
SigFuge (Tutorial)

Patrick K. Kimes, Christopher R. Cabanski

September 25, 2024

Contents

1 Summary . 1

2 Introduction . 1

2.1 Citation. 2

3 Importing data . 2

4 SigFuge Case Study . 5

4.1 SFfigure . 5

4.2 SFpval . 7

4.3 SFlabels and SFnormalize . 8

1 Summary
SigFuge is a tool that takes as input RNA-seq read depth (coverage) for multiple samples
across a genomic locus (gene/transcript) and (1) clusters samples using the coverage data,
(2) assesses significance of the clusters using SigClust and (3) visualizes transcript coverage
along genomic coordinates. This document provides a tutorial on how to use the functions
of the SigFuge package.

2 Introduction
Frequently, one of the main goals of an RNA-seq experiment is to identify genes that are dif-
ferentially expressed (DE) between two conditions, e.g. tumor and matched normal samples.
In this setting where the contrasting groups of samples are known, several existing DE tools,
including Bioconductor packages DESeq [1] and edgeR [2], can be used to identify the set
of DE genes.

SigFuge is for expolartory analysis in RNA-seq experiments not designed to compare two pre-
defined conditions. For example, several studies sequence multiple tumor samples with few,
if any, matched normals. These studies are better suited for identifying subtypes with similar
gene expression patterns using unsupervised clustering. Although many previous studies have
performed unsupervised clustering using gene expression values across many genes, here we
focus on clustering samples using per-base expression levels (coverage) across one gene locus
at a time. This allows us to identify genes exhibiting different expression patterns across

http://bioconductor.org/packages/SigFuge
http://bioconductor.org/packages/DESeq
http://bioconductor.org/packages/edgeR

SigFuge (Tutorial)

the gene transcript, such as alternative splicing or gene fusions, that may be missed when
summarizing gene expression to one value. Our focus is on identifying genes that could each
individually stratify the samples into different clinically important subgroups.

SigFuge is a tool for identifying genes with statistically significant clusters. For each gene,
SigFuge treats each sample as a curve where RNA-seq read depth (coverage) is a function
of genomic position. See Figure 1 for an example of multiple samples visualized as curves
across the CDKN2A locus. SigFuge clusters samples based on the shape of these expression
curves. The significance of clustering at each locus is quantified by a p-value calculated
using SigClust [3]. The SigClust method formulates the question of statistical significance
in clustering as a hypothesis test. The null hypothesis of SigClust is that the data are from
a single Gaussian distribution. The significance of a given clustering is measured by the
strength of clustering relative to an appropriate simulated null distribution. As the p-value
calculation depends on simulation, results will vary slightly between implementations even
for the same data matrix. SigFuge output for each locus includes a SigClust p-value and
corresponding visualizations of expression clusters along the locus.

Visualization of RNA-seq transcript coverage is an important aspect of any study. The
plotting functions that we present here, which can be used independently of the SigFuge

clustering results, show the expression level at the per-base resolution across a gene. Treating
these expression profiles as curves allows users to visualize the expression of multiple samples
in the same plot.

This tutorial is split into two parts. The first part (Section 3) provides examples for loading
the data in the appropriate format. The second part (Section 4) provides a fully worked case
study including normalization, clustering, significance testing and plotting.

2.1 Citation
For a more in depth discussion of clustering per-base expression profiles, see our manuscript
describing the SigFuge algorithm in further detail. Please try to cite the following article
when you publish results obtained using the software.

Kimes, P.K., Cabanski, C.R., Wilkerson, M.D., Zhao, N., Johnson, A.R., Perou,
C.M., Makowski, L., Maher, C., Liu, Y., Marron, J.S., Hayes, D.N. (2014)
SigFuge: single gene clustering of RNA-seq reveals differential isoform usage
among cancer samples. Nucleic Acids Research, 42(14):e113.

3 Importing data
Two objects are needed to run SigFuge: (1) a GRanges object or similar data.frame containing
information about the locus (gene) of interest and (2) a data matrix of coverage for each
sample at each base (position) across the locus. The GRanges object is only used to plot the
exon boundaries, so it may be omitted if only calcualting SigFuge p-values.

There are two ways to create a GRanges object. The first way is to manually input the
start and end positions of exons, the chromosome, and the strand orientation. If a gene has
mutliple isoforms with overlapping exons, it is advised to take the union of all isoform models
in order to detect possible alternative splicing. Below is an example for manually creating a
GRanges object containing annotation data for the CDKN2A locus.

