
LEA: An R Package for Landscape and Ecological

Association Studies

Eric Frichot and Olivier François
Université Grenoble-Alpes,

Centre National de la Recherche Scientifique,
TIMC-IMAG UMR 5525, Grenoble, 38042, France.

Contents

1 Overview 1

2 Introduction 2
2.1 Input files . 3

3 Analysis of population structure and imputation of missing
data 4
3.1 Principal Component Analysis 4
3.2 Inference of individual admixture coefficients using snmf . . . 4
3.3 Population differentation tests using snmf() 7
3.4 Missing genotype imputation using snmf 8

4 Ecological association tests using lfmm 10

5 Ecological association tests using lfmm2 13

6 Predictive Ecological Genomics: genetic gap 18

1 Overview

LEA is an R package dedicated to population genomics, landscape genomics
and genotype-environment association tests (Frichot and François, 2015;
Gain and François, 2021). LEA can run analyses of population structure
and genome-wide tests for local adaptation. Italso performs imputation of
missing genotypes. The package contains statistical methods for estimat-
ing ancestry coefficients from large genotypic matrices and for evaluating
the number of ancestral populations (snmf). It performs statistical tests
for identifying genetic polymorphisms that exhibit association with envi-
ronmental gradients or phenotypic traits using latent factor mixed models

1

(lfmm2). In addition, LEA computes values of genetic offset statistics based
on current and new environments (genetic.gap). LEA is mainly based on
optimized statistical procedure that can scale with the dimensions of large
data sets.

2 Introduction

The goal of this tutorial is to give an overview of the main functionali-
ties of the R package LEA. It will show the main steps of analysis, includ-
ing 1) analysing population structure and preparing a genotypic matrix for
genomewide association studies, 2) fitting latent factor mixed models to the
data and extracting regions of interest, 3) computing genomic offset statis-
tics.

As some functions may take a few hours to analyse very large data sets,
output files are written into text files that can be read by LEA after each
batch of runs (called a ’project’). We advise creating working directories
containing genotypic data and covariables when starting LEA. Note that two
files with the same names but a different extension are assumed to contain
the same data in distinct formats.

creation of a directory for LEA analyses

dir.create("LEA_analyses")

set the created directory as the working directory

setwd("LEA_analyses")

The first example below is based on a small dataset consisting of 400
SNPs genotyped for 50 diploid individuals. The last 50 SNPs are corre-
lated with an environmental variable, and represent the target loci for a
genotype-environment association (GEA) analysis. Similar artificial data
were analyzed in the computer note introducing the R package LEA (Frichot
and François, 2015). More realistic data are also included as examples in
the package, and they will be analyzed later.

library(LEA)

Creation of a genotype matrix data file: "genotypes.lfmm"

The data include 400 SNPs for 50 individuals.

data("tutorial")

Write genotypes in the lfmm format

write.lfmm(tutorial.R, "genotypes.lfmm")

Write genotypes in the geno format

write.geno(tutorial.R, "genotypes.geno")

creation of an environment gradient file: gradient.env.

The .env file contains a single ecological variable

2

for each individual.

write.env(tutorial.C, "gradients.env")

Note that the LEA package is to be able to handle very large genotype
matrices. Genomic data are processed using fast C codes wrapped into the
R code. Most LEA functions use character strings containing paths to input
files as arguments.

2.1 Input files

The R package LEA can handle several input file formats for genotypic ma-
trices. More specifically, the package uses the lfmm and geno formats, and
provides functions to convert from other formats such as ped, vcf, and
ancestrymap formats. The program VCFTOOLS can be very useful in
providing one of those formats. The ped format is the closest to an lfmm

matrix.
The lfmm and geno formats can also be used for coding multiallelic

marker data (eg, microsatellites). For multiallelic marker data, the conver-
sion function struct2geno() converts files in the STRUCTURE format in
the geno or lfmm formats. LEA can process any type of allele frequency
data if they are encoded in the lfmm format. In that case, the lfmm() and
lfmm2() functions will use allele frequencies for populations in their statis-
tical models.

Ecological predictors (or phenotypic traits) must be formatted in the
env format. This format corresponds to a matrix in which each variable is
represented as a column and each sample is represented as a row (Frichot
et al., 2013). An external env file requires a .env extension.

