all the reads and
barcodes. The vectors of read/barcode IDs serve as the row and
column names for the alignment probability matrix respectively.
Examples of the probability matrix are provided in the example
section. Note that the probability matrix is a sparse matrix.

detail info: (bool) option for controlling function returns, default to be FALSE. If
set to TRUE, a file contain read indexes and library indexes reads
aligned will be created with filename $(outFile).txt.

5 / 25

bcSeq hamming Return Values

Function returns:

default: A csv count table is created and written to user specified file. The
.csv file contains two columns, the first column is the sequences of
the barcodes, and the second columns is the number of reads that
aligned to the barcodes. A list containing a vector of read IDs and
barcode IDs is returned to R.

Extra optional returns:

count only = FALSE: If set to FALSE, bcSeq will return a sparse matrix in the list
containing the vectors of read IDs and barcode IDs. The rows of the
matrix correspond to the vector of read IDs, and the columns
correspond to the vector of barcode IDs.

6 / 25

bcSeq edit

bcSeq_edit(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL,
numThread = 4, count_only = TRUE, userProb = NULL,
gap_left = 2, ext_left = 1, gap_right = 2,
ext_right = 1, pen_max = 5, detail_info = FALSE)

bcSeq edit can be used for performing alignment using edit distance. Function

arguments for bcSeq edit:

sampleFile: (string or DNAStringSet) If a string it is the sample filename and
needs to be a fastq file.

libFile: (string or DNAStringSet) If a string it is the library filename, needs
to be a fasta or fastq file. libFile and sampleFile must have the same
type.

outFile: (string) output filename.

misMatch: (integer) the number of maximum mismatches allowed in the
alignment.

tMat: (two column dataframe) prior probability of a mismatch given a
sequence. The first column is the prior sequence, the second column
is the error rate. The default value for all prior sequences is 1/3.

numThread: (integer) the number of threads for parallel computing, default to be
4.

7 / 25

bcSeq edit

Function arguments continued:

count only: (bool) option for function returns (default is TRUE). If set to FALSE,
returns a list contains a vector of read IDs, and a vector of barcode
IDs, and an alignment probability matrix between all the reads and
barcodes. The vectors of read/barcode IDs serve as the row and
column names for the alignment probability matrix respectively.
Examples of the probability matrix are provided in the example
section. Note that the probability matrix is a sparse matrix.

userProb: (function) an vectorized R function taking three arguments:
userProb(max pen, prob, pen val), max pen is the maximum
penalty allowed, prob is a vector containing the combined
match/misMatch probabilities for each unique alignment between a
given read and barcode, pen val is a vector containing total
penalties for the reads and barcodes in the same order. userProb is
a way for the user to control which alignments are considered. The
default value is NULL, indicating the alignment probabilities are to be
computed following the model presented in the Alignment Probability
Model section and a comprehensive example is given there.

detail info: (bool) option for controlling function returns, default to be FALSE. If
set to TRUE, a file contain read indexes and library indexes reads
aligned will be created with filename $(outFile).txt. Not avaliable
for user-defined probablity model case.

8 / 25

bcSeq edit function

Extra function arguments for tuning alignment based on edit distance:

gap left: (double) Penalty score for deleting a base for the reads.

ext left: (double) Penalty score for extending a deletion of base for the reads.

gap right: (double) Penalty score for inserting a base

ext right: (double) Penalty score for extending an insertion

pen max: (double) Maximum penalty allowed for any alignment

9 / 25

bcSeq edit Return Values

Function returns:

default: A csv count table is created and written to user specified file. The
.csv file contains two columns, the first column is the sequences of
the barcodes, and the second columns is the number of reads that
aligned to the barcodes. A list containing a vector of read IDs and
barcode IDs is returned to R.

Extra optional returns:

count only = FALSE: If set to FALSE, bcSeq will return a sparse matrix in the list
containing the vectors of read IDs and barcode IDs. The rows of the
matrix correspond to the vector of read IDs, and the columns
correspond to the vector of barcode IDs.