> library(SigFuge)

> geneAnnot <- GRanges(seqnames=Rle("chr9", 5),

2

https://CRAN.R-project.org/package=SigClust

SigFuge (Tutorial)

+ ranges=IRanges(start=c(21967751,21968574,21970901,21974403,21994138),

+ end=c(21968241,21968770,21971207,21975132,21994490)),

+ strand=Rle(strand("-"), 5))

> geneAnnot

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr9 21967751-21968241 -

[2] chr9 21968574-21968770 -

[3] chr9 21970901-21971207 -

[4] chr9 21974403-21975132 -

[5] chr9 21994138-21994490 -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The second way to create a GRanges object is to extract the annotation information from
an appropriate R package database. Below shows how to extract gene annotation data from
the set of UCSC known genes. Notice that exons 4 and 5 are overlapping, so we use the
reduce function to merge these exons.

> library(org.Hs.eg.db)

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> genesym <- c("CDKN2A")

> geneid <- select(org.Hs.eg.db, keys=genesym, keytype="SYMBOL", columns="ENTREZID")

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> ex <- exonsBy(txdb, "gene")

> geneAnnot <- ex[[geneid$ENTREZID[1]]]

> geneAnnot

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr9 21967751-21968241 - | 128318 <NA>

[2] chr9 21968574-21968770 - | 128319 <NA>

[3] chr9 21970901-21971207 - | 128320 <NA>

[4] chr9 21974403-21974826 - | 128321 <NA>

[5] chr9 21974677-21975132 - | 128322 <NA>

[6] chr9 21994138-21994490 - | 128323 <NA>

seqinfo: 93 sequences (1 circular) from hg19 genome

> geneAnnot <- reduce(geneAnnot)

> geneAnnot

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr9 21967751-21968241 -

[2] chr9 21968574-21968770 -

[3] chr9 21970901-21971207 -

[4] chr9 21974403-21975132 -

[5] chr9 21994138-21994490 -

3

SigFuge (Tutorial)

seqinfo: 93 sequences (1 circular) from hg19 genome

Now that we have the gene annotation, the next step is to construct the data matrix. For
each locus, a d-by-n coverage matrix is required as input, where d is the locus length and
n is the sample size. Each column corresponds to a sample and each row to the coverage
(number of overlapping reads) at each base. We assume that the sequencing data has been
aligned to a reference genome and the output is a sorted and indexed BAM file [4]. To
demonstrate how to extract coverage data from a list of BAM files, we will use the example
BAM files contained in the prebsdata package (see [5] for the original data source). First,
we load, sort and index the BAM files for each sample. We also create a GRanges object
corresponding to the exons of gene DPM1 located on chromosome 20.

> library(Rsamtools)

> library(prebsdata)

> geneAnnot <- GRanges(seqnames=Rle("20", 9),

+ ranges=IRanges(

+ start=c(49551405,49552685,49557402,49558568,49562274,

+ 49562384,49565166,49571723,49574900),

+ end=c(49551773,49552799,49557492,49558663,49562299,

+ 49562460,49565199,49571822,49575060)),

+ strand=Rle(strand("-"), 9))

> bam_file1 <- system.file(file.path("sample_bam_files", "input1.bam"),

+ package="prebsdata")

> bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"),

+ package="prebsdata")

> sorted1 <- sortBam(bam_file1, tempfile())

> indexBam(sorted1)

> sorted2 <- sortBam(bam_file2, tempfile())

> indexBam(sorted2)

> bam_files <- c(sorted1, sorted2)

Next, we use the GRanges object to generate a matrix of per-base coverage. To do this, we
first create a function to extract coverage, calcInfo.

> calcInfo <- function(x) {

+ info <- apply(x[["seq"]], 2, function(y) {

+ y <- y[c("A", "C", "G", "T"), , drop=FALSE]

+ cvg <- colSums(y)

+ })

+ info

+ }

> param <- ApplyPileupsParam(which=geneAnnot, what=c("seq", "qual"),

+ yieldBy="position", yieldAll=TRUE)

> fls <- PileupFiles(bam_files, param=param)

> res <- applyPileups(fls, calcInfo, param=param)

> geneDepth <- t(do.call(cbind,res))

> colnames(geneDepth) <- c("Sample1", "Sample2")

> geneDepth[500:505,]

Sample1 Sample2

[1,] 110 75

4

http://bioconductor.org/packages/prebsdata

SigFuge (Tutorial)

[2,] 95 60

[3,] 105 60

[4,] 95 80

[5,] 95 50

[6,] 85 55

Depending on the number of samples, the above method may take several minutes per gene
to create the coverage matrix.