When using ecological data, we often need to decide which variables
should be used among a large number of predictors (e.g., bioclimatic vari-
ables). We suggest that users summarize their data using linear combi-
nations of those predictors. Considering principal component analysis and
using the first principal components as proxies for ecological gradients linked
to selective forces can be useful in this context. Of course, using principal
components of categories of variables, like precipitations, temperatures, soil
characteristics, etc, could be a valuable alternative that also reduce dimen-
sion and collinearity issues.

The LEA package can handle missing data in population structure analy-
ses. In association analyses, missing genotypes must be replaced by imputed
values using a missing data imputation method. We encourage users to re-
move their missing data by using the function impute(), which is based
on population structure analysis and nonnegative matrix factorization (see
next section). Note that specialized genotype imputation programs such
as BEAGLE, IMPUTE2 or MENDEL-IMPUTE could provide better im-
putation results than LEA, in particular for model species with a published

3

reference genome. Filtering out rare variants – retaining minor allele fre-
quency greater than 5 percent –, and pruning regions in strong LD may also
result in better analyses with LEA.

3 Analysis of population structure and imputation
of missing data

The R package LEA implements two classical approaches for the estimation
of population genetic structure: principal component analysis (pca) and
admixture analysis using sparse nonnegative matrix factorization (snmf)
(Frichot et al., 2014; Patterson et al., 2006; Pritchard et al., 2000). The
algorithms programmed in LEA are improved versions of admixture analysis,
that are able to process large genotypic matrices efficiently.

3.1 Principal Component Analysis

The LEA function pca() computes the scores of a PCA for a genotypic
matrix, and returns a screeplot for the eigenvalues of the sample covariance
matrix. Using the function pca(), an object of class pcaProject is created.
This object contains a path to the files storing eigenvectors, eigenvalues and
projections.

run of pca

Available options, K (the number of PCs),

center and scale.

Create files: genotypes.eigenvalues - eigenvalues,

genotypes.eigenvectors - eigenvectors,

genotypes.sdev - standard deviations,

genotypes.projections - projections,

Create a pcaProject object: pc.

pc = pca("genotypes.lfmm", scale = TRUE)

tw = tracy.widom(pc)

The number of ”significant” components can be evaluated using a graphi-
cal method based on the screeplot (Figure 1). According to Cattell’s rule,
the elbow in the screeplot indicates that there are around K = 4 major
components in the data. This corresponds to ≈ 5 genetic clusters.

3.2 Inference of individual admixture coefficients using snmf

The package LEA includes the R function snmf() that estimates individual
admixture coefficients from the genotypic matrix (Frichot et al., 2014). The
function provides results very close to Bayesian clustering programs such as

4

plot the percentage of variance explained by each component

plot(tw$percentage, pch = 19, col = "darkblue", cex = .8)

0 10 20 30 40 50

0.
02

0.
06

0.
10

Index

tw
$p

er
ce

nt
ag

e

Figure 1: Screeplot for the percentage of variance explained by each com-
ponent in a PCA of the genetic data. The elbow at K = 4 indicates that
there are 5 major genetic clusters in the data.

STRUCTURE (Pritchard et al., 2000; François and Durand, 2010). Assum-
ing K ancestral populations, the R function snmf() computes least-squares
estimates of ancestry proportions and ancestral allelic frequencies (Frichot
et al., 2014).

main options

K = number of ancestral populations

entropy = TRUE computes the cross-entropy criterion,

CPU = 4 is the number of CPU used (hidden input)

project = NULL

project = snmf("genotypes.geno",

K = 1:10,

entropy = TRUE,

repetitions = 10,

5

project = "new")

The snmf() function computes an entropy criterion that evaluates the
quality of fit of the statistical model to the data by using a cross-validation
technique (Figure 2). The entropy criterion can help choosing the number
of ancestral populations that best explains the genotypic data (Alexander
and Lange, 2011; Frichot et al., 2014). Here we have a clear minimum at
K = 4, suggesting 4 genetic clusters in the data. Often, the plot shows a
less clear pattern, and choosing the ”elbow” point can be a good approach.
The number of ancestral populations is closely linked to the number of prin-
cipal components of the genomic data. Both numbers can help determining
the number of latent factors when correcting for confounding effects due to
population structure in GEA tests with lfmm() and with lfmm2().

plot cross-entropy criterion for all runs in the snmf project

plot(project, col = "blue", pch = 19, cex = 1.2)

2 4 6 8 10

0.
50

0.
55

0.
60

Number of ancestral populations

C
ro

ss
−

en
tr

op
y

Figure 2: Value of the cross-entropy criterion as a function of the number
of populations in snmf.