10 / 25

Example Library and Read simulation

Generating a library fasta file:

lFName <- "./libFile.fasta"

bases <- c(rep(’A’, 4), rep(’C’,4), rep(’G’,4), rep(’T’,4))

numOfBars <- 7

Barcodes <- rep(NA, numOfBars*2)

for (i in 1:numOfBars){
Barcodes[2*i-1] <- paste0(">barcode_ID: ", i)

Barcodes[2*i] <- paste(sample(bases, length(bases)), collapse = ’’)

}
write(Barcodes, lFName)

Generating a read fastq file:

rFName <- "./readFile.fastq"

numOfReads <- 8

Reads <- rep(NA, numOfReads*4)

for (i in 1:numOfReads){
Reads[4*i-3] <- paste0("@read_ID_",i)

Reads[4*i-2] <- Barcodes[2*sample(1:numOfBars,1,

replace=TRUE, prob=seq(1:numOfBars))]

Reads[4*i-1] <- "+"

Reads[4*i] <- paste(rawToChar(as.raw(

33+sample(20:30, length(bases),replace=TRUE))),

collapse=’’)

}
write(Reads, rFName)

11 / 25

Alignment by bcSeq hamming

Alignment using default mapping probability and output

library(Matrix)

library(bcSeq)

ReadFile <- "./readFile.fastq"

BarFile <- "./libFile.fasta"

outFile <- "./count.csv"

res <- bcSeq_hamming(ReadFile, BarFile, outFile, misMatch = 2,

tMat = NULL, numThread = 4, count_only = TRUE)

res <- read.csv(outFile, header=FALSE)

The function writes the read counts to a .csv file, the file name can be set through argument outFile. There are

two columns in the output .csv file, the first column is the barcode sequence, and the second column is the

corresponding number of reads aligned to the barcode.

12 / 25

Alignment using bcSeq hamming with Optional Return

The package also provides an option for the user to output more detailed information for the alignments. The
current version can return the alignment probability between the reads and the barcodes by setting argument
count only to ”FALSE”.

outFile <- "./count2.csv"

bcSeq_hamming(ReadFile, BarFile, outFile, misMatch = 2, tMat = NULL,

numThread = 4,count_only=FALSE)

13 / 25

Alignment by bcSeq edit

Alignment using default mapping probability and output format

res <- bcSeq_edit(ReadFile, BarFile, outFile, misMatch = 2,

tMat = NULL, numThread = 4, count_only = TRUE,

gap_left = 2, ext_left = 1, gap_right = 2, ext_right = 1,

pen_max = 7)

res <- read.csv(outFile, header=FALSE)

res[1:3,]

The function writes the read counts to a .csv file, the file name can be set through argument outFile. There are

two columns in the output .csv file, the first column is the barcode sequence, and the second column is the

corresponding number of reads aligned to the barcode.

14 / 25

Alignment using bcSeq edit with Optional Return

The package also provides an option for the user to output more detailed information for the alignments. The
current version can return the alignment probability between the reads and the barcodes by setting argument
count only to ”FALSE”.

outFile <- "./count2.csv"

bcSeq_edit(ReadFile, BarFile, outFile, misMatch = 2, tMat = NULL,

numThread = 4, count_only = FALSE, gap_left = 2, ext_left = 1,

gap_right = 2, ext_right = 1, pen_max = 5)

15 / 25

General Alignment Probability Model in bcSeq

Let P(̃rk |r) := P(R̃ = r̃k |R = r) denote the probability that the read originated from

barcode k, with the corresponding sequence r̃k , given that the sequence of the
observed read is r = [r1, . . . , rL]. bcSeq models the joint probability distribution of the

originating reads conditional on the corresponding observed reads, P(̃rk |r), under the
assumption of conditional independence, as

P(̃rk |r) = P(R̃ = r̃k |R = r)

= P(R̃ = [r̃1, . . . , r̃L]|R = [r1, . . . , rL])

=
L∏

i=1

P(R̃j = r̃j |R = [r1, . . . , rL])

=
L∏

i=1

P(R̃j = r̃j |Rj = rj).