It is important to note that the GRanges object is only used to define properties of the
SigFuge figures and does not affect any of the analysis. Most notably, the locus information
will not be used to parse the coverage matrix. As such, the matrix should only contain the
exonic regions of interest and the matrix dimension d should equal the total length of the
exons specified in the GRanges object.

4 SigFuge Case Study
This section gives a fully worked case study. We will analyze a subset of 179 lung squamous
cell tumor samples sequenced as part of the Cancer Genome Atlas [6]. We will restrict
attention to the CDKN2A locus. For this example, we skip the data retrieval step and apply
SigFuge to a depth count matrix included with the package. geneDepth is a data matrix
of coverage with rows corresponding to genomic positions and columns to samples, and
geneAnnot is a GRanges object containing annotation information about the CDKN2A locus.

> data(geneAnnot)

> data(geneDepth)

4.1 SFfigure

SFfigure is a comprehensive function that performs 4 main tasks: (1) normalization of the
data matrix, (2) unsupervised clustering on the normalized values, (3) p-value calculation for
significance of clustering, and (4) plotting of the data curves. The following code uses the
default normalization and clustering procedures to produce 3 plots (Figures 1-3). These plots
will be saved in the working directory as ‘CDKN2A_1.pdf’, ‘CDKN2A_2.pdf’, and ‘CDKN2A_3.
pdf’. To speed up calculations, we will only consider a subset of 50 samples.

> genename <- "CDKN2A"

> mdata <- geneDepth[,101:150]

> SFfigure(data=mdata, locusname=genename,

+ annot=geneAnnot, lplots=1:3, savestr=genename,

+ titlestr="CDKN2A locus, LUSC samples")

Figure 1 shows the raw coverage curves across the CDKN2A locus, produced by setting
lplots = 1. The x-axis shows genomic position, where different exons are colored using
alternating colors (introns are not included). The y-axis shows coverage on the log10 scale.
Each curve corresponds to a distinct sample (50 curves are overlaid, one for each sample).
The SigClust p-value is reported in the title. There are only two clear clusters visible in
Figure 1: a low expression class and a high expression class. However, the significant p-value
indicates that after filtering out samples with low expression, the high expression samples
can be further split into two distinct clusters. Although these clusters are difficult to see in
Figure 1, they are easily observed in Figures 2 and 3.

5

SigFuge (Tutorial)

0

10

100

1000

5

50

500

5000

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

CDKN2A locus, LUSC samples, pval = 0.00331

Figure 1: Graphical output from SFfigure for lplots=1. Each curve represents the expression level of one
sample across the CDKN2A locus. The curves are colored using default colors.

Cluster 1 size = 13
Cluster 2 size = 19
Cluster 3 size = 18

0

10

100

1000

5

50

500

5000

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

Clusters

Cluster 1

Cluster 2

Cluster 3

CDKN2A locus, LUSC samples, pval = 0.00331

Figure 2: Graphical output from SFfigure for lplots=2. The curves are colored according to class label.
The red curves represent a low expression class. There is a large difference in expression of the second exon
between the blue and green curves. This difference is reflected in the highly significant p-value.

Figure 2 shows the same curves as Figure 1, but the curves are now colored according to
cluster labels. The red curves represent a class of lowly expressed samples. Because these
lowly expressed curves may represent an important biological class (e.g. copy number deleted
samples) independent of another transcript alteration such as alternative splicing, they are
filtered out when normalizing, clustering, and assessing significance of the clusters. The
blue and green curves represent the two clusters as determined by 2-means clustering. The
number of curves/samples in each class is also reported on the plot. The thick colored lines
represent the median read depth for each class. Although the green and blue classes have
similar expression profiles in four of the five exons, there is a clear difference in expression at
the second exon. This difference is reflected in the highly significant p-value.