The next step is to display a barplot for the ancestry proportions, recorded
in the Q-matrix. In Figure 3, the Q() function of LEA is called and the Q-

6

matrix output is converted into a Qmatrix object. The conversion of the
Q-matrix as a Qmatrix object can be useful for running improved graphical
functions from other packages such as tess3r (Caye et al., 2016, 2018).

select the best run for K = 4 clusters

best = which.min(cross.entropy(project, K = 4))

my.colors <- c("tomato", "lightblue",

"olivedrab", "gold")

barchart(project, K = 4, run = best,

border = NA, space = 0,

col = my.colors,

xlab = "Individuals",

ylab = "Ancestry proportions",

main = "Ancestry matrix") -> bp

axis(1, at = 1:length(bp$order),

labels = bp$order, las=1,

cex.axis = .4)

Ancestry matrix

Individuals

A
nc

es
tr

y
pr

op
or

tio
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 8 12 17 24 27 29 35 42 46 15 16 18 20 21 23 26 36 43 45 47 49 50 5 7 10 11 13 14 25 31 32 33 39 44 6 9 19 22 28 30 34 37 38 40 41 48

Figure 3: Ancestry coefficients obtained from snmf().

3.3 Population differentation tests using snmf()

common approaches to detecting outlier loci from a genomic background
focus on extreme values of the fixation index, FST, across loci. The snmf()
function can compute fixation indices when the population is genetically
continuous, when predefining subpopulations is difficult, and in the presence
of admixed individuals in the sample (Martins et al., 2016). In the snmf
approach, population differentiation statistics are computed from ancestry
coefficients obtained from an snmf object, and p-values are returned for all
loci. Figure 4 is an example of outlier analysis with snmf().

7

Genome scan for selection: opulation differentiation tests

p = snmf.pvalues(project,

entropy = TRUE,

ploidy = 2,

K = 4)

pvalues = p$pvalues

par(mfrow = c(2,1))

hist(pvalues, col = "orange")

plot(-log10(pvalues), pch = 19, col = "blue", cex = .5)

Histogram of pvalues

pvalues

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

0 100 200 300 400

0
1

2
3

4

Index

−
lo

g1
0(

pv
al

ue
s)

Figure 4: P -values for population differentiation tests with snmf().

3.4 Missing genotype imputation using snmf

Missing genotypes are critical to genome-wide association and GEA studies.
Before running an association study, an important step is to replace the
missing data, represented as ’9’ in the geno and lfmm) files, by imputed
values. To provide an example of missing data imputation, let us start by
removing 100 genotypes from the original data.The resulting matrix is saved
in the file genoM.lfmm.

8

creation of a genotype matrix with missing genotypes

dat = as.numeric(tutorial.R)

dat[sample(1:length(dat), 100)] <- 9

dat <- matrix(dat, nrow = 50, ncol = 400)

write.lfmm(dat, "genoM.lfmm")

[1] "genoM.lfmm"

Next, the function snmf() can be run on the data with missing genotypes
as follows.

project.missing = snmf("genoM.lfmm", K = 4,

entropy = TRUE, repetitions = 10,

project = "new")

Imputation of missing genoypes is based on estimated ancestry coeffi-
cients and on ancestral genotype frequencies. The snmf project data can be
used to impute the missing data as follows.

select the run with the lowest cross-entropy value

best = which.min(cross.entropy(project.missing, K = 4))

Impute the missing genotypes

impute(project.missing, "genoM.lfmm",

method = 'mode', K = 4, run = best)

Missing genotype imputation for K = 4

Missing genotype imputation for run = 5

Results are written in the file: genoM.lfmm_imputed.lfmm

Proportion of correct imputation results

dat.imp = read.lfmm("genoM.lfmm_imputed.lfmm")

mean(tutorial.R[dat == 9] == dat.imp[dat == 9])

[1] 0.74

The results are saved in an output file with the string "imputed" in its
suffix name. Since we removed genotypes from the original matrix, the ac-
curacy of results can be evaluated.The last R command above shows the pro-
portion of missing genotypes that were correctly imputed by the impute()

function.