The marginal conditional probability is modeled as

P(R̃j = r̃j |Rj = rj) =

{
1− ϵj , r̃j = rj
ϵj
3

r̃j ̸= rj ,

where ϵj = 10−qj/10 is the base-calling error probability corresponding to the observed
Phred score qj .

16 / 25

User defined Alignment Probability

bcSeq provides two approaches for the user to defined their own alignment probability

User-defined Marginal Conditional Probability

User-defined P(R̃j = r̃j |Rj = rj)

17 / 25

User-defined Marginal Conditional Probability

Redefine marginal conditional probability:

P(R̃j = r̃j |Rj = rj)

≡P(R̃j = r̃j |Rj = [rj−n, . . . , rj])

=

{
1− ϵj , r̃j = rj
f (ϵj)rj−n,...,rj r̃j ̸= rj ,

This definition assumes that sequences before position j has influence on the error
rate. The option can be activated by providing a dataframe to the argument tMat.
The first column of this dataframe is a vector of sequences [rj−n, . . . , rj] and the
second column is the corresponding value of f (ϵj)[rj−n,...,rj]

. If a sequence is not in the

dataframe the default values
ϵj
3

are used.

18 / 25

User-defined P(R̃j = r̃j |Rj = rj)

Customized P(R̃j = r̃j |Rj = rj) are also supported by bcSeq for bcSeq edit. The user
can define a function userProb to compute the alignment score. userProb is a
vectorized R function taking three arguments: userProb(max pen, prob, pen val),
max pen is the maximum penalty allowed, prob is a vector containing the combined
match/misMatch probabilities for each unique alignment between a given read and
barcode, pen val is a vector containing total penalties for the reads and barcodes in
the same order. userProb is a way for the user to control which alignments are
considered.

customizeP <- function(max_pen, prob, pen_val)

{
prob * (1 - log(2) + log(1 + max_pen / (max_pen + pen_val)))

}

bcSeq_edit(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL,

numThread = 4, count_only = TRUE, userProb = comstomizeP,

gap_left = 2, ext_left = 1, gap_right = 2,

ext_right = 1, pen_max = 5)

Note: the using of user-defined P(R̃j = r̃j |Rj = rj) can add extra computation time.
As defined here, customizeP is equivalent to the default model.

19 / 25

The customized userProb function can also be defined using sounceCpp in a
non-vectorized fashion. The function signature is Rcpp::NumericVector(double,
Rcpp::NumericVector, Rcpp::NumericVector).

library(Rcpp)
sourceCpp(code=’
#include<Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector cpp_fun(double m, NumericVector prob, NumericVector pen){

NumericVector ret;
for(int i = 0; i < prob.size(); ++i){

ret.push_back(prob[i] * (1 - log(2) + log(1 + pen[i]/(m + pen[i]))));
}
return ret;

}’)

bcSeq_edit(sampleFile, libFile, outFile, misMatch = 2, tMat = NULL,
numThread = 4, count_only = TRUE, userProb = cpp_fun,
gap_left = 2, ext_left = 1, gap_right = 2,
ext_right = 1, pen_max = 5)

20 / 25

Practical Alignment Example

The sequencing library used in the benchmarking analysis can be downloaded from the
MAGeCK website:
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR376/ERR376998/ERR376998.fastq.gz
The reference barcode library can also be downloaded from Kosuke Yusa laboratory:
https://www.nature.com/nbt/journal/v32/n3/extref/nbt.2800-S7.xlsx

get read and library file
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR376/ERR376998/ERR376998.fastq.gz
-P ./src/
wget https://www.nature.com/nbt/journal/v32/n3/extref/nbt.2800-S7.xlsx
-P ./src