6

SigFuge (Tutorial)

Cluster 1 size = 13

Cluster 2 size = 19

Cluster 3 size = 18

C
luster 1

C
luster 2

C
luster 3

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

0

10

100

1000

5

50

500

5000

0

10

100

1000

5

50

500

5000

0

10

100

1000

5

50

500

5000

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

Clusters

Cluster 1

Cluster 2

Cluster 3

CDKN2A locus, LUSC samples, pval = 0.00331

Figure 3: Graphical output from SFfigure for lplots=3.

Instead of overlaying all curves in a single panel, Figure 3 plots each class of curves separately.
The scale of the y-axis is constant between all plots to allow for easier comparison between
classes.

Although not present in this example, occasionally there will be an outlier sample that is of
interest. Using SFfigure with the option lplots = 4 produces a series of plots, where each
plot shows one individual curve colored by its class label. The column names of the data
matrix are assumed to be the sample IDs and reported at the top of each plot. This makes
it easy to identify the outlier sample(s).

> genename <- "CDKN2A"

> SFfigure(data=mdata, locusname=genename,

+ annot=geneAnnot, lplots=4, savestr ="CDKN2A_individual_curves",

+ titlestr="CDKN2A locus, LUSC samples")

4.2 SFpval

SFpval allows you to obatin the p-value without creating any plots.

7

SigFuge (Tutorial)

> output <- SFpval(mdata)

> output@pvalnorm

[1] 0.002051275

This reported p-value may not perfectly match the p-value reported in the plots because
the p-value calculation depends on simulation. This function is useful if you are interested
in testing hundreds or thousands of loci in the genome. Once you have obtained all of the
p-values, you can create plots for only the most significant genes. Since SFpval does not
correct for multiple comparisons, it is important to adjust the p-values using p.adjust if
iterating over multiple loci.

4.3 SFlabels and SFnormalize

Cluster labels can be computed with SFlabels. First, we have to normalize the data using
SFnormalize. Because we are interested in alterations such as splicing and fusions instead
of differential gene expression, the SigFuge normalization procedure adjusts for differences in
total expression (read counts). The normalization procedure first filters out lowly expressed
samples because these samples are unable to provide any evidence of an alteration.

> norm <- SFnormalize(mdata)

> labels <- SFlabels(norm)

> labels[1:10]

[1] 1 2 2 2 3 1 2 1 3 1

The SigFuge normalization procedure reduces the variability between samples and exaggerates
any difference not explained by a simple difference in overall expression. See the SigFuge

manuscript for more details about the normalization procedure employed here. Plots showing
the read depth before and after normalization can be produced using the following code.
Note, we first remove low-expression samples since they are not included in the normalization
procedure.

> exp.data <- mdata[,-which(norm$flag == 1)]

> labels <- labels[-which(norm$flag == 1)]

> SFfigure(exp.data, locusname=genename, annot=geneAnnot,

+ data.labels=labels, flag=0, lplots=2,

+ savestr="Raw_CDKN2A", titlestr="Raw coverage",

+ pval=0)

> SFfigure(norm$data.norm, locusname=genename, annot=geneAnnot,

+ data.labels=labels, flag=0, lplots=2,

+ savestr="Norm_CDKN2A", titlestr="Normalized coverage",

+ pval=0)

References
[1] Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count

data. Genome Biology 11:R106.

8

SigFuge (Tutorial)

[2] Robinson M.D., McCarthy D.J. and Smyth GK (2010). edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics 26,
139−140.

[3] Liu, Y., Hayes, D.N., Nobel, A., Marron, J.S. (2008) Statistical Significance of
Clustering for High-Dimension, Low-Sample Size Data. Journal of the American
Statistical Association 103(408), 1281−1293.

[4] Li, H., Handsaker, B., Wysoker, A. (2009) The Sequence alignment/map (SAM) format
and SAMtools. Bioinformatics 25, 2078−2079.

[5] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y. (2008) RNA-seq: an
assessment of technical reproducibility and comparison with gene expression arrays.
Genome Research 18(9), 1509−1517.

[6] The TCGA Research Network (2012). Comprehensive genomic characterization of
squamous cell lung cancers. Nature 489(7417), 519−525.

9

	1 Summary
	2 Introduction
	2.1 Citation

	3 Importing data
	4 SigFuge Case Study
	4.1 [functioncolor]SFfigure
	4.2 [functioncolor]SFpval
	4.3 [functioncolor]SFlabels and [functioncolor]SFnormalize