9

4 Ecological association tests using lfmm

The R package LEA performs genome-wide association analysis based on la-
tent factor mixed models using the lfmm() and lfmm2() functions (Fri-
chot et al., 2013; Caye et al., 2019). The two functions are based on the
same statistical model, but their estimation algorithms are different. lfmm()
is Bayesian method that uses a Monte-Carlo Markov Chain algoritm, and
lfmm2() is a frequentist approach that uses least-squares estimates. For
large genotype matrices (e.g. more than 1,000-10,000 genetic loci),
the best is to use lfmm2().

To recall the statistical model, let G denote the genotype matrix, storing
allele frequencies for each individual at each locus, and let X denote a set of
d ecological predictors (or phenotypic traits). LFMMs consider the genotype
matrix entries as response variables in a latent factor regression model

Giℓ = µℓ + βT
ℓ Xi + UT

i Vℓ + ϵiℓ , (1)

where µℓ is a locus specific effect, βℓ is a d-dimensional vector of regression
coefficients, Ui containsK latent factors, and Vℓ contains their corresponding
loadings (i stands for an individual and ℓ for a locus). The residual terms,
ϵiℓ, are statistically independent Gaussian variables with mean zero and
variance σ2.

In latent factor models, effect size of environmental predictors on al-
lelic frequencies are estimated simultaneously with the K unobserved latent
factors that model confounding effects. In principle, the latent factors in-
clude levels of population structure due to shared demographic history or
background genetic variation, but they are generally different of popula-
tion structure estimates (such as principal components). After correction
for confounding effects, the level of association between a particular allelic
frequency and an ecological predictor is often interpreted as a signature of
natural selection at the corresponding locus.

Running LFMM. The lfmm() program is based on a stochastic algo-
rithm (MCMC). See the section on lfmm2() for an alternative method which
provides exact results under simplified assumptions. We recommend using
large number of cycles (e.g., -i 6000) and the burnin period should set at
least to one-half of the total number of cycles (-b 3000). We have noticed
that results are sensitive to the run-length parameter when data sets have
relatively small sizes (e.g., a few hundreds of individuals, a few thousands
of loci). We recommend increasing the burnin period and the total number
of cycles in this situation.

main options:

K = the number of latent factors

10

Runs with K = 6 using 5 repetitions.

project = NULL

project = lfmm("genotypes.lfmm",

"gradients.env",

K = 6,

repetitions = 5,

project = "new")

lfmm uses a very naive imputation method which has low power

when genotypes are missing: See impute() for a better imputation

method.

Note that lfmm has an improved estimation algorithm implemented

in lfmm2, which should be the prefered option.

Deciding the number of latent factors. Deciding an appropriate value
for the number of latent factors in the lfmm() call can be based on the
analysis of histograms of test significance values. Ideally, histograms should
be flat, with a peak close to zero. A good hint for the number of factors is
the elbow value in the PCA screeplot obtained from the genotype matrix.

Since the objective is to control the false discovery rate (FDR) while
keeping reasonable power to reject the null hypothesis, we recommend using
several runs for each value of K and to combine p-values (use 5 to 10 runs,
see our script below). Choosing values of K for which the histograms show
their correct shape warrants that the FDR can be controlled efficiently.

Testing allK values in a large range, say from 1 to 20, is generally useless.
A careful analysis of population structure and estimates of the number of
ancestral populations contributing to the genetic data indicates the range
of values to be explored. For example, if the snmf() command estimates 4
ancestral populations, then running lfmm() for K = 3 − 6 often provides
good results.

Combining z-scores obtained from multiple runs. We use the Fisher-
Stouffer method to combine z-scores from multiple runs. In practice, we
found that using the median z-scores of 5-10 runs and re-adjusting the p-
values afterwards can increase the power of lfmm tests. This procedure is
implemented in LEA function lfmm.pvalues().

compute adjusted p-values

p = lfmm.pvalues(project, K = 6)

pvalues = p$pvalues

11

The results displayed in Figure 5 show that the null-hypothesis is cor-
rectly calibrated. The loci exhibiting significant associations are found at
the right on the Manhattan plot.