Process library data to fasta format

library(gdata)
x <- read.xls("./nbt.2800-S7.xlsx")
fName <- "./libgRNA.fasta"
size <- nrow(x)
for(i in 1:size){

cat(">seq ID","\n",file=fName, append=TRUE)
cat(as.character(x$gRNA.sequence[i]),"\n", file=fName, append=TRUE)}

fName <- "./libgRNA.csv"
size <- nrow(x)
for(i in 1:size){

cat(as.character(x$gRNA.sequence[i]),"\n", file=fName, append=TRUE)}

21 / 25

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR376/ERR376998/ERR376998.fastq.gz
https://www.nature.com/nbt/journal/v32/n3/extref/nbt.2800-S7.xlsx

Practical Alignment Example

Unzip the reads and trim the adaptor

gunzip ERR376998.fastq.gz

Ad hoc C++ function for trimming adaptor (trimMAGeCK.cpp)

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv []){

int length = 0;

string line;

ifstream myfile (argv [1]);

ofstream outfile (argv [2]);

if (myfile.is_open ()){

while (getline (myfile ,line)){

outfile << line <<endl;

getline (myfile ,line);

length = line.length () - 31;

outfile << line.substr (23, length) <<endl;

getline (myfile ,line);

outfile << line <<endl;

getline (myfile ,line);

outfile << line.substr (23, length) <<endl;}

myfile.close ();}

return 0;

}

22 / 25

Practical Alignment Example

Ad hoc C++ function to remove duplicated barcodes (uniqueBar.cpp)

#include <iostream >

#include <fstream >

#include <unordered_set >

using namespace std;

int main(int argc , char *argv []){

int length = 0; string line;

std:: unordered_set <std::string > myset;

ifstream myfile (argv [1]); ofstream outfile (argv [2]);

if (myfile.is_open ()){

while (getline (myfile ,line))

getline (myfile ,line); myset.insert(line);

myfile.close ();}

for(const std:: string& x: myset)

outfile << ">fake␣ID␣"<<x<< endl <<x<<endl;

return 0;

}

23 / 25

Practical Alignment Example

Compile trim code and trim adoptor

g++ -std=c++11 trimMAGeCK.cpp -o trim.exe
./trim.exe ERR376998.fastq ERR376998_trimed.fastq

Remove duplicated barcodes

g++ -std=c++11 uniqueBar.cpp -o uniBar.exe
./uniBar.exe ./libgRNA.fasta ./libgRNAUni.fasta
mv libgRNAUni.fasta libgRNA.fasta

Perform alignment

library(bcSeq)
readFileName <- "ERR376998_trimed.fastq"
libFileName <- "libgRNA.fasta"
alignedFile <- "SampleAligned.txt"
bcSeq_hamming(readFileName, libFileName, alignedFile, misMatch = 2,

tMat = NULL, numThread = 4, count_only = TRUE)

24 / 25

Session Information

R version 4.4.3 (2025-02-28), x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.2 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK:
/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;
LAPACK version3.12.0

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: Matrix 1.7-3, Rcpp 1.0.14, bcSeq 1.29.0, knitr 1.50

Loaded via a namespace (and not attached): BiocGenerics 0.53.6,
Biostrings 2.75.4, GenomeInfoDb 1.43.4, GenomeInfoDbData 1.2.13,
IRanges 2.41.3, R6 2.6.1, S4Vectors 0.45.4, UCSC.utils 1.3.1, XVector 0.47.2,
buildtools 1.0.0, compiler 4.4.3, crayon 1.5.3, evaluate 1.0.3, generics 0.1.3,
grid 4.4.3, highr 0.11, httr 1.4.7, jsonlite 1.9.1, lattice 0.22-6, maketools 1.3.2,
stats4 4.4.3, sys 3.4.3, tools 4.4.3, xfun 0.51

[1] "Start Time Wed Mar 19 03:01:18 2025"
[1] "End Time Wed Mar 19 03:01:23 2025"

25 / 25

	Introduction
	Examples
	Example Data
	Example of Using bcSeq_hamming
	Example of Using bcSeq_edit

	General Alignment Probability Model
	User-defined Alignment Probability Model
	User-defined Prior Probability
	User-defined P(j=j|Rj=rj)

	Practical Example
	Session Information