GEA significance test

par(mfrow = c(2,1))

hist(pvalues, col = "lightblue")

plot(-log10(pvalues), pch = 19, col = "blue", cex = .7)

Histogram of pvalues

pvalues

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

50

0 100 200 300 400

0
2

4

Index

−
lo

g1
0(

pv
al

ue
s)

Figure 5: P -values for LFMM tests. The loci showing significant associations
are at the right on the Manhattan plot.

To adjust p-values for multiple testing issues, we use the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). We set the expected
levels of FDR to q = 5%, 10%, 15% and 20% respectively . The lists of
candidate loci are given by the following script. Since we the ground truth
is known for the simulated data, we can compare the expected FDR levels
to their observed levels, and compute the power (TPR, true positive rate)
of the test.

for (alpha in c(.05,.1,.15,.2)) {
expected FDR

12

print(paste("Expected FDR:", alpha))

L = length(pvalues)

return a list of candidates with expected FDR alpha.

Benjamini-Hochberg's algorithm:

w = which(sort(pvalues) < alpha * (1:L) / L)

candidates = order(pvalues)[w]

estimated FDR and True Positive Rate

Lc = length(candidates)

estimated.FDR = sum(candidates <= 350)/Lc

print(paste("Observed FDR:",

round(estimated.FDR, digits = 2)))

estimated.TPR = sum(candidates > 350)/50

print(paste("Estimated TPR:",

round(estimated.TPR, digits = 2)))

}

[1] "Expected FDR: 0.05"

[1] "Observed FDR: 0.07"

[1] "Estimated TPR: 0.52"

[1] "Expected FDR: 0.1"

[1] "Observed FDR: 0.1"

[1] "Estimated TPR: 0.76"

[1] "Expected FDR: 0.15"

[1] "Observed FDR: 0.12"

[1] "Estimated TPR: 0.84"

[1] "Expected FDR: 0.2"

[1] "Observed FDR: 0.16"

[1] "Estimated TPR: 0.86"

5 Ecological association tests using lfmm2

As an efficient alternative to the MCMC algorithm implemented in the
lfmm(), genome-wide association and GEA analysis can be performed by
using the lfmm2() command. This function allows estimating K latent fac-
tors and the effect sizes corresponding to environmental variables in the
same statistical model as lfmm(). For lfmm2(), the estimation algorithm
is based on exact solutions of a least-squares minimization problem (Caye
et al., 2019). For large data sets, lfmm2() is much faster than the MCMC
version (Gain and François, 2021).

Using lfmm2() decouples latent factor estimation from association tests.

13

The decoupling allows implementing various types of tests including linear
or generalized linear models, and also to test genotypes not used in the
estimation procedures (e.g., unpruned genotypes).

Let us consider an example with 200 diploid individuals genotyped at 510
SNP loci, and four ecological predictors. The principal component analysis
of the genotype matrix suggests that there are two main axes of variation
(K = 2). The latent factors are estimated as follows.

load simulated data

data("offset_example")

200 diploid individuals genotyped at 510 SNP

Y <- offset_example$geno

4 environmental variables

X <- offset_example$env

mod.lfmm2 <- lfmm2(input = Y, env = X, K = 2)

The lfmm2() command generates an object of class lfmm2Class which
contains estimated factors (mod2@U) and loadings (mod2@V) for being in-
cluded as correction factors in genome-wide association tests. Note that
LEA is using S4 objects rather than S3 objects. Getting the factors could
be useful for implementing customized tests. For example, they could be
used for computing a covariance matrix for random effects in a mixed linear
model. The lfmm2.test() function implements simpler tests such as linear
or generalized linear model tests.

Although there are four environmental predictors, we want a single test
significance value for association with environment at each locus. For this,
we test the fit of the model using Fisher’s tests. The test significance values
are computed using the option full = TRUE.

Let us consider a second example simulated from the LFMM generative
model. The simulated genotype matrix contains n = 100 individuals geno-
typed for L = 1, 000 loci, ten of which are truly associated with an artificial
environmental variable, X.

Simulate non-null effect sizes for 10 target loci

#individuals

n = 100

#loci

L = 1000

Environmental variable

X = as.matrix(rnorm(n))

effect sizes

B = rep(0, L)

target = sample(1:L, 10)

14

GEA significance test

showing the K = 2 estimated factors

plot(mod.lfmm2@U, col = "grey", pch = 19,

xlab = "Factor 1",

ylab = "Factor 2")

−5 0 5

−
5

0
5

Factor 1

Fa
ct

or
 2

Figure 6: Latent factors estimated in the offset example data analysis.

B[target] = runif(10, -10, 10)

The latent factors, U, contained in an n × 3 matrix, are random vec-
tors created as follows. Correlations between the factors and environmental
predictor, X, are introduced in the simulation model.

Create 3 hidden factors and their loadings

U = t(tcrossprod(as.matrix(c(-1,0.5,1.5)), X)) +

matrix(rnorm(3*n), ncol = 3)

V <- matrix(rnorm(3*L), ncol = 3)

The genotypic matrix, Y, is simulated according to an approximation of
the LFMM generative model. This matrix has dimension n× L.

15

pv <- lfmm2.test(object = mod.lfmm2,

input = Y,

env = X,

full = TRUE)

plot(-log10(pv$pvalues), col = "grey", cex = .5, pch = 19)

abline(h = -log10(0.1/510), lty = 2, col = "orange")

0 100 200 300 400 500

0
1

2
3

4

Index

−
lo

g1
0(

pv
$p

va
lu

es
)

Figure 7: Offset example: p-values for LFMM2 tests.

Simulate a matrix containing haploid genotypes

Y <- tcrossprod(as.matrix(X), B) +

tcrossprod(U, V) +

matrix(rnorm(n*L, sd = .5), nrow = n)

Y <- matrix(as.numeric(Y > 0), ncol = L)

We fit an LFMM by using K = 3 latent factors. This value corresponds
to the true value in the model (note that K = 3 could be easily recovered
from a PCA screeplot).

16

Fitting an LFMM with K = 3 factors

mod <- lfmm2(input = Y, env = X, K = 3)

To adjust p-values for multiple testing issues, we can use the Benjamini-
Hochberg procedure as with the lfmm() tests. The tests and a Manhattan
plot can be performed as follows.

Computing P-values and plotting their minus log10 values

pv <- lfmm2.test(object = mod,

input = Y,

env = X,

linear = TRUE)

plot(-log10(pv$pvalues), col = "grey", cex = .6, pch = 19)

points(target, -log10(pv$pvalues[target]), col = "red")

0 200 400 600 800 1000

0
2

4
6

8
10

Index

−
lo

g1
0(

pv
$p

va
lu

es
)

Figure 8: Manhattan plot of log10 p-values for LFMM2 tests. The loci
showing real associations are circled in red.

17

6 Predictive Ecological Genomics: genetic gap

Genomic offset is a genome-based approach to assess the maladaptation of
populations to abrupt alteration of their habitat. Genomic offset statistics
use environmental and genomic data to predict shifts in adaptive traits with-
out direct observations of those traits. By relying on GEA models, genomic
offset statistics are based on differences in allelic frequencies for two sets of
conditions in an ecological niche.

The R package LEA implements a geometric statistic to estimate genomic
offset (genetic gap), based on the covariance matrix of effect sizes obtained
from an LFMM (Gain, 2022). The same function can also compute a modi-
fied version of the risk of nonadaptedness (RONA) that includes correction
for confounding factors and performs a multivariate analysis of environmen-
tal effects.

The genetic.gap() function takes as input the environmental and ge-
nomic data that are used to adjust the LFMM. It also requires a matrix of
environmental predictors measured at new locations (new.env), and a ma-
trix of predicted environmental variables for the new locations (pred.env) in
the same format as the new.env ones. New locations at not necessarily new,
as they could be taken as sample locations (new.env = env).

Loading the offset example again, the genotype matrix is of dimension
200× 510, corresponding to 200 sampled individuals genotyped at 510 loci.
The data contains four environmental predictors, and predicted values of
(future) change.

data("offset_example")

Y <- offset_example$geno

X <- offset_example$env

X.pred <- offset_example$env.pred

Below, we compute the geometric offset (genetic gap) at each sample
locations, using all genomic loci in the genotype matrix. Note that the
candidate.loci = TRUE option allows us to use any subset of loci, in par-
ticular those being above the significance level in the GEA analysis.

g.gap.scaled <- genetic.gap(input = Y,

env = X,

pred.env = X.pred,

scale = TRUE,

K = 2)

The ecological predictors were correlated to each other, and they con-
tained redundant information. The analysis of the covariance matrix and
the screeplot of eigenvalues showed that the dimension of the environmental
space was equal to two.

18

g.gap.scaled$vectors[,1:2]^2

[,1] [,2]

[1,] 0.513933196 0.2127500317

[2,] 0.179886480 0.6453681390

[3,] 0.302617770 0.0005067079

[4,] 0.003562555 0.1413751215

The loadings for the first two variables indicated the relative contribu-
tions of each predictor to local adaptation. Axis 1 mainly corresponded to
variable 1 (51%), and axis 2 mainly corresponded to variable 2 (64%). The
genetic gap correlated with the squared ecological distance computed from
variables 1 and 2, showing that larger shifts in those variables are likely to
create larger fitness loss.

19

par(mfrow = c(1,2))

barplot(g.gap.scaled$eigenvalues,

col = "orange",

xlab = "Axes",

ylab = "Eigenvalues")

Delta = X[,1:2] - X.pred[,1:2]

squared.env.dist = rowSums(Delta^2)

plot(squared.env.dist, g.gap.scaled$offset, cex = .6)

Axes

E
ig

en
va

lu
es

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
05

0.
10

0.
15

0.
20

squared.env.dist

g.
ga

p.
sc

al
ed

$o
ffs

et

Figure 9: Left: Barplot of covariance eigenvalues showing that the dimension
of environmental space is two. Right: The genetic gap correlated with
squared ecological distance, showing that larger shifts corresponded with
larger offsets.

References

Alexander DH and Lange K. 2011. Enhancements to the ADMIXTURE
algorithm for individual ancestry estimation. BMC Bioinformatics 12:246.

Benjamini Y and Hochberg Y. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc B Met.
pp. 289–300.

Caye K, Jay F, Michel O and Francois O. 2016. Fast inference of individual
admixture coefficients using geographic data. bioRxiv p. 080291.

Caye K, Jay F, Michel O and Francois O. 2018. Fast inference of individ-

20

ual admixture coefficients using geographic data. The Annals of Applied
Statistics 12:586–608.

Caye K, Jumentier B, Lepeule J and François O. 2019. Lfmm 2: Fast
and accurate inference of gene-environment associations in genome-wide
studies. Molecular Biology and Evolution 36:852–860.

François O and Durand E. 2010. Spatially explicit bayesian clustering models
in population genetics. Mol Ecol Resour. 10:773–784.

Frichot E and François O. 2015. LEA: an R package for Landscape and
Ecological Association studies. Methods in Ecology and Evolution 6:925–
929.

Frichot E, Mathieu F, Trouillon T, Bouchard G and François O. 2014.
Fast and efficient estimation of individual ancestry coefficients. Genet-
ics 196:973–983.

Frichot E, Schoville SD, Bouchard G and François O. 2013. Testing for
associations between loci and environmental gradients using latent factor
mixed models. Mol Biol Evol. 30:1687–1699.

Gain C and François O. 2021. LEA 3: Factor models in population genetics
and ecological genomics with R. Molecular Ecology Ressources 21:2738–
2748.

Gain C et al. 2022. A quantitative theory for genomic offset statistics.
BioRxiv .

Martins H, Caye K, Luu K, Blum MGB and Francois O. 2016. Identify-
ing outlier loci in admixed and in continuous populations using ancestral
population differentiation statistics. Molecular Ecology 25:5029–5042.

Patterson N, Price AL and Reich D 2006. Population structure and eigen-
analysis. PLoS Genet. 2:20.

Pritchard JK, Stephens M and Donnelly P. 2000. Inference of population
structure using multilocus genotype data. Genetics 155:945–959.

21

